×
27.03.2020
220.018.105f

Результат интеллектуальной деятельности: Способ прогноза температуры на глубинах ниже забоя скважин

Вид РИД

Изобретение

№ охранного документа
0002717685
Дата охранного документа
25.03.2020
Аннотация: Изобретение относится к области геофизики и может быть использовано для оценки температуры до глубин ниже забоя пробуренных скважин. Сущность: на поверхности Земли в окрестности пробуренных скважин, для которых известны данные электрокаротажа, измеряют горизонтальные компоненты естественного магнитотеллурического поля в интервале частот, достаточном для проникновения поля на глубину, до которой необходимо осуществить прогноз температуры. По двум поляризациям поля в первичном поле определяют компоненты тензора импеданса . Затем по значениям проводят одномерную инверсию, в результате которой в точке измерения поля строят вертикальный профиль удельного электрического сопротивления. Значения сопротивления определены для точек измерения температуры в скважине. По построенному в окрестности скважины профилю удельного сопротивления, а также по данным электрокаротажа в самой скважине строят профиль псевдоэлектрокаротажа до заданной глубины с использованием предварительно обученной первой искусственной нейросети соответствию построенного в окрестности скважины профиля удельного сопротивления и каротажных данных в самой скважине. Затем с использованием обученной нейросети выполняют прогноз псевдоэлектрокаротажа на глубинах ниже забоя скважины по данным удельного электрического сопротивления в ее окрестности на этих глубинах. Проводят обучение второй нейросети на соответствии данных электро- и термокаротажа в самой скважине, после чего с ее использованием строят прогнозную кривую температуры ниже забоя скважины по построенному на первом этапе псевдоэлектрокаротажу. Технический результат: повышение точности прогноза температуры на глубинах ниже забоя скважин, что, в свою очередь, повысит достоверность оценки потенциала геотермальных ресурсов, а также даст возможность обнаруживать залежи углеводородов по создаваемым в их окрестности температурным аномалиям. 2 з.п. ф-лы, 1 табл., 4 ил.

Изобретение относится к области геофизических средств исследования Земли, а именно электромагнитных исследований (разведочной геофизики), и может быть использовано для оценки температуры до глубин ниже забоя пробуренных скважин.

Наиболее близким аналогом предлагаемого способа является способ прогноза температуры земных недр по детерминанту кажущейся электропроводности, определяемой по результатам магнитотеллурических зондирований в окрестности пункта осуществления прогноза (см. Спичак В.В., Захарова O.К. "Электромагнитный геотермометр", М., Издательство Научный мир, 2013, патент РФ №2326413, опубл. 10.06.2008).

Недостатком известного способа следует признать тот факт, что используемые с этой целью профили электропроводности в окрестности скважин зачастую существенно отличаются от электрокаротажа в самих скважинах, что ставит под сомнение точность такого прогноза температуры на глубинах ниже ее забоя.

Техническая проблема, решаемая с использованием разработанного способа, состоит в построении уточненных прогнозных оценок температуры на глубинах ниже забоя скважин по электромагнитным данным, измеренным в их окрестности, и данным электрокаротажа в самих скважинах.

Технический результат, получаемый при реализации предложенного способа, состоит в осуществлении более точного прогноза температуры на глубинах ниже забоя скважин, что, в свою очередь, повысит достоверность оценки потенциала геотермальных ресурсов, а также даст возможность обнаруживать залежи углеводородов по создаваемым в их окрестности температурным аномалиям.

Для достижения указанного технического результата предложено использовать разработанный способ прогноза температуры на глубинах ниже забоя скважин. Согласно разработанному способу на поверхности Земли в окрестности пробуренных скважин, для которых известны данные электрокаротажа, измеряют горизонтальные компоненты естественного магнитотеллурического поля в интервале частот, достаточном для проникновения поля на глубину, до которой необходимо осуществить прогноз температуры. Затем по значениям построенного импеданса проводят одномерную инверсию данных, в результате которой в точке измерения поля строят вертикальный профиль удельного электрического сопротивления, причем значения сопротивления определены для точек измерения температуры в скважине, по построенному в окрестности скважины профилю удельного сопротивления, а также по данным электрокаротажа в самой скважине строят профиль псевдо-электрокаротажа до заданной глубины с использованием предварительно обученной первой искусственной нейросети соответствию построенного в окрестности скважины профиля удельного сопротивления и каротажных данных в самой скважине, а затем с использованием обученной нейросети выполняют прогноз псевдо-электрокаротажа на глубинах ниже забоя скважины по данным удельного электрического сопротивления в ее окрестности на этих глубинах, затем проводят обучение второй нейросети на соответствии данных электро- и термокаротажа в самой скважине, после чего с ее использованием строят прогнозную кривую температуры ниже забоя скважины по построенному на первом этапе псевдо-электрокаротажу.

Разработанный способ осуществляют следующим образом. На поверхности Земли в окрестности пробуренных скважин, для которых имеются данные электрокаротажа, измеряют горизонтальные компоненты естественного электромагнитного (магнитотеллурического) поля в интервале частот, достаточном для проникновения поля на глубину, до которой необходимо осуществить прогноз температуры. Если до этой глубины известно распределение удельного сопротивления пород, то минимальную и максимальную частоты можно оценить из формулы для скин-слоя проникновения поля в среду где h - глубина, представляющая интерес, μ - магнитная проницаемость (в отсутствии магнитных аномалий равная магнитной проницаемости вакуума μ=μ0=4π×10-7 Г/м), ρ - априорное удельное сопротивление среды в точке измерения поля, ω - частота). Если распределение удельного сопротивления пород неизвестно, то можно использовать диапазон частот, характерный для стандартной электроразведочной электромагнитной аппаратуры, например, для часто используемой в России станции Phoenix MTU-5. После стандартной обработки измеренных временных рядов данных (см., например, Varentsov, Arrays of simultaneous electromagnetic soundings: design, data processing and analysis. In: Electromagnetic Sounding of the Interior (Ed. V. Spichak), Elsevier, Amsterdam, 2006) с использованием Фурье-преобразования получают значения в частотной области, и по двум поляризациям поля в первичном поле определяют компоненты тензора импеданса из формулы:

Затем по значениям проводят одномерную инверсию (например, согласно алгоритму, приведенному, в [Constable et al., inversion: A practical algorithm for generating smooth models from electromagnetic sounding data: Geophysics, 1987, 52(3), 289-300], в результате которой в точке измерения поля строят вертикальный профиль удельного электрического сопротивления (при этом важно, чтобы его значения были определены, в частности, в точках измерения температуры в скважине).

По построенному в окрестности скважины профилю удельного сопротивления, а также по данным электрокаротажа в самой скважине строят профиль псевдо-электрокаротажа до заданной глубины. Для этого искусственную нейросеть (см., например [Хайкин С. Нейронные сети. 2-е изд., испр.: Пер. с англ. - М.: ООО «И.Д. Вильямс», 2006. - 1104 с.]) обучают соответствию построенного в окрестности скважины профиля удельного сопротивления и каротажных данных в самой скважине, а затем обученную таким образом нейросеть используют для прогноза псевдо-электрокаротажа на глубинах ниже забоя скважины по данным удельного электрического сопротивления в ее окрестности на этих глубинах.

На втором этапе проводят обучение второй нейросети на соответствии данных электро- и термокаротажа в самой скважине, а затем с ее помощью строят прогнозную кривую температуры ниже забоя скважины по построенному на первом этапе псевдо-электрокаротажу.

В качестве примера приведен электромагнитный прогноз температуры на глубинах ниже забоя скважин для двух скважин, пробуренных на Бишкекском геодинамическом полигоне (северный Тянь-Шань).

На Фиг. 1 и Фиг. 2 показаны кривые электрокаротажа (Rw), профили удельного электрического сопротивления (RMT), определенного с помощью одномерной инверсии магнитотеллурических данных, измеренных в их окрестности, и псевдо-электрокаротаж спрогнозированный на нижние половины глубин скважин для скважин 1 и 2, соответственно. На Фиг. 3 и 4 результаты прогноза температуры на нижние половины скважин 1 и 2 с помощью предложенного способа (кривые с индексом 2) сравниваются с результатами прогноза только по данным электрокаротажа Rw (кривые с индексом 1), только по данным удельного сопротивления RMT (кривые с индексом 3) и исходными термограммами.

В Таблице 1 приведены относительные ошибки прогноза температуры на нижние половины глубин скважин в %.

Как видно из Таблицы 1, применение предлагаемого способа (2) минимизирует ошибки прогноза и делает его менее зависящим от геологических неоднородностей в окрестности скважин. Высокая относительная точность прогноза температуры позволит реализовывать на практике оптимальные стратегии бурения разведочных скважин и существенно экономить на соответствующих затратах [Spichak V.V. A new strategy for geothermal exploration drilling based on using of an electromagnetic sounding data // Expanded Abstr. Int. Workshop on High Entalphy Geothermal Systems. San-Bemardino, California. 2013; Spichak V.V. Reduce geothermal exploration drilling costs: pourquoi pas?! // Expanded Abstr. D-GEO-D Conference, Paris, France, 2014].


Способ прогноза температуры на глубинах ниже забоя скважин
Способ прогноза температуры на глубинах ниже забоя скважин
Способ прогноза температуры на глубинах ниже забоя скважин
Способ прогноза температуры на глубинах ниже забоя скважин
Способ прогноза температуры на глубинах ниже забоя скважин
Способ прогноза температуры на глубинах ниже забоя скважин
Способ прогноза температуры на глубинах ниже забоя скважин
Способ прогноза температуры на глубинах ниже забоя скважин
Источник поступления информации: Роспатент

Показаны записи 1-5 из 5.
04.06.2019
№219.017.733a

Способ выделения очаговых зон потенциальных землетрясений в земной коре

Изобретение относится к области геофизики, а именно к сейсмологии, и может быть использовано для детального сейсмического районирования территорий. Выделение очаговых зон потенциальных землетрясений в земной коре осуществляют путем математической обработки данных 3D-сейсмотомографии и...
Тип: Изобретение
Номер охранного документа: 0002690189
Дата охранного документа: 31.05.2019
12.08.2019
№219.017.bf06

Способ прогноза открытой пористости на глубины ниже забоя скважин

Изобретение относится к разведочной геофизике и может быть применено при поиске и определении перспективности залежи углеводородов. Сущность: строят по данным магнитотеллурического зондирования в ближайшей окрестности скважины одномерный профиль удельного электрического сопротивления до...
Тип: Изобретение
Номер охранного документа: 0002696669
Дата охранного документа: 05.08.2019
27.03.2020
№220.018.106d

Способ прогноза открытой пористости в пространстве между скважинами

Изобретение относится к области разведочной геофизики и может быть применено для оценки потенциала месторождений углеводородов. Сущность: по данным электромагнитного зондирования в пункте прогноза строят одномерный профиль удельного электрического сопротивления до заданной прогнозной глубины....
Тип: Изобретение
Номер охранного документа: 0002717740
Дата охранного документа: 25.03.2020
20.04.2023
№223.018.4aff

Устройство для измерения напряженности статического и квазистатического вихревого электрического поля

Изобретение относится к электроизмерительной технике и предназначено для измерения вихревого электрического поля, создаваемого изменяющимся во времени и в пространстве магнитным полем и может быть использовано для измерения небольшого по величине вихревого электрического поля Земли. Техническим...
Тип: Изобретение
Номер охранного документа: 0002779924
Дата охранного документа: 15.09.2022
19.06.2023
№223.018.81f2

Гравиметр

Изобретение относится к области измерительной техники и может быть использовано для проведения гравиметрических съемок, измерения вариаций ускорения свободного падения со временем, построения гравиметрических карт и для решения множества других гравиметрических задач. Гравиметр содержит датчик,...
Тип: Изобретение
Номер охранного документа: 0002797144
Дата охранного документа: 31.05.2023
Показаны записи 1-3 из 3.
04.06.2019
№219.017.733a

Способ выделения очаговых зон потенциальных землетрясений в земной коре

Изобретение относится к области геофизики, а именно к сейсмологии, и может быть использовано для детального сейсмического районирования территорий. Выделение очаговых зон потенциальных землетрясений в земной коре осуществляют путем математической обработки данных 3D-сейсмотомографии и...
Тип: Изобретение
Номер охранного документа: 0002690189
Дата охранного документа: 31.05.2019
12.08.2019
№219.017.bf06

Способ прогноза открытой пористости на глубины ниже забоя скважин

Изобретение относится к разведочной геофизике и может быть применено при поиске и определении перспективности залежи углеводородов. Сущность: строят по данным магнитотеллурического зондирования в ближайшей окрестности скважины одномерный профиль удельного электрического сопротивления до...
Тип: Изобретение
Номер охранного документа: 0002696669
Дата охранного документа: 05.08.2019
27.03.2020
№220.018.106d

Способ прогноза открытой пористости в пространстве между скважинами

Изобретение относится к области разведочной геофизики и может быть применено для оценки потенциала месторождений углеводородов. Сущность: по данным электромагнитного зондирования в пункте прогноза строят одномерный профиль удельного электрического сопротивления до заданной прогнозной глубины....
Тип: Изобретение
Номер охранного документа: 0002717740
Дата охранного документа: 25.03.2020
+ добавить свой РИД