×
22.04.2020
220.018.17b4

Результат интеллектуальной деятельности: СПОСОБ СЕЛЕКЦИИ МОРСКОЙ ЦЕЛИ ОПТИКО-ЭЛЕКТРОННОЙ СИСТЕМОЙ ЛЕТАТЕЛЬНОГО АППАРАТА

Вид РИД

Изобретение

Аннотация: Изобретение относится к автономным системам конечного наведения летательных аппаратов (ЛА). Достигаемый технический результат - селекция морской цели (МЦ) оптико-электронной системы (ОЭС) конечного наведения ЛА, в том числе в условиях естественных и преднамеренных помех, посредством комплексирования пассивного тепловизионного и активного лазерного каналов. Указанный результат достигается тем, что в состав ОЭС ЛА включают пассивный тепловизионный канал (ТК) с матричным фотоприемным устройством (ФПУ) и активный импульсный лазерный канал (ЛК) с сонаправленными визирными осями, спектральный диапазон работы ЛК располагают внутри спектрального диапазона работы ТК, работу ЛК начинают после определения пеленга на МЦ посредством ТК либо другого (всепогодного) бортового канала селекции, устройство вывода и приема лазерного излучения ЛК стабилизируют по углам курса и тангажа относительно инерциальной системы координат ЛА, расходимость лазерного излучения выполняют в диапазоне от 0,1 до 8,0 мрад, частоту следования лазерных импульсов задают на уровне не менее 10 Гц, а принятое ФПУ ТК изображение синхронизируют с излучением ЛК с обеспечением работы по временному стробу, соотнесенному с дальностью до МЦ, полученной приемным устройством ЛК, при этом наличие МЦ определяют по ее одновременной фиксации по пеленгу приемными устройствами ТК и ЛК. 8 з.п. ф-лы, 1 ил.

Изобретение относится к автономным системам конечного наведения (СКН) летательных аппаратов (ЛА).

Известны автономные СКН ЛА различных типов, функционирующие в разных участках (диапазонах) длин волн электромагнитного спектра: активные и пассивные радиолокационные и радиопеленгационные дециметрового, сантиметрового и миллиметрового диапазонов, оптико-электронные (в том числе пассивные видимого, инфракрасного и ультрафиолетового диапазонов, активные лазерные), акустические, а также их комбинации - см., например, А.Н. Волжин, Ю.Г. Сизов «Борьба с самонаводящимися ракетами», М., Воениздат, 1983 г., стр. 26-39; Р. Щербинин «Головки самонаведения перспективных зарубежных управляемых ракет и авиабомб», М., «Зарубежное военное обозрение», №4 - 2009 г., стр. 64.

Известен способ селекции морской цели (МЦ) посредством бортовой оптико-электронной системы (ОЭС) ЛА - например, инфракрасным (ИК) или тепловизионным каналом (ТК) противокорабельной крылатой ракеты «Пингвин» (Норвегия) - см., например, Б.И. Родионов, Н.Н. Новичков «Крылатые ракеты в морском бою», М., Воениздат, 1987 г., стр. 34-41 (ближайший аналог).

К недостаткам ближайшего аналога следует отнести резкое снижение эффективности оптико-электронной СКН в сложной помеховой обстановке.

Технической задачей предлагаемого изобретения является создание способа эффективной селекции МЦ оптико-электронной СКН ЛА, в том числе в условиях естественных и преднамеренных помех, посредством комплексирования пассивного тепловизионного и активного лазерного каналов.

Решение указанной технической задачи достигается тем, что в состав ОЭС ЛА включают пассивный тепловизионный канал с матричным фотоприемным устройством (ФПУ) и активный импульсный лазерный канал (ЛК) с сонаправленными визирными осями, спектральный диапазон работы ЛК располагают внутри спектрального диапазона работы ТК, работу ЛК начинают после определения пеленга на МЦ посредством ТК либо другого (всепогодного) бортового канала селекции, устройство вывода и приема лазерного излучения ЛК стабилизируют по углам курса и тангажа относительно инерциальной системы координат ЛА, расходимость лазерного излучения выполняют в диапазоне от 0,1 до 8,0 мрад, частоту следования лазерных импульсов задают на уровне не менее 10 Гц, а принятое ФПУ ТК изображение синхронизируют с излучением ЛК с обеспечением работы по временному стробу, соотнесенному с дальностью до МЦ, полученной приемным устройством ЛК, при этом наличие МЦ определяют по ее одновременной фиксации по пеленгу приемными устройствами ТК и ЛК. Представляется рациональным, чтобы спектральный диапазон работы ТК составлял от 0,7 до 3,0 мкм, а спектральный диапазон работы ЛК - от 0,9 до 2,2 мкм. В ряде случаев приемное устройство ЛК выполняют многоэлементным либо матричным, в том числе охлаждаемым. Матричное ФПУ ТК в ряде случаев также выполняют охлаждаемым. Кроме того, перед ФПУ ТК может устанавливаться светофильтр со спектральным диапазоном пропускания ЛК. В ряде случаев приемное устройство ТК стабилизируют по курсу, тангажу и крену относительно инерциальной системы координат ЛА. В свою очередь, для управления лазерным излучением по курсу и тангажу в состав устройства вывода и приема излучения ЛК вводят поворотные и гиростабилизированные зеркала, а также вращающиеся оптические клинья с приводами управления и датчиками контроля положения.

На фиг. 1 представлена принципиальная схема варианта устройства по предлагаемому техническому решению. Приняты обозначения:

1 - носовой обтекатель ЛА;

2 - оптический иллюминатор обтекателя;

3 - приемное устройство ТК с матричным ФПУ;

4 - светофильтр;

5 - приемное устройство ЛК;

6 - передающее устройство (импульсный генератор) ЛК;

7 - ломающие зеркала;

8 - вращающиеся оптические клинья;

9 - поворотное зеркало;

10 - гиростабилизированное зеркало;

11 - приводы управления, датчики контроля положения.

Функционирование устройства фиг. 1 по предлагаемому способу осуществляется следующим образом. ОЭС ЛА, как правило, располагается в головной части изделия за носовым обтекателем поз. 1, который обеспечивает защиту бортового оборудования от воздействия всего комплекса внешних факторов. При этом для штатной работы ОЭС в конструкции обтекателя поз. 1 выполнены оптически прозрачные иллюминаторы поз. 2 (один или несколько). Приемное устройство ТК поз. 3 располагается за иллюминатором поз. 2 и в пассивном режиме осуществляет прием внешнего излучения в заданном спектральном диапазоне на матричное ФПУ. Коррекция спектрального диапазона ТК может производиться светофильтром поз. 4, в том числе до полного совпадения спектральных диапазонов работы ТК и ЛК ОЭС (что целесообразно при наличии мощных преднамеренных помех, когда приемное устройство ЛК поз. 5 «перенасыщается» энергией помехи, а приемное устройство ТК поз. 3 работоспособно вследствие изначальной способности к функционированию в широком спектральном диапазоне с высоким уровнем энергии - т.е. реализуется т.н. «прожекторный» режим).

Лазерный канал ОЭС ЛА включает приемное поз. 5 и импульсное передающее поз. 6 устройства с соответствующими элементами выведения и приема излучения, в том числе через общий иллюминатор поз. 2 (вариант). В частности, для выведения лазерного излучения могут применяться ломающие зеркала поз. 7 (обеспечивают подведение излучения к вращающимся оптическим клиньям поз. 8); при этом оптические клинья поз. 8 в связанной системе координат ЛА осуществляют развертку рабочего поля зрения ЛК по углу места. В свою очередь, поворотное зеркало поз. 9 обеспечивает развертку рабочего поля зрения ЛК по азимуту, а гиростабилизированное зеркало поз. 10-компенсацию угловых колебаний оси визирования при полетных возмущениях, действующих на ЛА. Управление оптическими клиньями поз. 8, поворотным поз. 9 и гиростабилизированным поз. 10 зеркалами осуществляется соответствующими приводами с датчиками контроля положения поз. 11. Отраженное лазерное излучение, проходя в обратную сторону через систему вышеперечисленных управляемых элементов, поступает на одноэлементный, многоэлементный либо матричный чувствительный элемент приемного устройства ЛК поз. 5.

Следует отметить, что для повышения чувствительности приемные устройства ТК и ЛК могут охлаждаться, например, посредством эффекта Пельтье (электрический микрохолодильник), или дросселирования сжатого газа (газовый холодильник), или включать специализированный криогенный хладоагент, загружаемый на борт ЛА в процессе предстартовой подготовки. Оценки уровня захолаживания чувствительных элементов с точки зрения критерия «эффективность - стоимость» определяют целесообразность их охлаждения при визировании зоны МЦ на 20…90°С ниже значения температуры газовой среды отсека ОЭС ЛА.

Свою работу ЛК ОЭС начинает после определения пеленга на МЦ посредством ТК либо другого (как правило, всепогодного радиолокационного) бортового канала селекции (поскольку «игольчатая» диаграмма излучения ЛК эффективна для обнаружения МЦ лишь на узких полях зрения). При этом, с целью использования лазерного излучения помимо «дальномерного», также и в «прожекторном» (для ФПУ ТК) режиме - спектральный диапазон работы ЛК располагают внутри спектрального диапазона работы ТК. В частности, для технически наиболее освоенного, находящегося в «окне прозрачности» атмосферы диапазона работы импульсного ЛК 0,9…2,2 мкм - диапазон работы ТК принимают 0,7…3,0 мкм. Расходимость лазерного излучения задают в диапазоне 0,1…8,0 мрад, что, с одной стороны, обеспечивает рациональную работу ЛК в контексте предложенного технического решения по селекции МЦ, с другой стороны, освоено на аппаратном уровне. Частоту следования лазерных импульсов задают не менее 10 Гц (минимальный уровень, при котором обеспечиваются заданные параметры обработки информации лоцирования МЦ). Принятое ФПУ ТК поз. 3 изображение синхронизируется с принимаемым излучением ЛК с обеспечением работы по временному стробу, соотнесенному с дальностью до МЦ (которая технически определяется приемным устройством ЛК поз. 5). Наличие МЦ в поле зрения ОЭС ЛА определяют по ее одновременной фиксации по пеленгу приемными устройствами ТК (поз. 3) и ЛК (поз. 5). Дополнительно, при отсутствии преднамеренных помех, в ЛК формируется значение дальности до МЦ.

Приемное устройство ТК поз. 3 конструктивно может выполняться как с жесткой фиксацией поля (полей) зрения ФПУ (одного либо нескольких), так и со стабилизацией относительно инерциальной системы координат ЛА по курсу, тангажу и крену поля зрения ФПУ, например, посредством соответствующих приводов управления и контроля поз. 11 (гиростабилизированного подвеса).

Применение предложенного технического решения позволит повысить эффективность функционирования оптико-электронных систем конечного наведения ЛА в сложной помеховой обстановке.


СПОСОБ СЕЛЕКЦИИ МОРСКОЙ ЦЕЛИ ОПТИКО-ЭЛЕКТРОННОЙ СИСТЕМОЙ ЛЕТАТЕЛЬНОГО АППАРАТА
СПОСОБ СЕЛЕКЦИИ МОРСКОЙ ЦЕЛИ ОПТИКО-ЭЛЕКТРОННОЙ СИСТЕМОЙ ЛЕТАТЕЛЬНОГО АППАРАТА
Источник поступления информации: Роспатент

Показаны записи 21-30 из 161.
25.08.2017
№217.015.a302

Способ стабилизации движения ракеты при подводном старте и устройство для его осуществления

Изобретение относится к области ракетной техники, в частности к способам и устройствам стабилизации ракеты при подводном старте с движущегося носителя. Стабилизация движения ракеты при подводном старте сводится к обеспечению работы механизмов устройства стабилизации и последовательным командам...
Тип: Изобретение
Номер охранного документа: 0002607126
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.ae28

Способ теплового нагружения неметаллических конструкций

Изобретение относится к способам воспроизведения аэродинамического теплового воздействия на конструкцию летательного аппарата в наземных условиях и может быть использовано при стендовых испытаниях. Заявленный способ включает зонный нагрев с помощью радиационных нагревателей наружной поверхности...
Тип: Изобретение
Номер охранного документа: 0002612887
Дата охранного документа: 13.03.2017
25.08.2017
№217.015.b070

Регулируемое сопло

Изобретение относится к ракетной технике и описывает устройство регулируемого сопла с регулирующим приводом и механизмом синхронизации. Регулируемое сверхзвуковое сопло содержит корпус, шарнирно закрепленные на нем дозвуковые и сверхзвуковые створки, образующие канал для истечения продуктов...
Тип: Изобретение
Номер охранного документа: 0002613358
Дата охранного документа: 16.03.2017
25.08.2017
№217.015.b124

Способ изготовления деталей из титановых сплавов

Изобретение относится к области металлургии и может быть использовано для оптимизации технологического процесса сверхпластической формовки ответственных силовых деталей. Изобретение позволяет улучшить прочностные характеристики деталей из титанового сплава ВТ8. Изготавливают силовые элементы из...
Тип: Изобретение
Номер охранного документа: 0002613003
Дата охранного документа: 14.03.2017
25.08.2017
№217.015.b138

Контрольный ротор для проверки балансировочного станка

Изобретение относится к области машиностроения и предназначено для проверки балансировочных станков и подтверждения их характеристик. Контрольный ротор состоит из вала и диска, на валу установлены радиально-упорные подшипники, зафиксированные от осевого перемещения разрезными стопорными...
Тип: Изобретение
Номер охранного документа: 0002613017
Дата охранного документа: 14.03.2017
25.08.2017
№217.015.b13f

Универсальный модуль фиксации ракет в пусковой установке

Изобретение относится к военной технике, в частности к устройствам удержания боеприпасов (ракет), и представляет собой универсальный модуль фиксации ракет в пусковой установке (УМФР). УМФР в пусковой установке (ПУ) состоит из металлического корпуса, выполненного из двух идентичных половин,...
Тип: Изобретение
Номер охранного документа: 0002613205
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b1e7

Передняя кромка летательного аппарата в условиях ее аэродинамического нагрева

Изобретение относится к тепловой защите главным образом сверх- и гиперзвуковых летательных аппаратов (ЛА). Передняя кромка ЛА выполнена в виде оболочки со сферическим затуплением, воспринимающим пиковые тепловые нагрузки, и боковыми поверхностями, воспринимающими пониженные тепловые нагрузки....
Тип: Изобретение
Номер охранного документа: 0002613190
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b208

Способ ориентации орбитального космического аппарата с программно-управляемыми батареями солнечными

Изобретение относится к управлению относительным движением космических аппаратов (КА), преимущественно с одноосно вращающимися панелями солнечных батарей (СБ). В процессе полета ориентированный по местной вертикали КА непрерывно вращается по курсу, а панели СБ синхронно и непрерывно...
Тип: Изобретение
Номер охранного документа: 0002613097
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b7a8

Способ изготовления деталей из титановых сплавов

Изобретение может быть использовано для изготовления методом сверхпластической деформации ответственных силовых деталей из титанового сплава ВТ6, в частности шпангоутов, люков, обтекателей. Предварительно проводят электролитическую модификацию сплава никелем. Нагревают сплав до температуры...
Тип: Изобретение
Номер охранного документа: 0002614919
Дата охранного документа: 30.03.2017
25.08.2017
№217.015.b7fa

Шаровая опора

Изобретение относится к области авиа- и ракетостроительного машиностроения и может быть использовано в создании узлов трения, где в качестве опор скольжения используются сферические шарнирные подшипники. Шаровая опора содержит корпус, выполненный из двух крышек, независимо соединенных между...
Тип: Изобретение
Номер охранного документа: 0002615024
Дата охранного документа: 03.04.2017
Показаны записи 21-30 из 144.
10.11.2014
№216.013.0379

Способ стабилизации движения ракеты при подводном старте и устройство для его осуществления

Изобретение относится ракетной технике, а именно к устройствам стабилизации движения ракеты. Устройство стабилизации движения ракеты при подводном старте содержит шарнирно закрепленные с корпусом стартово-разгонной ступени решетчатые стабилизаторы, кронштейн, двухпозиционный привод раскрытия,...
Тип: Изобретение
Номер охранного документа: 0002532287
Дата охранного документа: 10.11.2014
10.01.2015
№216.013.1ad1

Фотоэлектрический преобразователь угловых перемещений

Фотоэлектрический преобразователь угловых перемещений относится к области автоматики и вычислительной техники и может быть использован в оптико-электронных приборах. Технический результат заключается в повышении уровня рабочего сигнала за счет установки индикаторного диска между источником...
Тип: Изобретение
Номер охранного документа: 0002538293
Дата охранного документа: 10.01.2015
10.02.2015
№216.013.21ea

Система формирования изображения

Система может быть использована при создании оптических систем нашлемных дисплеев, например, для индивидуальной экипировки бойца. Система содержит первый компонент - комбинер, установленный под углом к оптической оси системы, второй компонент, содержащий первую двояковыпуклую линзу и вторую...
Тип: Изобретение
Номер охранного документа: 0002540135
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.21eb

Астровизирующий прибор

Изобретение относится к области навигационного приборостроения и может найти применение в системах астроориентации и астронавигации космических аппаратов и авиационной техники. Технический результат - повышение точности. Для этого прибор содержит входную оптическую систему с объективом, в...
Тип: Изобретение
Номер охранного документа: 0002540136
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.26ef

Инфракрасный объектив с двумя полями зрения

Инфракрасный объектив может быть использован в тепловизорах. Объектив содержит три компонента. Первый неподвижный компонент содержит первую положительную выпукло-вогнутую линзу и вторую двояковыпуклую линзу, вторая поверхность которой выполнена асферической. Второй компонент содержит...
Тип: Изобретение
Номер охранного документа: 0002541420
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.2735

Комбинированная оптико-электронная система

Изобретение относится к оптико-электронным приборам для поиска теплоизлучающих объектов. Система содержит обтекатель, сканирующее зеркало, теплопеленгационный (ТП) канал с оптической системой и фотоприемным устройством, лазерный канал дальнометрирования с излучателем, приемной оптической...
Тип: Изобретение
Номер охранного документа: 0002541494
Дата охранного документа: 20.02.2015
27.02.2015
№216.013.2c3a

Инфракрасная система

Изобретение может быть использовано в оптико-электронных системах обнаружения и распознавания объектов, в охранных системах. Инфракрасная система состоит из первого канала, содержащего последовательно установленные афокальную насадку и фокусирующий объектив, второго канала, содержащего входной...
Тип: Изобретение
Номер охранного документа: 0002542790
Дата охранного документа: 27.02.2015
27.02.2015
№216.013.2ecf

Способ обеспечения мягкой посадки летательного аппарата

Изобретение относится к авиакосмической технике и может быть использовано при мягкой посадке летательного аппарата (ЛА). Спускают и приземляют ЛА с помощью парашютно-реактивной системы, измеряют скорость и направление ветрового сноса ЛА, рассчитывают уровень тяги ракетного двигателя твердого...
Тип: Изобретение
Номер охранного документа: 0002543451
Дата охранного документа: 27.02.2015
20.03.2015
№216.013.31ea

Способ старта ракеты из транспортно-пускового контейнера и устройство для его осуществления

Группа изобретений относится к ракетной технике и может быть использована в транспортно-пусковых контейнерах (ТПК), находящихся в пусковых установках преимущественно подводных лодок. Способ старта ракеты из ТПК заключается в наддуве не поддерживающим горение газом подкрышечного объема ТПК с...
Тип: Изобретение
Номер охранного документа: 0002544253
Дата охранного документа: 20.03.2015
27.04.2015
№216.013.4708

Способ генотипирования полиморфизма rs2551715 гена глутатионредуктазы у человека

Изобретение относится к биотехнологии, молекулярной биологии и генетике и представляет собой способ генотипирования полиморфизма rs2551715 гена глутатионредуктазы (GSR) человека. Способ заключается в генотипировании полиморфизма методом полимеразной цепной реакции и методом полиморфизма длин...
Тип: Изобретение
Номер охранного документа: 0002549688
Дата охранного документа: 27.04.2015
+ добавить свой РИД