×
25.03.2020
220.018.0f34

Результат интеллектуальной деятельности: Способ изготовления холодного катода

Вид РИД

Изобретение

Аннотация: Изобретение относится к нанотехнологии и может быть использовано при изготовлении электронных приборов, а также для инжекции зарядов в объём конденсированных сред при криогенных температурах. Слой углеродных нанотрубок наносят на металлическую подложку осаждением в дуговом разряде. После этого подложку с нанесённым слоем углеродных нанотрубок выдерживают в атмосфере водорода при давлении 80-90 атм. Изобретение обеспечивает снижение напряжения, необходимого для создания тока эмиссии отрицательных зарядов – электронов, в полученном холодном катоде. Например, для создания тока электронов в 10 А от холодного катода, изготовленного по изобретению, в сверхтекучий гелий, на холодный катод необходимо подать напряжение, меньше или равное 50 В, что в 4,4 раза ниже, чем у аналогов. 4 пр.

Изобретение относится к области углеродных наноструктур, а именно слоев углеродных нанотрубок на металлических подложках, применяемых в качестве холодных катодов (автоэлектронных источников эмиссии). Преимуществами холодных катодов по сравнению с другими видами источников свободных электронов являются: малая чувствительность к внешней радиации, отсутствие накала, высокая плотность тока автоэмиссии, безинерционность. Совокупность выше указанных свойств обуславливает перспективность использования катодов в различных электронных приборах. Также холодные катоды могут применяться для инжекции зарядов в объем конденсированных сред при криогенных температурах, что, в частности, используется для изучения свойств твердого и сверхтекучего гелия.

Известен способ изготовления холодного катода [Холодный катод. Патент РФ №2572245, опубл. 10.01.2016 г.] - аналог, в котором на пористую поверхность диска из нержавеющей стали механически наносят слой углеродной сажи, а затем сверху равномерно насыпают нанотрубки, которые механически втирают в слой сажи. Недостатком способа является то, что полученные таким образом холодные катоды требуют подачи значительного напряжения для получения тока эмиссии. Так, для создания тока отрицательных зарядов (электронов) в 10-12 А от холодного катода в сверхтекучий гелий, на холодный катод, изготовленный по способу-аналогу, необходимо подать напряжение в 260 В.

Известен способ изготовления холодного катода [Устройство для получения массивов углеродных нанотрубок на металлических подложках. Патент РФ №2471706, опубл. 10.01.2013 г.] - прототип, в котором слой углеродных нанотрубок наносится на металлическую подложку осаждением в дуговом разряде. Основным недостатком способа является то, что полученные таким образом холодные катоды требуют подачи значительного напряжения для получения тока эмиссии. Так, для создания тока отрицательных зарядов (электронов) в 10-12 А от холодного катода в сверхтекучий гелий, на холодный катод, изготовленный по способу-прототипу, необходимо подать напряжение в 220 В.

Задачей данного изобретения является создание способа изготовления холодного катода, позволяющего существенно снизить напряжение, необходимое для создания тока эмиссии отрицательных зарядов (электронов).

Эта задача решается в предлагаемом способе изготовления холодного катода, в котором слой углеродных нанотрубок наносится на металлическую подложку осаждением в дуговом разряде, за счет того, что металлическая подложка с нанесенным слоем углеродных нанотрубок затем выдерживается в атмосфере водорода при давлении 80-90 атм.

Холодные катоды, полученные по предлагаемому способу, требуют подачи существенно более низкого напряжения для создания тока эмиссии. Так, для создания тока отрицательных зарядов (электронов) в 10-12 А от холодного катода в сверхтекучий гелий, на холодный катод, изготовленный по предлагаемому способу, необходимо подать напряжение £ 50 В, что как минимум в 4,4 раза ниже, чем требуется для холодного катода, изготовленного по способу прототипу.

Достигнутый эффект объясняется снижением энергии выхода электронов при использовании холодных катодов, изготовленных по предлагаемому способу. Оценка энергии выхода электронов по методике Фаулера-Нордгейма [R.H. Fowler, L. Nordheim. Proc. R. Soc. London A119, 173(1928)] для холодных катодов, изготовленных по способу-прототипу, дает значение на уровне 5,0 эВ. Аналогичные измерения для холодных катодов, полученных по предлагаемому способу, дают значения энергии выхода электронов на уровне 1,2 эВ.

Интервал давлений для выдержки металлических подложек с нанесенным слоем углеродных нанотрубок в атмосфере водорода определен экспериментально. При давлениях водорода ниже 80 атм. возрастает напряжение, которое требуется подавать на катод для получения заданных значений тока, что обусловлено недостаточной абсорбцией Н2 на углеродных нанотрубках. Увеличение давления водорода до уровня выше 90 атм. не дает дальнейшего положительного эффекта.

Пример 1.

Слой углеродных нанотрубок наносится на медную подложку осаждением в дуговом разряде, затем подложка с нанесенным слоем углеродных нанотрубок выдерживается в атмосфере водорода при давлении 70 атм. Величина напряжения, которое необходимо подать на полученный холодный катод для создания тока отрицательных зарядов (электронов) в 10-12 А в сверхтекучий гелий, составляет 90 В. То есть при данном давлении Н2 напряжение, необходимое для создания заданного тока эмиссии остается слишком большим.

Пример 2.

Слой углеродных нанотрубок наносится на медную подложку осаждением в дуговом разряде, затем подложка с нанесенным слоем углеродных нанотрубок выдерживается в атмосфере водорода при давлении 80 атм. Величина напряжения, которое необходимо подать на полученный холодный катод для создания тока отрицательных зарядов (электронов) в 10-12 А в сверхтекучий гелий, составляет 49 В. Полученный холодный катод соответствует задаче изобретения.

Пример 3.

Слой углеродных нанотрубок наносится на медную подложку осаждением в дуговом разряде, затем подложка с нанесенным слоем углеродных нанотрубок выдерживается в атмосфере водорода при давлении 90 атм. Величина напряжения, которое необходимо подать на полученный таким образом холодный катод для создания тока отрицательных зарядов (электронов) в 10-12 А в сверхтекучий гелий, составляет 48 В. Полученный холодный катод также соответствует задаче изобретения.

Пример 4.

Слой углеродных нанотрубок наносится на медную подложку осаждением в дуговом разряде, затем подложка с нанесенным слоем углеродных нанотрубок выдерживается в атмосфере водорода при давлении 100 атм. Величина напряжения, которое необходимо подать на полученный таким образом холодный катод для создания тока отрицательных зарядов (электронов) в 10-12 А в сверхтекучий гелий, составляет 48 В. То есть при таком давлении Н2 не наблюдается дальнейшего положительного эффекта (снижения величины напряжения, необходимого для создания заданного тока эмиссии).

Способ изготовления холодного катода, в котором слой углеродных нанотрубок наносится на металлическую подложку осаждением в дуговом разряде, отличающийся тем, что металлическая подложка с нанесенным слоем углеродных нанотрубок выдерживается в атмосфере водорода при давлении 80-90 атм.
Источник поступления информации: Роспатент

Показаны записи 81-90 из 91.
21.04.2023
№223.018.5010

Датчик измерения механических напряжений на основе микропроводов с положительной магнитострикцией

Изобретение относится к измерительной технике и выполняет функцию датчика механических напряжений. Датчик состоит из аморфного ферромагнитного микропровода с положительной магнитострикцией, размещенного по оси дифференциальной измерительной катушки, и внешней катушки, задающей переменное...
Тип: Изобретение
Номер охранного документа: 0002746765
Дата охранного документа: 20.04.2021
23.04.2023
№223.018.51d2

Композиция с углеродными нанотрубками для получения углеродной заготовки для высокоплотной sic/c/si керамики и способ получения изделий из sic/c/si керамики

Композиция и способ изобретения относятся к получению изделий из высокоплотной карбидокремниевой SiC/C/Si керамики для различных отраслей промышленности. Технический результат состоит в увеличении глубины силицирования углеродных заготовок, увеличении размеров изделий из силицированых графитов,...
Тип: Изобретение
Номер охранного документа: 0002730092
Дата охранного документа: 17.08.2020
24.04.2023
№223.018.5275

Способ получения изделий из карбидокремниевой керамики

Способ изобретения относится к области получения карбидокремниевых керамических изделий, в том числе крупногабаритных, обладающих повышенными эксплуатационными характеристиками, в том числе при высоких температурах для применения в различных областях промышленности. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002740984
Дата охранного документа: 22.01.2021
14.05.2023
№223.018.55c8

Способ получения композиционных материалов на основе углеволокна и металла

Изобретение относится к технологии получения новых композиционных материалов с углеволокном и может быть использовано, в частности, для изготовления элементов конструкций в авиационной, ракетно-космической и морской технике. Способ получения композиционного материала, содержащего углеволокно и...
Тип: Изобретение
Номер охранного документа: 0002731699
Дата охранного документа: 08.09.2020
14.05.2023
№223.018.56cc

Осевой неразгруженный компенсатор

Изобретение относится к технологическому оборудованию, предназначенному для выращивания кристаллов халькогенидов в условиях микрогравитации – важном направлении в космическом материаловедении. Осевой компенсатор пружинно-поршневого типа содержит неразгруженный компенсирующий элемент,...
Тип: Изобретение
Номер охранного документа: 0002732334
Дата охранного документа: 15.09.2020
15.05.2023
№223.018.5c25

Сверхпроводящая цепь с эффектом близости

Устройство относится к сверхпроводящим цепям с эффектом близости, позволяющим управлять спектром связанных Андреевских состояний. Предлагается сверхпроводящая цепь с эффектом близости, включающая монокристаллическую пластину силицида кобальта CoSi, ориентированную в кристаллографической...
Тип: Изобретение
Номер охранного документа: 0002753673
Дата охранного документа: 19.08.2021
15.05.2023
№223.018.5c26

Сверхпроводящая цепь с эффектом близости

Устройство относится к сверхпроводящим цепям с эффектом близости, позволяющим управлять спектром связанных Андреевских состояний. Предлагается сверхпроводящая цепь с эффектом близости, включающая монокристаллическую пластину силицида кобальта CoSi, ориентированную в кристаллографической...
Тип: Изобретение
Номер охранного документа: 0002753673
Дата охранного документа: 19.08.2021
15.05.2023
№223.018.5c68

Опора тигля для выращивания кристаллов

Изобретение относится к оборудованию для выращивания кристаллов прямоугольной формы из расплава. Опора тигля выполнена в виде прямоугольного в поперечном сечении корпуса 1 с посадкой для установки тигля на опору 6 и посадкой для установки опоры на шток 5, и имеющего сквозные пазы 4,...
Тип: Изобретение
Номер охранного документа: 0002759623
Дата охранного документа: 16.11.2021
16.05.2023
№223.018.5dc6

Способ выращивания смешанных кристаллов сульфата кобальта-никеля-калия для оптических фильтров ультрафиолетового диапазона

Изобретение относится к области выращивания смешанных монокристаллов сульфата кобальта-никеля-калия K(Co,Ni)(SO)⋅6HO (KCNSH) из водных растворов и может быть использовано в оптическом приборостроении для изготовления солнечно-слепых фильтров. Способ выращивания смешанных кристаллов сульфата...
Тип: Изобретение
Номер охранного документа: 0002758652
Дата охранного документа: 01.11.2021
16.05.2023
№223.018.5dc7

Способ выращивания смешанных кристаллов сульфата кобальта-никеля-калия для оптических фильтров ультрафиолетового диапазона

Изобретение относится к области выращивания смешанных монокристаллов сульфата кобальта-никеля-калия K(Co,Ni)(SO)⋅6HO (KCNSH) из водных растворов и может быть использовано в оптическом приборостроении для изготовления солнечно-слепых фильтров. Способ выращивания смешанных кристаллов сульфата...
Тип: Изобретение
Номер охранного документа: 0002758652
Дата охранного документа: 01.11.2021
Показаны записи 51-51 из 51.
16.05.2023
№223.018.6357

Электродуговой способ получения прецизионного сплава timnal

Изобретение относится к области металлургии прецизионных сплавов и может быть использовано для получения сплава Гейслера. Осуществляют сплавление смеси порошков алюминия, марганца и титана в гарнисаже плазмой дугового разряда напряжением от 65 до 70 В и током от 8 до 10 А в атмосфере гелия...
Тип: Изобретение
Номер охранного документа: 0002776576
Дата охранного документа: 22.07.2022
+ добавить свой РИД