×
21.05.2020
220.018.1f7c

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ СРОКА ВЫВОДА В РЕМОНТ АНОДНОГО ЗАЗЕМЛЕНИЯ

Вид РИД

Изобретение

№ охранного документа
0002721250
Дата охранного документа
18.05.2020
Аннотация: Изобретение относится к области электрохимической защиты от коррозии подземных трубопроводов. В начальный момент времени ввода установки катодной защиты УКЗ в эксплуатацию выполняют измерение значения сопротивления растеканию тока с анодного заземления, входящего в состав УКЗ участка трубопровода, и выходного напряжения преобразователя УКЗ, рассчитывают токовый параметр УКЗ, периодически корректируют и измеряют выходное напряжение преобразователя УКЗ, требуемое для обеспечения эффективной защиты участка трубопровода, на основании данных измерений выходного напряжения с применением рассчитанного токового параметра определяют расчетное значение сопротивления растеканию тока с анодного заземления, строят график изменения сопротивления растеканию тока с анодного заземления во времени, отмечают предельное значение сопротивления растеканию тока с анодного заземления для данных грунтовых условий, которое экстраполируют линейной функцией во времени, и определяют время достижения сопротивления растеканию тока с анодного заземления критического значения, которое определяет срок вывода анодного заземления в ремонт. Технический результат - упрощение выполнения способа без снижения эффективности противокоррозионной защиты во время его выполнения. 3 з.п. ф-лы, 1 табл., 1 пр., 1 ил.

Изобретение относится к области оценки остаточного ресурса элементов электрохимической защиты от коррозии подземных трубопроводов и оборудования и может быть использовано при определении срока эксплуатации анодного заземления, при котором возникает необходимость его ремонта либо замены.

Известен способ определения срока службы анодного заземления на стадии проектирования системы электрохимической защиты, позволяющий выполнить приблизительную оценку допустимого времени эксплуатации анодного заземления расчетным путем (СТО Газпром 9.2-003-2009 Защита от коррозии. Проектирование электрохимической защиты подземных сооружений - М.: ОАО «Газпром» - ООО «ВНИИГАЗ», 2009).

Недостатком способа является отсутствие достоверных исходных данных для конкретного типа анодного заземления, входящего в состав системы катодной защиты трубопровода. В частности, скорость растворения материала анодного заземления и средняя сила тока, стекающего с заземления, принимаются в расчете без учета внешних факторов, например, воздействия источников блуждающих токов или влияния на процесс токораспределения электрического соединения систем катодной защиты и защитного заземления, приводящего к ускоренному износу материала анодного заземления.

Известен способ оценки предельного срока эксплуатации анодного заземления в зависимости от грунтовых условий и результатов измерений сопротивления растеканию тока с анодного заземления, суть которых заключается в установке в грунт измерительного и вспомогательного электродов, подключению электродов и анодного заземления по трехэлектродной схеме к измерительному прибору и проведению измерений сопротивления растеканию тока (Бэкман В., Швенк В. Катодная защита от коррозии: Справ, изд. пер. с нем. - М.: Металлургия, 1984. - С. 118-119.). Полученное значение сравнивают с предельной величиной сопротивления растеканию тока (табл. 1) и судят об эффективности работы анодного заземления и остаточном сроке его эксплуатации (Карнавский Е.Л. Определение остаточного ресурса оборудования и материалов системы противокоррозионной защиты / Е.Л. Карнавский, С.А. Никулин // Коррозия «Территория «НЕФТЕГАЗ». - 2016. - №3(35). - С. 41)

Недостатком данного способа является необходимость проведения периодических измерений непосредственно на участке трубопровода, находящегося в зоне действия установки катодной защиты, в состав которой входит анодное заземление. В случае, если глубинное анодное заземление вынесено за пределы защищаемого участка на расстояние до 500-700 м от трубопровода, выезд к месту его установки и выполнение комплекса работ по измерению сопротивления грунта и сопротивления растеканию тока представляется трудоемкой задачей, требующей дополнительных финансовых и временных затрат. Также при проведении измерений требуется отсоединение провода анодного заземления от плюсовой клеммы преобразователя катодной защиты, что ведет к перерыву в работе системы электрохимической защиты и в целом приводит к временному снижению эффективности противокоррозионной защиты на участке. Кроме того, при выполнении измерений необходимо соблюдать определенное расстояние между измерительными электродами прибора и анодным заземлением исходя из его длины, обеспечить отсутствие между измерительными электродами и анодным заземлением других металлических сооружений и коммуникаций, а также предварительно убедиться в том, что сопротивление вспомогательных электродов не превышает 1000 Ом.

Задачей изобретения является создание способа, позволяющего с приемлемой достоверностью определять срок замены или вывода в ремонт анодного заземления, входящего в состав установки катодной защиты, на основании параметров, определение которых не требует проведения многократных измерений, выполняемых путем непосредственного контакта между объектом и средством измерения.

Технический результат заключается в упрощении способа оценки технического состояния и определения необходимости замены или вывода в ремонт анодного заземления при сохранении необходимой точности и достоверности оцениваемых при осуществлении заявленного способа параметров, определяемых на основании показаний контрольно-измерительных приборов, входящих в состав установки катодной защиты.

Поставленная задача решается путем реализации способа определения срока вывода в ремонт анодного заземления, заключающемся в том, что в начальный момент времени ввода установки катодной защиты УКЗ в эксплуатацию выполняют измерение значения сопротивления растеканию тока с анодного заземления, входящего в состав УКЗ участка трубопровода, и выходного напряжения преобразователя УКЗ, рассчитывают токовый параметр УКЗ, периодически корректируют и измеряют выходное напряжение преобразователя УКЗ, требуемое для обеспечения эффективной защиты участка трубопровода, на основании данных измерений выходного напряжения с применением рассчитанного токового параметра определяют расчетное значение сопротивления растеканию тока с анодного заземления, строят график изменения сопротивления растеканию тока с анодного заземления во времени, отмечают предельное значение сопротивления растеканию тока с анодного заземления для данных грунтовых условий, и определяют время достижения сопротивления растеканию тока с анодного заземления критического значения, которое определяет срок вывода анодного заземления в ремонт.

При этом за шаг измерения выходного напряжения преобразователя установки катодной защиты, в состав которой входит анодное заземление, принимают один год, определение выходного напряжения преобразователя установки катодной защиты, в состав которой входит анодное заземление, выполняют путем трассовых электроизмерений или с применением систем дистанционного мониторинга, а прогноз изменения сопротивления растеканию тока с анодного заземления во времени выполняют при помощи линейной экстраполяции на основании данных, полученных за период эксплуатации, составляющий не менее пяти лет.

В качестве пояснения приводим следующее.

Система электрохимической защиты функционирует благодаря движению электрического тока катодной защиты по замкнутой цепи «преобразователь (источник) тока - анодный провод - анод - грунт - повреждения изоляционного покрытия - трубопровод - катодный провод - преобразователь (источник) тока».

В указанной цепи сопротивление растеканию тока на границе «анод - грунт» имеет тенденцию к увеличению вследствие того, что материал анода растворяется и преобразуется в почти непроводящие электрический ток оксиды. Это приводит к увеличению общего сопротивления цепи и снижению тока катодной защиты.

Для обеспечения эффективной защиты (поддержания определенной плотности тока) необходимо в процессе эксплуатации трубопровода постепенно увеличивать напряжение на выходе преобразователя.

Поэтому об изменении сопротивления растеканию тока анодного заземления можно судить по необходимости периодически увеличивать напряжение на выходе преобразователя установки катодной защиты.

Способ поясняется чертежом, на котороь приведен график изменения сопротивления растеканию тока с анодного заземления во времени R=f(t) за пятилетний период эксплуатации и график изменения величины сопротивления растеканию тока в зависимости от времени эксплуатации и таблицей, в которой представлены предельные значения сопротивления растеканию тока с анодного заземления.

Способ реализуют следующим образом.

Имеется участок трубопровода, который находится под электрохимической защитой установки катодной защиты, в состав которой включено анодное заземление, срок вывода в ремонт которого требуется определить.

В текущий момент времени t0 убеждаются, что электрохимическая защита на участке трубопровода эффективна и параметры ее работы соответствуют требованиям действующих нормативных документов. В момент времени t0 измеряют сопротивление растеканию тока анодного заземления Rt0.

В момент времени t0 измеряют напряжение Ut0 на выходе преобразователя установки катодной защиты.

Рассчитывают приведенный токовый параметр I, характеризующий цепь катодной защиты на рассматриваемом участке трубопровода по формуле:

Iпр=Ut0 / Rt0.

В процессе эксплуатации трубопровода периодически (при необходимости) регулируют выходные параметры преобразователя установки катодной защиты для обеспечения полноты катодной защиты в соответствии с действующими нормативами.

Периодически в момент времени ti измеряют напряжение на выходе преобразователя установки катодной защиты Uti.

Для момента времени ti рассчитывают прогнозное значение сопротивления растеканию тока с анодного заземления, используя ранее полученный приведенный токовый параметр Iпр:

Rti=Uti / Iпр.

На основании данных, полученных расчетным путем, строят график изменения сопротивления растеканию тока с анодного заземления во времени R=f(t).

Экстраполируют зависимость R=f(t) линейной функцией (фиг.), по которой определяют прогнозное время tкр достижения сопротивления растеканию тока с анодного заземления критического значения Rкр.

Пример.

На участке магистрального газопровода км 1125-1155, введенном в эксплуатацию в 2014 году, электрохимическая защита от коррозии обеспечивается установкой катодной защиты (УКЗ). Сбор и обработка информации о коррозионных процессах и работе средств противокоррозионной защиты осуществляется с использованием подсистемы дистанционного коррозионного мониторинга (ПДКМ).

В момент ввода УКЗ трубопровода в эксплуатацию напряжение на выходе преобразователя УКЗ составляло Ut0=20 В, измеренная в ходе проведения пусконаладочных работ величина сопротивления растеканию тока с анодного заземления Rt0=1 Ом. По результатам расчета приведенный токовый параметр по данным, полученным при вводе в эксплуатацию, составляет Iпр=20 А.

Для оценки остаточного ресурса анодного заземления, входящего в состав УКЗ, производят сбор данных ПДКМ о величине выходного напряжения УКЗ с 2015 г. по 2019 г. с шагом один год:

- 2015 г.: Ut1=20 B;

- 2016 г.: Ut2=22 B;

- 2017 г.: Ut3=24 B;

- 2018 г.: Ut4=25,4 B;

- 2019 г.: Ut5=27,2 B.

Для каждого года эксплуатации рассчитывают величину сопротивления растеканию тока с анодного заземления, используя ранее полученный приведенный токовый параметр Iпр=20 А:

- 2015 г.: Rt1=1 Ом;

- 2016 г.: Rt2=1,1 Ом;

- 2017 г.: Rt3=1,2 Ом;

- 2018 г.: Rt4=1,27 Ом;

- 2019 г.: Rt5=1,36 Ом.

На основании данных, полученных расчетным путем, строят график изменения сопротивления растеканию тока с анодного заземления во времени R=f(t) за пятилетний период эксплуатации (фиг.). Для получения прогнозных значений величины сопротивления растеканию тока с анодного заземления на предполагаемый период эксплуатации (40 лет) используют метод экстраполяции. По полученным значениям строят график изменения величины сопротивления растеканию тока в зависимости от времени эксплуатации (на фиг. показан штриховой линией).

Поскольку участок подземного трубопровода располагается в супесчаном грунте (ρгр=125 Ом⋅м), на графике отмечают предельное значение сопротивления растеканию тока с анодного заземления для данных грунтовых условий

Находят точку пересечения линии прогнозных значений сопротивления растеканию тока с предельным значением, из полученной точки опускают перпендикуляр на временную ось, получают предельный срок эксплуатации анодного заземления исходя из данных ПДКМ, полученных за пятилетний срок эксплуатации. Соответственно, данный срок (2035 год) принимается как предельный для проведения ремонта либо замены анодного заземления с целью сокращения энергозатрат на поддержание выходных параметров УКЗ в допустимых пределах.


СПОСОБ ОПРЕДЕЛЕНИЯ СРОКА ВЫВОДА В РЕМОНТ АНОДНОГО ЗАЗЕМЛЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 11-15 из 15.
10.05.2018
№218.016.3dbb

Конструкция перехода трубопровода через препятствия

Изобретение относится к строительству трубопроводов и может быть использовано при прокладке трубопроводов по дну водоемов, по заболоченной местности, а также на речных и морских переходах небольшой протяженности. Конструкция перехода трубопровода через препятствия содержит внутреннюю трубу,...
Тип: Изобретение
Номер охранного документа: 0002648171
Дата охранного документа: 22.03.2018
04.07.2018
№218.016.6a53

Способ регулирования параметров катодной защиты подземных трубопроводов

Изобретение относится к области защиты подземных сооружений от коррозии, в частности, к регулированию потенциалов катодной защиты участков защищаемого сооружения. Способ включает назначение контрольных точек, в которых определяют значение потенциала «труба-земля», изменение параметров катодной...
Тип: Изобретение
Номер охранного документа: 0002659543
Дата охранного документа: 02.07.2018
10.07.2018
№218.016.6f2c

Водопропускное сооружение под насыпью

Изобретение относится к строительству водопропускных сооружений в местах пересечений магистральными трубопроводами водотоков. Водопропускное сооружение под насыпью содержит набор бетонных плит, уложенных по конфигурации профиля русла ручья, под размещенной в насыпе рабочей трубой,...
Тип: Изобретение
Номер охранного документа: 0002660699
Дата охранного документа: 09.07.2018
23.07.2019
№219.017.b6ed

Способ выполнения анодного заземления

Изобретение относится к области электрохимической защиты подземных сооружений от грунтовой коррозии и может найти применение в нефтегазовой промышленности, а также в коммунальном хозяйстве при выполнении анодного заземления. Способ включает определение уровней грунтовых вод и промерзания грунта...
Тип: Изобретение
Номер охранного документа: 0002695101
Дата охранного документа: 19.07.2019
02.10.2019
№219.017.d14d

Устройство для разделения контуров катодной защиты и контуров защитных заземлений и молниезащиты

Использование: в области электротехники. Технический результат - повышение безопасности и удобства эксплуатации оборудования. Устройство для разделения контуров катодной защиты и контуров защитных заземлений и молниезащиты выполнено в виде блока силовых диодов, блока ограничителей от...
Тип: Изобретение
Номер охранного документа: 0002700269
Дата охранного документа: 16.09.2019
Показаны записи 21-30 из 55.
29.12.2017
№217.015.fd7b

Способ предотвращения коррозионного растрескивания под напряжением в подземных трубопроводах

Способ предотвращения коррозионного растрескивания под напряжением (КРН) в подземных трубопроводах относится к трубопроводному транспорту и может быть использован при строительстве новых и реконструкции действующих подземных трубопроводов. Способ заключается в том, что трубопровод размещают на...
Тип: Изобретение
Номер охранного документа: 0002638121
Дата охранного документа: 11.12.2017
13.02.2018
№218.016.21a6

Способ определения технического состояния изоляционного покрытия подземного трубопровода

Изобретение относится к трубопроводному транспорту и может быть использовано при определении технического состояния изоляционного покрытия участков подземных трубопроводов, подверженных воздействию геомагнитно-индуцированного тока. Определяют положение границ и длину участка трубопровода,...
Тип: Изобретение
Номер охранного документа: 0002641794
Дата охранного документа: 22.01.2018
13.02.2018
№218.016.2241

Способ идентификации источника блуждающего тока

Изобретение относится к области защиты подземных металлических сооружений от коррозии, вызванной блуждающими токами. Способ идентификации источника блуждающего тока заключается в следующем: отключают средства электрохимической защиты трубопровода и синхронно измеряют разности потенциалов...
Тип: Изобретение
Номер охранного документа: 0002642137
Дата охранного документа: 24.01.2018
13.02.2018
№218.016.2278

Способ защиты участков трубопроводов от геомагнитно-индуцированных блуждающих токов и устройство для его осуществления

Группа изобретений относится к области защиты подземных металлических сооружений от коррозии, вызванной геомагнитно-индуцированными источниками блуждающих токов, и может быть использована в нефтяной и газовой промышленности при эксплуатации подземных трубопроводов, подверженных влиянию...
Тип: Изобретение
Номер охранного документа: 0002642141
Дата охранного документа: 24.01.2018
10.05.2018
№218.016.3dbb

Конструкция перехода трубопровода через препятствия

Изобретение относится к строительству трубопроводов и может быть использовано при прокладке трубопроводов по дну водоемов, по заболоченной местности, а также на речных и морских переходах небольшой протяженности. Конструкция перехода трубопровода через препятствия содержит внутреннюю трубу,...
Тип: Изобретение
Номер охранного документа: 0002648171
Дата охранного документа: 22.03.2018
04.07.2018
№218.016.6a53

Способ регулирования параметров катодной защиты подземных трубопроводов

Изобретение относится к области защиты подземных сооружений от коррозии, в частности, к регулированию потенциалов катодной защиты участков защищаемого сооружения. Способ включает назначение контрольных точек, в которых определяют значение потенциала «труба-земля», изменение параметров катодной...
Тип: Изобретение
Номер охранного документа: 0002659543
Дата охранного документа: 02.07.2018
25.09.2018
№218.016.8b05

Способ ремонта трубопровода

Изобретение относится к трубопроводному транспорту и может быть использовано при ремонте эксплуатируемых трубопроводов. На дефектном участке вскрывают трубопровод, подготавливают дефектное место для проведения диагностики. Уточняют тип, линейные размеры и глубину дефекта стенки трубы методами...
Тип: Изобретение
Номер охранного документа: 0002667730
Дата охранного документа: 24.09.2018
03.10.2018
№218.016.8cbe

Способ локализации участков трубопроводов, подверженных влиянию геомагнитно-индуцированных блуждающих токов

Изобретение относится к области защиты подземных металлических сооружений от коррозии, вызванной источниками геомагнитно-индуцированных блуждающих токов. Сущность: по максимальным колебаниям разности потенциала «труба-земля» определяется начальная точка на трассе трубопровода, где...
Тип: Изобретение
Номер охранного документа: 0002668352
Дата охранного документа: 28.09.2018
20.02.2019
№219.016.bc79

Способ выявления нарушений соединения полимерного покрытия с металлическими трубами

Использование: для выявления нарушений соединения полимерного покрытия с металлическими трубами. Сущность заключается в том, что осуществляют введение посредством пьезоэлектрического преобразователя ультразвукового дефектоскопа импульсов ультразвуковых колебаний в покрытие, прием и...
Тип: Изобретение
Номер охранного документа: 0002278378
Дата охранного документа: 20.06.2006
20.02.2019
№219.016.bcdd

Способ определения механических напряжений в стальных конструкциях

Изобретение относится к области оценки технического состояния конструкций и может быть использовано для определения механических напряжений, например, в стальных трубопроводах надземной прокладки. Сущность изобретения состоит в том, что для определения механических напряжений стальных...
Тип: Изобретение
Номер охранного документа: 0002281468
Дата охранного документа: 10.08.2006
+ добавить свой РИД