×
21.03.2020
220.018.0efe

Результат интеллектуальной деятельности: Аппарат для обработки газа

Вид РИД

Изобретение

Аннотация: Изобретение относится к массообменным устройствам роторной конструкции и может быть использовано в химической, нефтехимической, газовой, газоперерабатывающей и других отраслях промышленности для обработки газа жидкостью. Технической задачей предлагаемого изобретения является поддержание нормированной производительности аппарата для обработки газа при длительной эксплуатации с заданным качеством очистки путем устранения разрушения пористой пленки, покрывающей металлические пластины фильтрующего барабана, за счет отделения твердых частиц загрязнений в штуцере ввода газа в виде суживающегося сопла. 6 ил.

Изобретение относится к массообменным устройствам роторной конструкции и может быть использовано в химической, нефтехимической, газовой, газоперерабатывающей и других отраслях промышленности для обработки газа жидкостью.

Известен аппарат для обработки газа (см., патент РФ на изобретение №2627898 МПК B01D 53/18, B01D 45/08 опубл. 14.08.2017. Бюл.№ 23), содержащий корпус со штуцерами входа и выхода газа и жидкости, внутри которого на валу установлен фильтрующий барабан, выполненный в виде радиально расположенных металлических пластин, каждая из которых покрыта пористой плёнкой, а корпус аппарата на 0,3-0,35 объёма заполнен абсорбирующей жидкостью и имеет каплеуловители, установленные на одном уровне с осью вала, при этом штуцер входа газа имеет форму суживающегося сопла, на внутренней поверхности которого выполнены криволинейные канавки, продольно расположенные от входного к выходному отверстию суживающегося сопла, при этом наружная поверхность вала фильтрующего барабана выполнена с покрытием из наноматериала в виде стеклообразной плёнки, причём каплеуловитель выполнен в виде полусферы со смещением центральной оси в сторону внутренней боковой поверхности корпуса, кроме того у основания полусферы расположен желобообразный сборник каплеобразной абсорбирующей жидкости, соединенный с вертикальным каналом ее слива в днище корпуса.

Недостатком является снижение качества очистки газа в результате отклонения нормированного температурного режима процесса абсорбции из-за наличия плёночной конденсации на поверхности желобообразного сборника, что приводит к значительному увеличению его термического сопротивления подачи тепла в окружающую среду и, как следствие, способствует изменению температурных полей в целом во внутреннем объёме корпуса аппарата.

Известен аппарат обработки газа (см., патент РФ на изобретение №2686151 МПК B01D 53/18, опубл. 24.04.2019 Бюл.№ 12), содержащий корпус со штуцерами входа и выхода газа и жидкости, внутри которого на валу установлен фильтрующий барабан, выполненный в виде радиально расположенных металлических пластин, каждая из которых покрыта пористой пленкой, а корпус аппарата на 0,3-0,35 объема заполнен абсорбирующей жидкостью и имеет каплеуловители, установленные на одном уровне с осью вала, при этом штуцер входа газа имеет форму суживающегося сопла, на внутренней поверхности которого выполнены криволинейные канавки, продольно расположенные от входного к выходному отверстию суживающегося сопла, кроме того, наружная поверхность вала фильтрующего барабана выполнена с покрытием из наноматериала в виде стеклообразной пленки, причём каплеуловитель выполнен в виде полусферы со смещением центральной оси в сторону внутренней боковой поверхности корпуса, кроме того у основания полусферы расположен желобообразный сборник каплеобразной абсорбирующей жидкости, соединенный с вертикальным каналом ее слива в днище корпуса, причем кривизна желобообразного сборника каплеобразной абсорбирующей жидкости выполнена по линии циклоида как брахистохрона.

Недостатком является снижение производительности аппарата для обработки газа при длительной эксплуатации из-за разрушения пористой пленки, покрывающей металлические пластины фильтрующего барабана, под ударным воздействием твердых частиц, загрязнений, сопутствующих обрабатываемому газу и выбрасываемых из штуцера входа газа в виде суживающегося сопла и бомбардирующих пористую пленку. В результате, активная часть по обработке газа абсорбирующей поверхности фильтрующегося барабана резко уменьшается, снижая в целом производительность аппарата.

Технической задачей предлагаемого изобретения является поддержание нормированной производительности аппарата для обработки газа при длительной эксплуатации с заданным качеством очистки путем устранения разрушения пористой пленки, покрывающей металлические пластины фильтрующего барабана, за счет отделения твердых частиц загрязнений в штуцере ввода газа в виде суживающегося сопла.

Технический результат достигается тем, что аппарат для обработки газа, содержит корпус со штуцерами входа и выхода газа и жидкости, внутри которого на валу установлен фильтрующий барабан, выполненный в виде радиально расположенных металлических пластин, каждая из которых покрыта пористой пленкой, а корпус аппарата на 0,3-0,35 объема заполнен абсорбирующей жидкостью и имеет каплеуловители, установленные на одном уровне с осью вала, при этом штуцер входа газа имеет форму суживающегося сопла, на внутренней поверхности которого выполнены криволинейные канавки, продольно расположенные от входного к выходному отверстию суживающегося сопла, кроме того, наружная поверхность вала фильтрующего барабана выполнена с покрытием из наноматериала в виде стеклообразной пленки, причём каплеуловитель выполнен в виде полусферы со смещением центральной оси в сторону внутренней боковой поверхности корпуса, кроме того у основания полусферы расположен желобообразный сборник каплеобразной абсорбирующей жидкости, соединенный с вертикальным каналом ее слива в днище корпуса, причем кривизна желобообразного сборника каплеобразной абсорбирующей жидкости выполнена по линии циклоида как брахистохрона, при этом криволинейные канавки, продольно расположенные от входного к выходному отверстиям суживающегося сопла, выполнены с профилем в виде «ласточкина хвоста», а у входного отверстия суживающегося сопла выполнена круговая канавка, соединенная с грязесборником.

На фиг.1 показан аппарат для обработки газа с барабаном, покрытым наноматериалом, на фиг. 2 – разрез А-А фиг. 1, на фиг. 3 – внутренняя поверхность суживающегося сопла с криволинейными канавками, на фиг.4 – каплеуловитель, выполненный в виде полусферы со смещением центральной оси в сторону внутренней боковой поверхности корпуса, на фиг. 5 – кривизна желобообразующего сборника каплеобразной абсорбирующей жидкости выполнена по линии циклоида как брахистохрона, на фиг. 6 – профиль в виде «ласточкина хвоста» криволинейных канавок.

Аппарат для обработки газа состоит из корпуса 1 со штуцером входа 2 и выхода 3 газа, входа 4 и выхода 5 абсорбирующей жидкости, внутри которого на валу 6 установлен фильтрующий барабан, выполненный в виде радиально расположенных металлических пластин 7, покрытых пористой пленкой 8, при этом металлические пластины 7 укреплены на валу 6 посредством ребер 9. В корпусе 1 установлены каплеуловители 10 на одном горизонтальном уровне с осью 11 вала 6. Штуцер входа 2 имеет форму суживающегося сопла, на внутренней поверхности которого выполнены криволинейные канавки 12. В корпусе 1 расположены застойные зоны 13.

Наружная поверхность 14 вала фиксирующего барабана, выполнена с покрытием из наноматериала 15 в виде стеклообразной пленки 16 (см., например, Киш. А. Кинетика электрохимического растворения металлов. М.: Мир, 1990. -272 с.). Каплеуловители 10 выполнены в виде полусферы 17 со смещением центральной оси 18 в сторону внутренней боковой поверхности 19 корпуса 1, причем у основания 20 полусферы 17 расположен желобообразный сборник 21 каплеобразной абсорбирующей жидкости, соединенный с вертикальным каналом 21 ее слива в днище 23 корпуса 1.

Кривизна 24 желобообразного сборника 21 каплеобразной абсорбирующей жидкости выполнена по линии 25 циклоида как брахистохрона.

Криволинейные канавки 12, продольно расположенные от входного 26 к выходному 27 отверстиям штуцера входа 2 в форме суживающегося сопла, выполнены с профилем 28 в виде «ласточкина хвоста», а у входного отверстия 26 выполнена круговая канавка 29, соединенная с грязесборником 30.

Аппарат для обработки газа работает следующим образом.

Твердые частицы загрязнений постоянно находятся в потоке обрабатываемого газа в виде ржавчины, окалины, а также сопутствующих различных технологических примесей, возникающих при добыче, производстве и транспортировке газа и поступают в штуцер входа 2 аппарата обработки.

В связи с тем, что масса каждой из твердых частиц загрязнений, находящихся в обрабатываемом газе, существенно превышает массу любого из газовых, парообразных и мелкодисперсных каплеобразных компонентов газового потока, поступающего в штуцер входа 2, твердые частицы, закручиваясь при перемещении по криволинейным канавкам 12 суживающегося сопла, на выходе из него накапливают значительную кинетическую энергию, которая переходит в энергию удара с последующим разрушением пористой пленки 8 фильтрующего барабана. В результате уменьшается активная поглощающая поверхность металлических пластин 7, покрытых пористой пленкой 8 и, как следствие, снижается и производительность по очистке аппарата для обработки газа.

При выполнении криволинейных канавок 12 с полостями, имеющими профиль 28 в виде «ласточкина хвоста» твердые частицы в процессе вращательного движения при перемещении от входного 26 к выходному 27 отверстиям штуцера входа 2, смещаются к периферии суживающегося сопла и заполняют полости в виде «ласточкина хвоста» 28. Под действием центробежных сил твердые частицы из полостей с профилем в виде «ласточкина хвоста» 28 криволинейных канавок 12 перемещаются к входному отверстию 26 и в круговую канавку 29 с последующим накоплением в грязесборнике 30 для выброса вручную или автоматически (на фиг. не показано).

В результате твердые частицы не поступают во внутренний объем корпуса 1 и, соответственно не бомбардируют пористую пленку 8 и, как следствие, поддерживается постоянство активной абсорбирующей поверхности фильтрующего барабана с заданной производительностью аппарата для обработки газа при длительной эксплуатации в условиях изменяющейся концентрации твердых частиц загрязнений, поступающих в штуцер входа 2.

Мелкодисперсные каплеобразующие частицы абсорбирующей жидкости, при выходе металлических пластин 7 после восстановления пористой плёнки 8, скользят по поверхности полусферы 17 к основанию 20 и далее в желобообразном сборнике 21, где после коагуляции и укрупнения в виде конденсатной плёнки перемещаются к вертикальному каналу 22 с последующим сливом в днище 23 корпуса 1 аппарата для обработки газа.

Наличие конденсатной плёнки в желобообразном сборнике 21 снижает интенсивность теплообмена в 10-15 раз по сравнению с капельной конденсацией (см., например, стр. 248 Исаченко В.П. и др. Теплопередача М.: Энергоиздат, 1981. -416 с., ил.)

Следовательно, плёнка из соединившихся мелкодисперсных капелек абсорбционной жидкости, перемещающейся по желобообразному сборнику 21 создаёт локальное снижение тепломассообменных параметров процесса абсорбции (см., например, стр. 254 Цой П.В. Методы расчёта отдельных задач тепломасссопереноса. М.: Энергия, 1971. -384 с., ил.) и, как следствие, приводит к изменению температурных полей, гидрации, растворения, разбавления и конденсации во всём внутреннем объёме аппарата для обработки газа.

При выполнении кривизны 24 желобообразного сборника 21 по линии 25 циклоида как брахистохрона мелкодисперсные каплеобразные частицы абсорбирующей жидкости ускоренно, за кратчайшее время (см., например, стр. 802. Некоторые замечательные кривые М.Я. Выгодский. Справочник по высшей математике. М.: Наука, 1969. -872 с., ил) из начальной точки А (место соединения полусферы 17 и основания 20) в конечную точку В (место соединения желобообразного сборника 21 с вертикальным каналом 22) с центром кривизны в точке К перемещаются без образования плёнки из каплеуловителя 10 в днище 23 корпуса 1.

В результате осуществляется капельное перемещение абсорбирующей жидкости и, соответственно, устраняется локальное увеличение термического сопротивления в корпусе аппарата и в его внутреннем объёме поддерживается нормированный тепломассообменный режим абсорбирующей очистки газа с получением качественного готового продукта.

При выходе металлических пластин 7 после восстановления пористой пленки 8 из абсорбирующей жидкости, зеркало которой находится ниже горизонтального уровня, соответствующего оси вала 6, капельки жидкости с каплеуловителя 10 под действием силы тяжести спадают вниз и захватываются движущимся потоком обрабатываемого газа. Следовательно, наблюдается витание мелкодисперсных каплеобразных частиц над зеркалом абсорбирующей жидкости, что увеличивает аэродинамическое сопротивление аппарата для обработки газа и, следовательно, мощность на привод устройства подачи газа в корпус 1 достигает 20-25% (см., например, Курчавин В.М., Мезенцев А.П. Экономия тепловой и электрической энергии в поршневых компрессорах.- Л.: Энергоатомиздат, 1985. - 81 с.: ил.).

Для устранения «витания» мелкодисперсных каплеобразных частиц абсорбирующей жидкости, хаотически сбрасываемых с каплеуловителя 10, он выполнен в виде полусферы 17. Тогда мелкодисперсные каплеобразные частицы под совместным действием сил сцепления и тяжести в результате смещения центральной оси 18, каплеуловителя 10 в сторону боковой поверхности 19 корпуса 1, перемещаются к основанию 20 в желобообразный сборник 20, где коагулируют, укрупняются и по вертикальному каналу 22 сливаются в днище 23 корпуса 1 аппарата для обработки газа.

В результате устраняется «витание» мелкодисперсных частиц над зеркалом абсорбирующей жидкости, то есть поддерживается нормированное аэродинамическое сопротивление корпуса 1 и, как следствие, заданная мощность на привод устройства по подаче газа на обработку.

Перемещение обрабатываемого газа повышенного влагосодержания в корпусе 1 сопровождается выделением теплоты гидрации, растворения, разбавления и конденсации, обусловливающим суммарный тепловой эффект сорбции(см., например, Коун А.А., Резенфанд Ф.С. Очистка газа. М.: Химмаш, 1998. - 198 с.). Это приводит к интенсивному испарению абсорбционной жидкости, в результате чего осуществляется контакт с нижней стороны наружной поверхности 14 вала 6, находящейся по мере вращения фильтрующего барабана на пути перемещающегося насыщенного мелкодисперсной влагой испаряющегося потока. При этом налипающая на наружную поверхность 14 мелкодисперсная влага коагулирует, укрупняется и коррозирует металл вала 6.

Одновременно на выходе штуцера 2 входа газа в виде суживающегося сопла осуществляется внезапное расширение в корпусе 1 обрабатываемого воздуха повышенного влагосодержания со снижением температуры насыщения пара с последующей конденсацией монодисперсной влаги, налипающей на верхнюю сторону внешней поверхности 14 вала 6 (эффект Джоуля-Томсона, см., например, Нащокин В.В. Техническая термодинамика и теплопередача М.: Высш. школа. 1980. -469 с.). В результате пузырьки пара, соприкасаясь с верхней стороной внешней поверхности 14 сжимаются до высоких давлений и быстро распадаются, приводя к разрушению металла вала 6, т.к. наблюдается явление локальной кавитации.

Совместное коррозионное и кавитационное воздействие на наружную поверхность 14 вала 6 приводит к разрушению его с последующим ремонтом или заменой и, соответственно, к внеплановым демонтажным работам, что, как следствие, способствует возрастанию энергозатрат на процесс очистки газа.

Для устранения разрушающего действия коррозии и кавитации на наружную поверхность 14 вала 6 наносится покрытие, выполненное из наноматериала 15 с образованием стеклоподобной пленки 16. В результате не осуществляется налипание как мелкодисперсных частиц абсорбционной жидкости с нижней стороны, так и конденсирующихся капелек пара с верхней стороны наружной поверхности 14 вала 6. Следовательно, практически отсутствуют коррозийные и кавитационные воздействия, и вал 6 с фильтрующим барабаном эксплуатируется в заданном временном режиме по условию нормативного ремонта или замены.

Обрабатываемый газ с нормированными параметрами по расходу подают в корпус 1 через штуцер входа 2 с криволинейными канавками 12. В результате перемещения потока обрабатываемого газа от входного отверстия штуцера входа 2, выполненного в форме суживающегося сопла, по продольно расположенным криволинейным канавкам 12, он закручивается и в виде вихревого потока (см., например, Меркулов А.П. Вихревой эффект и его использование в технике. Куйбышев, 1969. - 369 с.) поступает в полость очистки газа корпуса 1 аппарата. Наличие вихревого потока в полости корпуса 1 приводит к образованию в застойных зонах 13 микровихрей, в результате чего в застойных зонах 13 ламинарный режим движения газа в пограничном слое (место контакта внутренней поверхности корпуса 1 и обрабатываемого газа) переходит в турбулентный (см., например, А.Д. Альтшуль и др. Аэродинамика и гидравлика. М.: 1975. -438 с.). В результате весь объем газа, поступающий в корпус 1, участвует в процессе абсорбционной обработки. Обрабатываемый газ по мере перемещения в корпусе 1 воздействует на металлические пластины 7, перпендикулярно расположенные к направлению движения обрабатываемого газа. Так как металлические пластины 7 укреплены на валу 6, то последние начинают вращаться на оси 11. По мере перемещения металлических пластин 7 из горизонтального положения в вертикальное изменяется площадь контакта абсорбирующей поверхности в виде смоченной абсорбирующей жидкостью пленки 8, и, следовательно, осуществляется переменный по времени процесс абсорбционного отделения от газа вредных загрязнений, определяемых абсорбирующей способностью жидкости, находящейся в полости корпуса 1.

Наибольшая интенсивность абсорбционной очистки газа происходит на пористой пленке 8, когда металлическая пластина 7 занимает верхнее вертикальное положение. По мере вращения вала 6 на оси 11 площадь контакта абсорбирующей поверхности пористой пленки 8 вновь уменьшается, и очищенный закрученный газ огибает металлическую пластину 7, в застойной зоне 13, находящейся перед штуцером выхода 3 полости корпуса 1, ламинарный режим в пограничном слое преобразуется в турбулентный, в результате чего весь объем газа, поступающий в корпус 1, участвует в процессе абсорбционной очистки.

Синусоидальный характер абсорбционной очистки газа от вредных частиц 20 обеспечивает высокое качество очистки с минимизацией затрат абсорбирующей жидкости (см., например, Берман Л.Д. О теплообмене при пленочной конденсации движущегося пара//Теплообмен, температурный режим и гидродинамика при генерации пара-Л.: Наука, 1981.-С. 93-102.).

Истощенная в результате контакта с обрабатываемым газом пористая пленка 8 по мере перемещения металлических пластин 7 погружается в абсорбирующую жидкость, где восстанавливается и, выходя из жидкости, зеркало которой находится ниже горизонтального уровня, соответствующего оси 11 вала 6 на величину, определяемую заполнением внутренней полости корпуса 1, после каплеуловителей 10 вновь переходит в рабочее состояние для последующего контактного взаимодействия с обрабатываемым потоком газа. Процесс обновления абсорбирующей жидкости в корпусе 1 осуществляется или постоянно, путем подачи жидкости через штуцер 5 выхода, или периодически по мере необходимости так же через штуцеры входа 4 и выхода 5 жидкости.

При незначительном увеличении расхода обрабатываемого газа, например, по производственной необходимости, но с соблюдением заданной степени абсорбционной обработки, осуществляется поворот металлических пластин 7 в ребрах 9 на угол от 15° до 25° (большему значению увеличения расхода соответствует большее значение угла —Поворота). В этом случае обрабатываемый газ входит через штуцер 2 и, проходя корпус 1, воздействует на абсорбирующую поверхность металлической пластины 7, частично сходя по ней под углом к плоскости вращения, т.е. усилие на металлическую пластину 7 с возрастанием расхода обрабатываемого газа практически не увеличивается, а время его контакта с абсорбирующей поверхностью пористой пленки 8 остается неизменным и, соответственно, качество очистки газа от загрязнений не ухудшается. Величина угла поворота металлических пластин 7 на ребрах 9 от 15° до 25° позволяет при увеличении расхода обрабатываемого газа до 20% поддерживать заданное качество очистки путем постоянной скорости вращения вала 6 (в пределах изменения расхода обрабатываемого газа от нормативного до увеличенного на 20%), т.е. достигается равенство нахождения по времени металлических пластин 7 с пористой пленкой 8 как в режиме контакта с обрабатываемым газом, так и с абсорбирующей жидкостью.

Заполнение корпуса 1 абсорбирующей жидкостью обусловлено необходимостью стекания с пористых пленок 8 абсорбирующей жидкости до перехода металлических пластин 7 в горизонтальное положение, и расположение каплеуловителей 10 на одном горизонтальном уровне с осью 11 вала 6 устраняет возможность захвата обрабатываемым потоком газа каплеобразующих частиц с зеркала абсорбирующей жидкости.

Оригинальность предложенного изобретения заключается в том, что поддерживается постоянство производительности по готовому продукту с заданным качеством аппаратом для обработки газа при длительной эксплуатации в условиях изменяющейся концентрации твердых частиц. Это осуществляется за счет устранения разрушения пористой пленки фильтрующего барабана, бомбардирующим воздействием загрязнений, путем выполнения профиля криволинейных канавок в виде «ласточкина хвоста» и расположения у входного отверстия штуцера входа круговой канавки, соединенной с грязесборником, являющимся накопителем твердых частиц.

Аппарат для обработки газа, содержащий корпус со штуцерами входа и выхода газа и жидкости, внутри которого на валу установлен фильтрующий барабан, выполненный в виде радиально расположенных металлических пластин, каждая из которых покрыта пористой пленкой, а корпус аппарата на 0,3-0,35 объема заполнен абсорбирующей жидкостью и имеет каплеуловители, установленные на одном уровне с осью вала, при этом штуцер входа газа имеет форму суживающегося сопла, на внутренней поверхности которого выполнены криволинейные канавки, продольно расположенные от входного к выходному отверстию суживающегося сопла, кроме того, наружная поверхность вала фильтрующего барабана выполнена с покрытием из наноматериала в виде стеклообразной пленки, причём каплеуловитель выполнен в виде полусферы со смещением центральной оси в сторону внутренней боковой поверхности корпуса, кроме того, у основания полусферы расположен желобообразный сборник каплеобразной абсорбирующей жидкости, соединенный с вертикальным каналом ее слива в днище корпуса, причем кривизна желобообразного сборника каплеобразной абсорбирующей жидкости выполнена по линии циклоида как брахистохрона, отличающийся тем, что криволинейные канавки, продольно расположенные от входного к выходному отверстию суживающегося сопла, выполнены с профилем в виде «ласточкина хвоста», а у входного отверстия суживающегося сопла выполнена круговая канавка, соединенная с грязесборником.
Аппарат для обработки газа
Аппарат для обработки газа
Источник поступления информации: Роспатент

Показаны записи 81-90 из 320.
26.08.2017
№217.015.e99b

Устройство для очистки и утилизации дымовых газов крышной котельной

Изобретение относится к теплоэнергетике и может быть использовано для очистки дымовых газов крышных котельных от вредных примесей и утилизации их тепла и конденсата водяных паров. Технический результат: повышение надежности и эффективности устройства. Устройство для очистки и утилизации...
Тип: Изобретение
Номер охранного документа: 0002627808
Дата охранного документа: 11.08.2017
26.08.2017
№217.015.eace

Аппарат для обработки газа

Изобретение относится к массообменным устройствам роторной конструкции и может быть использовано в химической, нефтехимической, газовой, газоперерабатывающей и других отраслях промышленности для обработки газа жидкостью. Аппарат для обработки газа содержит корпус со штуцерами входа и выхода...
Тип: Изобретение
Номер охранного документа: 0002627887
Дата охранного документа: 14.08.2017
26.08.2017
№217.015.eb09

Аппарат для обработки газа

Изобретение относится к массообменным устройствам роторной конструкции и может быть использовано в химической, нефтехимической, газовой, газоперерабатывающей и других отраслях промышленности для обработки газа жидкостью. Аппарат для обработки газа содержит корпус со штуцерами входа и выхода...
Тип: Изобретение
Номер охранного документа: 0002627898
Дата охранного документа: 14.08.2017
26.08.2017
№217.015.ebd5

Сорбент для очистки водных сред от ионов мышьяка и способ его получения

Изобретение относится к области сорбционной очистки вод. Предложен сорбент для очистки водных сред от мышьяка. Сорбент содержит 98-99 вес.% наночастиц железа и крахмал. Для получения сорбента сернокислое железо и крахмал растворяют в воде с образованием комплекса ионов железа с крахмалом, через...
Тип: Изобретение
Номер охранного документа: 0002628396
Дата охранного документа: 16.08.2017
26.08.2017
№217.015.ebf0

Биогазовая установка для переработки навоза

Изобретение относится к сельскому хозяйству, в частности к устройствам для переработки навоза. Биогазовая установка содержит биореактор с последовательно сообщающимися емкостями с переливными перегородками, снабженный трубопроводами для подачи навозного субстрата и отвода сброженной массы,...
Тип: Изобретение
Номер охранного документа: 0002628425
Дата охранного документа: 16.08.2017
26.08.2017
№217.015.ebf9

Способ извлечения пектиновых веществ из отходов свекловичного производства

Изобретение относится к переработке отходов свекловичного производства. Способ извлечения пектиновых веществ включает мойку сырья водой, измельчение, обработку ультразвуком, гидролиз и экстрагирование, осаждение пектиновых веществ и их очистку из пектинсодержащего экстракта этиловым спиртом....
Тип: Изобретение
Номер охранного документа: 0002628435
Дата охранного документа: 16.08.2017
26.08.2017
№217.015.ec1a

Способ регенерации скважин на воду

Изобретение относится к эксплуатации водозаборов подземных вод, вертикальных дренажей для защиты территорий от подтопления, систем для пополнения запасов подземных вод через закрытые инфильтрационные сооружения, в частности регенерации скважин на воду при механической и биологической...
Тип: Изобретение
Номер охранного документа: 0002628428
Дата охранного документа: 16.08.2017
20.11.2017
№217.015.ef50

Управляемый коммутатор элементов электрической сети

Изобретение относится к вычислительной технике, информационно-измерительной технике, автоматике и промышленной электронике. Технический результат – обеспечено получение нулевого значения остаточного напряжения управляемого коммутатора элементов электрической цепи, а также нулевое значение его...
Тип: Изобретение
Номер охранного документа: 0002628994
Дата охранного документа: 23.08.2017
19.01.2018
№218.015.ff58

Панель для дополнительной теплоизоляции стен

Изобретение относится к области разработки конструкций дополнительной теплоизоляции стен при строительстве и ремонте зданий, предназначенных для уменьшения поступления теплоты из помещения в толщу стены при установке теплоизоляционных панелей внутри помещения или для защиты стен от воздействия...
Тип: Изобретение
Номер охранного документа: 0002629503
Дата охранного документа: 29.08.2017
19.01.2018
№218.015.ff59

Способ автоматической сегментации флюорограмм грудной клетки больных пневмонией

Изобретение относится к способам цифровой обработки медицинских изображений и может быть использовано для автоматической сегментации флюорограмм грудной клетки. Осуществляют вычисление гистограмм яркости изображения в выделенном окне. Для выделения на изображениях флюорограмм грудной клетки...
Тип: Изобретение
Номер охранного документа: 0002629629
Дата охранного документа: 30.08.2017
Показаны записи 81-90 из 125.
17.02.2018
№218.016.2c6e

Экструдер пресса для изготовления макаронных изделий улучшенного качества

Изобретение относится к пищевой промышленности и предназначено для применения в прессах для изготовления макаронных изделий. Экструдер содержит в корпусе шнек с выходным валом привода экструдера с одной стороны и с формующим устройством с другой стороны. Винтовая поверхность шнека разделена на...
Тип: Изобретение
Номер охранного документа: 0002643261
Дата охранного документа: 31.01.2018
04.04.2018
№218.016.2ffe

Котел отопительный газовый

Изобретение относится к бытовой топливоиспользующей аппаратуре. Котел отопительный газовый состоит из прямоугольного шкафа с тепловой защитой и кожухом, внутри которого расположены топка с горелкой, теплообменник и патрубок выхода продуктов сгорания через внешнюю стенку помещения, установленный...
Тип: Изобретение
Номер охранного документа: 0002645108
Дата охранного документа: 15.02.2018
04.04.2018
№218.016.3620

Котел отопительный газовый

Изобретение относится к котлу отопительному газовому. Kотёл отопительный газовый для нужд отопления и горячего водоснабжения в жилых помещениях состоит из прямоугольного шкафа с тепловой защитой и кожухом, внутри которого расположены топка с горелкой, теплообменник и патрубок выхода продуктов...
Тип: Изобретение
Номер охранного документа: 0002646276
Дата охранного документа: 02.03.2018
10.05.2018
№218.016.3b42

Способ защиты от средств фиксации теплового излучения и устройство защиты от средств фиксации теплового излучения

Группа изобретений относится к военной технике, а именно к средствам защиты от фиксации теплового излучения сторонними наблюдателями. Способ защиты от средств фиксации теплового излучения включает выполнение закрывающего источник тепла экрана с осуществлением поэтапного поглощения выделяемого...
Тип: Изобретение
Номер охранного документа: 0002647346
Дата охранного документа: 15.03.2018
29.05.2018
№218.016.53f7

Шпиндельный узел

Шпиндельный узел содержит корпус с установленным в нем с возможностью вращения на подшипниковых опорах шпинделем, имеющим равномерно расположенные по окружности наклонные и параллельные оси шпинделя каналы, в которых выполнены совмещенные продольные винтообразные канавки. При этом каналы...
Тип: Изобретение
Номер охранного документа: 0002653963
Дата охранного документа: 15.05.2018
03.10.2018
№218.016.8d2f

Система лучистого отопления здания

Изобретение относится к отопительным системам здания. Система лучистого отопления здания с несущими стенами и внутренними перегородками включает камеру подогрева воздуха, сборные каналы, горизонтальные подающие каналы, горизонтальные распределительные каналы, вертикальные воздуховоды,...
Тип: Изобретение
Номер охранного документа: 0002668239
Дата охранного документа: 27.09.2018
19.10.2018
№218.016.9385

Трехслойная ресурсосберегающая железобетонная панель

Изобретение относится к строительству, в частности к ограждающим конструкциям промышленных зданий. Трехслойная ресурсосберегающая железобетонная панель включает теплоизоляционный слой, наружный и внутренний железобетонные слои, связанные между собой жесткими связями, выполненные в виде...
Тип: Изобретение
Номер охранного документа: 0002669897
Дата охранного документа: 16.10.2018
03.11.2018
№218.016.99f9

Продувочная свеча

Изобретение относится к газовой промышленности и предназначено для продувки газопроводов. Технической задачей предлагаемого изобретения является снижение шумового воздействия на окружающую среду при продувке газопроводов посредством продувочной свечи за счет выполнения кривизны криволинейных...
Тип: Изобретение
Номер охранного документа: 0002671541
Дата охранного документа: 01.11.2018
14.11.2018
№218.016.9d40

Вихревой теплообменный элемент

Изобретение относится к теплотехнике и может быть использовано в теплообменниках, применяемых в различных отраслях техники, в частности в регенеративных теплообменниках газотурбинных установок реакторостроения. В вихревом теплообменном элементе, содержащем соосно расположенные одна в другой...
Тип: Изобретение
Номер охранного документа: 0002672229
Дата охранного документа: 12.11.2018
21.11.2018
№218.016.9ec8

Звукоизолирующее окно

Изобретение относится к строительству, а именно к конструкции звукоизолирующего окна, используемого в различных зданиях и сооружениях. Технический результат по обеспечению комфортных условий внутри здания или сооружения с сохранением звукоизолирующих параметров окна достигается тем, что...
Тип: Изобретение
Номер охранного документа: 0002672735
Дата охранного документа: 19.11.2018
+ добавить свой РИД