×
21.03.2020
220.018.0eed

Результат интеллектуальной деятельности: СПОСОБ ИНТЕНСИФИКАЦИИ ПРОЦЕССА НИЗКОТЕМПЕРАТУРНОГО ИОННОГО АЗОТИРОВАНИЯ ИЗДЕЛИЙ ИЗ ТИТАНОВЫХ СПЛАВОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к металлургической промышленности, а именно к химико-термической обработке поверхности изделий из титановых сплавов, и может быть использовано при изготовлении деталей двигателей, в медицине и деталей в других отраслях промышленности, работающих в условиях изнашивания. Способ низкотемпературного ионного азотирования изделий из титановых сплавов включает подачу в вакуумную камеру с упомянутыми изделиями плазмообразующей газовой смеси, содержащей азот и аргон. Перед азотированием проводят равноканальное угловое прессование с формированием ультрамелкозернистой структуры, при котором заготовку нагревают до 600°С и подвергают шести циклам прессования в оснастке, имеющей два канала с углом пересечения 120°, при этом после каждого цикла заготовку поворачивают вокруг продольной оси на 90°, а азотирование проводят в тлеющем разряде при температуре 400-450°С. Обеспечивается повышение скорости роста и толщины упрочненного слоя при низкотемпературном ионном азотировании титановых сплавов и, как следствие, повышение износостойкости поверхности. 2 ил., 1 пр.

Изобретение относится к металлургической промышленности, а именно к химико-термической обработке поверхности изделий из титановых сплавов, и может быть использовано при изготовлении деталей двигателей, в медицине и деталей других отраслях промышленности, работающих в условиях изнашивания.

Известен способ низкотемпературного азотирования в плазме несамостоятельного дугового разряда низкого давления технически чистого титана ВТ1-0 (патент РФ 2434075, С23С 8/24. 23.03.2010), который проводят при следующем режиме: вакуумная камера откачивается до давления р=2⋅102 Па, затем через катодную полость подается рабочий газ (Ar, N2). После этого подается напряжение ~70 В на разрядный промежуток. В результате чего происходит зажигание диффузионной дуги низкого давления с накаленным катодом. В качестве плазмообразующей смеси используется смесь газов азот-аргон. Азотирование выполняется при температуре ~420°С.

Недостатками данного способа являются:

- Ухудшение качества поверхности в связи с тем, что при проведении процесса в данном типе разряда возможно попадание продуктов эрозии катода на поверхность обрабатываемых изделий;

- Неравномерное распределение плотности ионного тока, что приводит к неравномерному азотированию длинномерных деталей.

Известен способ низкотемпературного ионного азотирования стальных деталей (патент РФ 2664106, С23С 8/38. 09.01.2017), который включает катодное распыление, вакуумный нагрев изделия в плазме тлеющего разряда, состоящей из смеси азотосодержащего и инертного газов до температуры 430°С, причем сначала осуществляют поверхностную интенсивную пластическую деформацию посредством ультразвуковой обработки поверхности стального изделия с подачей инструмента S=2 м/мин, рабочей частотой f=22 кГц и частотой вращения детали N=30 об/мин.

Недостатками данного способа являются:

- дорогостоящий метод создания ультрамелкозернистой структуры;

- в газовой смеси используется 30% добавка водорода, что приведет к охрупчиванию поверхностного слоя.

Наиболее близким по технической сущности и достигаемому эффекту к заявляемому является способ низкотемпературного ионного азотирования титановых сплавов с постоянной прокачкой газовой смеси (патент РФ 2687616, С23С 8/36. 09.04.2018), который проводят при следующем режиме: изделия из титанового сплава загружаются в вакуумную камеру и подключаются к отрицательному электроду (катоду), производится эвакуация воздуха из вакуумной камеры, проводят ионную чистку затем азотирование проводят в тлеющем разряде при температуре 400-450°С с постоянной прокачкой, при которой откачивают аргон из вакуумной камеры и одновременно подают в нее упомянутую газовую смесь для поддержания в ней давления 300 Па, при этом в качестве упомянутой газовой смеси подают газовую смесь, содержащую 20 мас. % азота и 80 мас. % аргона.

Недостатком прототипа является относительно низкая скорость насыщения при данных температурах и соответственно невысокая износостойкость поверхности.

Задачей предлагаемого изобретения является повышение эффективности процесса низкотемпературного ионного азотирования титановых сплавов.

Техническим результатом является повышение скорости роста и толщины упрочненного слоя при низкотемпературном ионном азотировании титановых сплавов, и как следствие повышение износостойкости поверхности.

Задача решается, а технический результат достигается тем, что в способе низкотемпературного ионного азотирования изделий из титановых сплавов, включающем подачу в вакуумную камеру с упомянутыми изделиями плазмообразующей газовой смеси, содержащей азот и аргон, в отличие от прототипа, перед азотированием проводят равноканальное угловое прессование с формированием ультрамелкозернистой структуры, при котором заготовку нагревают до 600°С и подвергают шести циклам прессования в оснастке, имеющей два канала с углом пересечения 120°, при этом после каждого цикла заготовку поворачивают вокруг продольной оси на 90°, а азотирование проводят в тлеющем разряде при температуре 400-450°С.

Эффективность процесса ионного азотирования определяется временем, необходимым для получения упрочненного слоя заданной толщины. Время выдержки в свою очередь зависит от температуры процесса, с повышением температуры азотирования увеличивается скорость роста упрочненного слоя, т.к. азотирование является, как и любой диффузионный процесс, термически активируемым [Панайоти И.А., Соловьев Г.В. Ионное азотирование стареющих (α+β)-сплавов титана // МиТОМ. 1996. №5. С. 28-31]. Однако увеличение температуры процесса приводит к структурным изменениям в материале, что приводит к ухудшению механических свойств и происходит коробление тонкостенных деталей.

Однако скорость диффузии можно повысить за счет создания ультрамелкозернистой (УМЗ) и нанокристаллической структуры в материале методами интенсивной пластической деформации (ИПД). Связано это с тем, что диффузия азота идет в основном по границам зерен, а также дефекты, созданные при ИПД на границах зерен, оказывают каталитическое действие. Также создание УМЗ структуры повышает механические свойства титановых сплавов [Семенова И.П., Рааб Г.И., Валиев Р.З. Наноструктурные титановые сплавы: новые разработки и перспективы применения // Российские нанотехнологии. - 2014. - Т. 9. - №. 5-6. - С. 84-95.]. Таким образом получение предварительно УМЗ структуры позволит не только интенсифицировать процесс азотирования, но и повысить механические и эксплуатационные свойства основы материала изделий из титановых сплавов.

Существо изобретения поясняется чертежами, на фиг. 1 изображена схема реализации способа низкотемпературного ионного азотирования титановых сплавов. На фиг. 2 приведен график изменения микротвердости по глубине азотированного слоя после ионного азотирования в тлеющем разряде.

Пример конкретной реализации способа.

Способ осуществляется с помощью установки, содержащей источник питания 1, электрод-анод 2, обрабатываемую деталь (катод) 3, вакуумную камеру 4. Предварительно УМЗ структуру получали методом равноканального углового прессования (РКУП). Заготовку нагревали до температуры 600°С и подвергали прессованию в оснастке, которая имела два канала круглого сечения с углом пересечения 120°, заготовку после каждого цикла поворачивают на 90° вокруг продольной оси, всего было 6 циклов прессования. В вакуумной камере 4 (фиг. 1) деталь подключают к отрицательному электроду (катоду) 2, герметизируют вакуумную камеру 4 и откачивают воздух до давления 10 Па. После эвакуации воздуха камеру продувают аргоном в течение 2-5 мин при давлении ~1330 Па, затем откачивают вакуумную камеру 4 до давления 20-30 Па, подают на электроды анод 2 и катод (деталь) 3 разность потенциалов с помощью источника питания 1 и зажигают тлеющий разряд. При напряжении 800-900 В осуществляется катодное распыление. После 5-10-минутной обработки по режиму катодного распыления напряжение понижают до рабочего, включают форвакуумный насос и откачивают аргон из вакуумной камеры, далее не отключая откачку, напускают рабочий газ. Процесс ионного азотирования проводят с постоянной прокачкой, т.е. форвакуумный насос работает в течении всего процесса обработки. Одновременно с этим включают регулятор расхода газа, который подает рабочий газ в вакуумную камеру 4 в необходимом соотношении для поддержания давления 160 Па. В качестве рабочего газа используется газовая смесь азота, аргона (N2 15%+Ar 85%). Азотирование в тлеющем разряде производят при р=160 Па, I=0,9 А, U=540 В в течение 3 ч и температуре 450°С. После обработки изделие охлаждают вместе с вакуумной камерой 4 под вакуумом. На фиг. 2 приведен график изменения микротвердости по глубине азотированного слоя после ионного азотирования в тлеющем разряде. Два образца были проазотированны при одинаковых режимах, отличием было то, что в первом случае структура была в крупнозернистом (КЗ), а во втором УМЗ состоянии. Как видно из фиг. 2 для образца с УМЗ структурой поверхностная микротвердость выше и снижение микротвердости до уровня значений основы более равномерное. Глубина упрочненного слоя для КЗ структуры составило -20 мкм, а для УМЗ структуры ~ 30 мкм, что свидетельствует об ускоренной кинетике роста упрочненного слоя.

Предлагаемый способ низкотемпературного ионного азотирования титановых сплавов позволяет интенсифицировать процесс диффузии азота в материал, а также повысить механические и эксплуатационные свойства.

Способ низкотемпературного ионного азотирования изделий из титановых сплавов, включающий подачу в вакуумную камеру с упомянутыми изделиями плазмообразующей газовой смеси, содержащей азот и аргон, отличающийся тем, что перед азотированием проводят равноканальное угловое прессование с формированием ультрамелкозернистой структуры, при котором заготовку нагревают до 600°С и подвергают шести циклам прессования в оснастке, имеющей два канала с углом пересечения 120°, при этом после каждого цикла заготовку поворачивают вокруг продольной оси на 90°, а азотирование проводят в тлеющем разряде при температуре 400-450°С.
СПОСОБ ИНТЕНСИФИКАЦИИ ПРОЦЕССА НИЗКОТЕМПЕРАТУРНОГО ИОННОГО АЗОТИРОВАНИЯ ИЗДЕЛИЙ ИЗ ТИТАНОВЫХ СПЛАВОВ
СПОСОБ ИНТЕНСИФИКАЦИИ ПРОЦЕССА НИЗКОТЕМПЕРАТУРНОГО ИОННОГО АЗОТИРОВАНИЯ ИЗДЕЛИЙ ИЗ ТИТАНОВЫХ СПЛАВОВ
Источник поступления информации: Роспатент

Показаны записи 131-140 из 146.
12.04.2023
№223.018.424c

Способ обработки поверхности на стальных деталях

Изобретение относится к металлургической промышленности, а именно к комбинированной упрочняющей химико-термической обработке поверхности стальных изделий и инструмента, работающих в условиях локального изнашивания. Способ обработки изношенных локальных участков поверхности стальной детали...
Тип: Изобретение
Номер охранного документа: 0002766388
Дата охранного документа: 15.03.2022
12.04.2023
№223.018.42b0

Разъемный гребной винт

Изобретение относится к области судостроения, а именно к водоходным движителям, обеспечивающим движение и маневрирование судна. Гребной винт содержит ступицу и как минимум две съемные лопасти, каждая из которых имеет корневую часть, выполненную с фасонной поверхностью типа «ласточкин хвост» для...
Тип: Изобретение
Номер охранного документа: 0002757989
Дата охранного документа: 25.10.2021
12.04.2023
№223.018.46ca

Универсальный шариковый расходомер жидкости

Изобретение относится к измерительной технике и может использоваться в расходометрии любых жидкостей - электропроводных и неэлектропроводных, прозрачных и непрозрачных, химически агрессивных и пожароопасных, взрывоопасных, ядовитых и опасных для окружающей среды - в химической, нефтедобывающей...
Тип: Изобретение
Номер охранного документа: 0002761416
Дата охранного документа: 08.12.2021
12.04.2023
№223.018.470f

Цифровой преобразователь расхода электропроводной жидкости

Изобретение относится к измерительной технике и электронному приборостроению и может быть использовано в расходометрии электропроводных жидкостей, например воды и водных растворов солей, щелочей и кислот, электропроводных органических и неорганических химических соединений. Преобразователь...
Тип: Изобретение
Номер охранного документа: 0002755715
Дата охранного документа: 20.09.2021
23.04.2023
№223.018.5203

Способ получения сорбента для очистки воды от нефтезагрязнений

Изобретение относится к получению сорбентов для очистки воды от нефтепродуктов. Сущность изобретения: экстрагированную сечку сахарной свеклы подвергают высушиванию до содержания влаги не более 10 мас.%, измельчают с получением частиц заданного гранулометрического состава. Высушенное и...
Тип: Изобретение
Номер охранного документа: 0002732274
Дата охранного документа: 14.09.2020
09.05.2023
№223.018.52d9

Интегральный перестраиваемый излучатель оптического вихревого пучка

Изобретение относится к оптике, в частности к лазерной технике, и может быть использовано в радиофотонных и оптических системах связи. Интегральный перестраиваемый излучатель оптического вихревого пучка содержит прямой оптический волновод, микрокольцевой резонатор радиусом 30 мкм с глухими...
Тип: Изобретение
Номер охранного документа: 0002795166
Дата охранного документа: 28.04.2023
14.05.2023
№223.018.5544

Способ сравнительной оценки загрязнения воздуха по высшим растениям

Изобретение относится к области защиты окружающей среды и может быть использовано в биоиндикации атмосферного воздуха. Оценку загрязнения воздуха по высшим растениям проводят по сравнению усредненных величин модулей разницы фрактальной размерности правой и левой части листьев. При отличии...
Тип: Изобретение
Номер охранного документа: 0002736935
Дата охранного документа: 23.11.2020
15.05.2023
№223.018.5910

Способ комбинированной обработки изделия из быстрорежущей стали

Изобретение относится к способу комбинированной обработки изделия из быстрорежущей стали. Способ включает создание ультрамелкодисперсной структуры посредством холодной осадки, закалку при температуре 900-1100°С, ионное азотирование стального изделия, при этом после закалки осуществляют...
Тип: Изобретение
Номер охранного документа: 0002760515
Дата охранного документа: 25.11.2021
15.05.2023
№223.018.5911

Способ комбинированной обработки изделия из быстрорежущей стали

Изобретение относится к способу комбинированной обработки изделия из быстрорежущей стали. Способ включает создание ультрамелкодисперсной структуры посредством холодной осадки, закалку при температуре 900-1100°С, ионное азотирование стального изделия, при этом после закалки осуществляют...
Тип: Изобретение
Номер охранного документа: 0002760515
Дата охранного документа: 25.11.2021
16.05.2023
№223.018.5dab

Система для магнитной обработки нефтяного флюида в технологическом оборудовании его сбора и транспортировки

Изобретение относится к нефтяной промышленности и предназначено для магнитной обработки нефтяного флюида, транспортируемого в системе сбора нефти после автоматизированной групповой замерной установки (АГЗУ). Система включает АГЗУ, связанную трубопроводами с нефтяными скважинами, выход которой...
Тип: Изобретение
Номер охранного документа: 0002757352
Дата охранного документа: 14.10.2021
Показаны записи 31-36 из 36.
17.01.2020
№220.017.f68f

Способ ионного азотирования в скрещенных электрических и магнитных полях

Изобретение относится к области химико-термической обработки, а именно к вакуумному ионно-плазменному азотированию, и может быть использовано в машиностроении для повышения надежности и долговечности широкого ассортимента деталей машин и инструментов, изготовленных из стали. Способ ионного...
Тип: Изобретение
Номер охранного документа: 0002711067
Дата охранного документа: 15.01.2020
17.01.2020
№220.017.f6c9

Способ ионной очистки в скрещенных электрических и магнитных полях перед вакуумной ионно-плазменной обработкой

Изобретение относится к металлургической промышленности, а именно к химико-термической обработке поверхности деталей. Способ вакуумной ионно-плазменной очистки деталей включает загрузку в камеру предварительно очищенных от загрязнений деталей, получение в ней вакуума и проведение ионной...
Тип: Изобретение
Номер охранного документа: 0002711065
Дата охранного документа: 15.01.2020
31.07.2020
№220.018.3921

Способ нанесения градиентных жаростойких покрытий y-mo-o плазмы вакуумно-дугового разряда

Изобретение относится к способу нанесения жаростойкого покрытия и может быть использовано для повышения надежности и долговечности широкого ряда деталей машин и инструмента. Осуществляют осаждение из плазмы вакуумно-дугового разряда с двух поочередно используемых однокомпонентных катодов Мо и Y...
Тип: Изобретение
Номер охранного документа: 0002728117
Дата охранного документа: 28.07.2020
12.04.2023
№223.018.424c

Способ обработки поверхности на стальных деталях

Изобретение относится к металлургической промышленности, а именно к комбинированной упрочняющей химико-термической обработке поверхности стальных изделий и инструмента, работающих в условиях локального изнашивания. Способ обработки изношенных локальных участков поверхности стальной детали...
Тип: Изобретение
Номер охранного документа: 0002766388
Дата охранного документа: 15.03.2022
16.05.2023
№223.018.5d93

Способ комбинированной обработки изделия из быстрорежущей стали

Изобретение относится к cпособу комбинированной обработки изделия из быстрорежущей стали. Способ включает нагрев изделия до температуры 950С, последующую закалку, обработку холодом при температуре -70-80С и последующее ионное азотирование, отличающийся тем, что ионное азотирование осуществляют...
Тип: Изобретение
Номер охранного документа: 0002757362
Дата охранного документа: 14.10.2021
16.05.2023
№223.018.5d94

Способ комбинированной обработки изделия из быстрорежущей стали

Изобретение относится к cпособу комбинированной обработки изделия из быстрорежущей стали. Способ включает нагрев изделия до температуры 950С, последующую закалку, обработку холодом при температуре -70-80С и последующее ионное азотирование, отличающийся тем, что ионное азотирование осуществляют...
Тип: Изобретение
Номер охранного документа: 0002757362
Дата охранного документа: 14.10.2021
+ добавить свой РИД