×
19.03.2020
220.018.0dfa

Результат интеллектуальной деятельности: СПОСОБ ВЫДЕЛЕНИЯ МОЛИБДЕНА-99 ИЗ ТОПЛИВА РАСТВОРНОГО РЕАКТОРА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Вид РИД

Изобретение

Авторы

№ охранного документа
0002716828
Дата охранного документа
17.03.2020
Аннотация: Изобретение относится к получению изотопов медицинского назначения, в частности Мо-99. Способ включает подачу в сорбционную колонку облученного раствора, содержащего йод, молибден и другие продукты деления урана, пропускание раствора облученного топлива снизу вверх через сорбционную колонку, подачу десорбирующего раствора на сорбционную колонку, удаление йода из полученного элюата и очистку элюата. Облученный раствор пропускают порциями через сорбционную колонку с возвратом каждой порции в реактор, после чего удаляют остатки облученного раствора из сорбционной колонки дистиллированной водой. После удаления йода элюат подкисляют и высушивают, высушенный продукт подвергается тонкой очистке из кислого раствора на неорганическом сорбенте. Дистиллированную воду с остатками облученного раствора после промывки сорбционной колонки возвращают в реактор. Устройство для выделения молибдена-99 из топлива растворного реактора включает сорбционную систему, содержащую, по меньшей мере, одну сорбционную колонку, средство для подачи в сорбционную колонку раствора облученного топлива, содержащего йод, молибден и другие продукты деления, средство для подачи в сорбционную колонку реагента для десорбции молибдена, средство для удаления йода из элюата, полученного из сорбционной колонки, и средство для очистки элюата. Сорбционная система состоит, по меньшей мере, из двух контуров и средства перемещения сорбционной колонки между этими контурами. Первый контур предназначен для сорбции молибдена, а второй - для десорбции молибдена, при этом контур сорбции сообщен с реактором, а контур десорбции сообщен со средством для подачи реагента для десорбции молибдена и средством для удаления йода из элюата. Техническим результатом является чистота конечного препарата Мо-99, сокращение затрат времени на технологический процесс и увеличение производительности установки, повышение радиационной безопасности. 2 н. и 5 з.п. ф-лы, 1 ил., 1 табл., 1 пр.

Изобретение относится к области радиохимии, а именно, к получению радионуклидов в ядерной технике и может быть использовано для получения изотопов медицинского назначения, в частности молибдена-99 (Мо-99).

На современном уровне развития технологий известно два направления в способах получения изотопа молибден-99 фармацевтического назначения: мишенная технология и растворные реакторы. Мишенная технология заключается в облучении мишени, состоящей из металлического урана-235 (или, в редких случаях, из металлического природного молибдена) в нейтронном потоке. В растворном реакторе само топливо (водный раствор урана) является исходным материалом для наработки молибдена-99. Способ получения молибдена-99 из топлива растворного реактора представляется более выгодным, его преимущество заключается в максимально полном использовании урана (в мишенной технологии порядка 99% урана уходит в отходы) и возможности использования низкообогащенного урана. Оцениваемое количество радиоактивных отходов при использовании растворного реактора также должно быть существенно ниже. Однако на сегодняшний день в мире нет действующих установок для получения изотопа молибден-99 на основе растворного реактора, несмотря на множество патентов в этой области.

Несмотря на то, что мишенная технология и растворные реакторы используют разные методы наработки изотопа молибден-99, многие последующие операции по его выделению и очистке схожи, разница заключается лишь в используемых материалах и условиях проведения технологического процесса.

Известен способ получения молибдена-99 [Патент RU №2575028 «Способ экстракционного выделения молибдена из радиоактивных растворов», C01G 39/00, публ. 10.02.2016.]. Способ экстракционного выделения молибдена из радиоактивных растворов включает его обработку экстрагентом в присутствии комплексообразователя в виде гидроксамовых кислот, его последующую реэкстракцию и регенерацию экстрагента щелочной обработкой. Реэкстракцию молибдена проводят окислительным реагентом с разрушением гидроксамовых кислот. Обработанный щелочным реагентом экстрагент пропускают через сорбент. В качестве окислительного реагента используют реагенты, образующие при нагревании газообразные продукты: растворы азотной кислоты, хлора, брома или двуокиси азота, или раствор нитрита аммония. В качестве сорбента для регенерации экстрагента после щелочной промывки используют оксид меди (I) в смеси с порошком металлической меди или соли металлов из ряда: Ag, Pb, Hg, Bi, Cu, нанесенные на пористый носитель.

Недостатком этого способа наряду с недостатками, присущими самому методу мишенной технологии, является использование жидкого органического экстрагента, радиационная устойчивость которого в условиях контакта с раствором облученного урана явно недостаточна.

Известен способ получения молибдена-99 [Патент RU №2103756 «Способ выделения изотопов из продуктов деления, получаемых в ядерном реакторе», G21G 4/08, публ. 27.01.1998]. В этом патенте извлечение целевых продуктов деления урана для получения медицинских изотопов, например, Мо-99, обеспечивается способом, включающем введение раствора, а в случае применения реактора с газовым охлаждением, потока газа в абсорбционные колонны с насадкой из оксида алюминия. После того как продукты деления прошли циркуляцию через колонны с насадкой из оксида алюминия, они подвергаются очистке с помощью органических химикатов, которые могут находиться в виде водного раствора. После завершения очистки продукты деления подвергают дополнительной обработке посредством их циркуляции через ионообменные колонны с целью получения медицинских изотопов, например, Мо-99.

Недостаток способа заключается в использовании в качестве сорбента для выделения Мо-99 оксида алюминия, который обладает относительно низкой эффективностью выделения Мо, обусловленной невысоким коэффициентом распределения и неселективностью извлечения. Также способ не рассматривает методы предварительного удаления йода из раствора Мо-99, что может вызвать проблемы при очистке на ионообменных колоннах.

Наиболее близким по технической сущности к заявляемому способу является способ производства молибдена-99 [Патент RU №2548033 «Способ и устройство для экстракции и обработки молибдена-99», C01G 39/00, публ. 10.04.2015]. Способ включает в себя стадии, на которых: подают раствор облученного топлива в экстракционную (сорбционную) систему, причем раствор облученного топлива содержит йод, молибден и другие продукты деления, а экстракционная (сорбционная) система содержит, по меньшей мере, одну экстракционную (сорбционную) колонку с сорбентом; пропускают раствор облученного топлива снизу вверх через, по меньшей мере, одну содержащую сорбент экстракционную (сорбционную) колонку; подают раствор облученного топлива в систему для обработки топлива с помощью, по меньшей мере, одного выпускного переключающего клапана; подают элюат, полученный из экстракционной (сорбционной) колонки, в систему для удаления йода; удаляют йод из элюата, полученного из экстракционной (сорбционной) колонки; очищают элюат, полученный из экстракционной колонки; и собирают очищенный элюат. Далее, собранный таким образом Мо-99 может быть подвергнут дальнейшей очистке.

Способ имеет следующие недостатки:

- на этапе выделения Мо-99 из топливного раствора активная зона реактора полностью сливается в специальную ядерно-безопасную емкость, следствием чего является необходимость повторного (после проведения операции выделения Мо-99) формирования активной зоны, с обязательным выполнением требований правил НП-03-11 и НП-009-17 по скорости и порционности ввода реактивности, что требует значительного времени и, соответственно, радикальным образом уменьшает производительность установки;

- в системе очистки от йода предлагается использовать инертные материалы в качестве матрицы для нанесения соединений серебра, из-за чего данная система очищает элюат только от йода, свободно пропуская другие продукты деления урана, что отрицательно влияет на чистоту конечного продукта и потребует дополнительных операций на стадии очистки.

Известно устройство для производства молибдена-99 [Патент RU №2413020 «Способ и устройство для производства молибдена-99», С22В 34/34, публ. 27.02.2011]. Устройство представляет собой соединенные трубопроводами ядерный растворный реактор и, по меньшей мере, одну сорбционную колонку, сорбирующую Мо-99. Предлагается снабдить устройство, по меньшей мере, одним ядерно-безопасным резервуаром для выдержки топливного раствора и соединить трубопроводами с выходным патрубком растворного реактора и входным патрубком, по меньшей мере, одной сорбционной колонки, сорбирующей Мо-99, и еще снабдить, по меньшей мере, одним ядерно-безопасным резервуаром для кондиционирования топливного раствора, соединенным трубопроводами с выходным патрубком, по меньшей мере, одной сорбционной колонки, сорбирующей Мо-99, и входным патрубком растворного реактора.

Недостатком устройства является то, что оно выполняет только функцию сорбции Мо-99 на сорбционной колонке из раствора, технические приспособления для десорбции в рамках этого патента не рассматриваются. Кроме того, в данном устройстве используются две ядерно-безопасные емкости - одна для выдержки топливного раствора, а вторая - для его кондиционирования, что приводит к усложнению конструкции и снижению надежности устройства. Вдобавок, как и в патенте [Патент RU №2103756 «Способ выделения изотопов из продуктов деления, получаемых в ядерном реакторе», G21G 4/08, публ. 27.01.1998], требуется проведение длительных ядерно-опасных операций по повторному формированию активной зоны, что существенно снижает производительность установки.

Наиболее близким по технической сущности к заявляемому устройству является устройство для производства молибдена-99 [Патент RU №2548033 «Способ и устройство для экстракции и обработки молибдена-99», C01G 39/00, публ. 10.04.2015.] Устройство для экстракции (выделения) молибдена, содержащее: средство для подачи раствора облученного топлива в экстракционную (сорбционную) систему, причем раствор облученного топлива содержит йод, молибден и другие продукты деления, а экстракционная (сорбционная) система содержит, по меньшей мере, одну экстракционную (сорбционную) колонку с сорбентом; средство для пропускания раствора облученного топлива снизу вверх через, по меньшей мере, одну содержащую сорбент экстракционную (сорбционную) колонку; средство для подачи раствора облученного топлива в систему для обработки топлива с помощью, по меньшей мере, одного выпускного переключающего клапана; средство для подачи элюата, полученного из экстракционной (сорбционной) колонки, в систему для удаления йода; средство для удаления йода из элюата; и средство для очистки элюата.

Недостатками описанного устройства являются:

- переключение потоков (топливного раствора и десорбирующего реагента), проходящих через экстракционную (сорбционную) колонку, осуществляется с помощью выпускного переключающего клапана, что приводит к тому, что часть трубопровода омывается как топливным раствором, так и десорбирующим реагентом, что приводит к загрязнению топливного раствора урана посторонними реагентами и отрицательно влияет на безопасность ядерной установки. Данный клапан, согласно требованиям реакторостроения, должен обладать высоким классом безопасности, что усложняет и удорожает его производство;

- наличие отдельных систем для обработки топлива приводит к тому, что на этапе выделения Мо-99 из топливного раствора активная зона реактора полностью сливается в специальную ядерно-безопасную емкость, следствием чего является необходимость повторного (после проведения операции выделения Мо-99) формирования активной зоны, с обязательным выполнением требований правил НП-03-11 и НП-009-17 по скорости и порционности ввода реактивности, что требует значительного времени и, соответственно, радикальным образом уменьшает производительность установки;

- невозможность разнесения реакторного блока и участка очистки Мо-99 на большие расстояния;

- средство для удаления йода и средство для очистки элюата являются разными устройствами, что увеличивает продолжительность процесса и, как следствие, увеличивает потери Мо-99 за счет радиоактивного распада.

Задача, решаемая заявляемой группой изобретений, заключается в увеличении производительности способа и повышении чистоты конечного продукта при одновременном повышении безопасности работы ядерной установки и рабочего персонала.

Технический результат при использовании заявляемой группы изобретений (способа и устройства) заключается в следующем:

- увеличена вариативность реализации комплекса по наработке Мо-99 благодаря возможности расположения реакторного блока и участка очистки на различных производственных площадках за счет разнесения контуров сорбции и десорбции;

- снижены риски загрязнения препарата молибдена остатками топливного раствора, увеличена эффективность очистки от йода за счет подкисления элюата при высушивании (на этапе лабораторных исследований получен препарат молибдена-99 в виде раствора молибдата натрия, в котором содержание радионуклидных примесей находилось ниже предела обнаружения гамма-спектрометра);

- повышена степень ядерной безопасности установки за счет снижения риска загрязнения топливного раствора и исключения полного опорожнения активной зоны реактора;

- сокращены затраты времени на технологический процесс выделения и очистки Мо-99 и, как следствие, снижены потери Мо-99 за счет радиоактивного распада;

- повышена степень радиационной безопасности и предусмотрены меры снижения дозовых нагрузок на персонал в процессе работы.

Для решения указанной задачи и достижения технического результата заявляется группа изобретений: способ выделения молибдена-99 из топлива растворного реактора и устройство для выделения молибдена-99 из топлива растворного реактора.

Способ выделения молибдена-99 из топлива растворного реактора включает подачу в сорбционную колонку облученного раствора, содержащего йод, молибден и другие продукты деления урана, пропускание всего раствора облученного топлива снизу вверх через сорбционную колонку, подачу десорбирующего раствора на сорбционную колонку, удаление йода из полученного элюата и очистку элюата. Согласно изобретению облученный раствор пропускают порциями через сорбционную колонку, по меньшей мере, один раз с возвратом каждой порции в реактор, после чего удаляют остатки облученного раствора из сорбционной колонки дистиллированной водой, а после удаления йода очищенный элюат подкисляют и высушивают, высушенный продукт подвергают тонкой очистке из кислого раствора на неорганическом сорбенте.

В качестве дистиллированной воды для промывки колонки может быть использован конденсат из системы каталитической регенерации реактора, в этом случае дистиллированную воду с остатками облученного раствора после промывки сорбционной колонки возвращают в реактор для сохранения баланса воды в реакторе.

В качестве десорбирующего раствора для выделения молибдена с сорбционной колонки используют натриевую щелочь с концентрацией 0,2 - 1М.

Удаление йода из элюата осуществляют пропусканием его через серебросодержащий сорбент на основе диоксида титана.

Устройство для выделения молибдена-99 из топлива растворного реактора включает сорбционную систему, содержащую, по меньшей мере, одну сорбционную колонку, средство для подачи в сорбционную колонку раствора облученного топлива, содержащего йод, молибден и другие продукты деления, средство для подачи в сорбционную колонку реагента для десорбции молибдена, средство для удаления йода из элюата, полученного из сорбционной колонки, и средство для очистки элюата. Согласно изобретению сорбционная система состоит, по меньшей мере, из двух контуров и средства перемещения сорбционной колонки между этими контурами. Первый контур предназначен для сорбции молибдена, а второй - для десорбции молибдена, при этом контур сорбции сообщен с реактором, а контур десорбции сообщен со средством для подачи реагента для десорбции молибдена и средством для удаления йода из элюата.

Сорбционная система может содержать третий контур для удаления оставшихся продуктов деления из сорбционной колонки после десорбции молибдена, при этом третий контур сообщен со средством подачи реагентов и с емкостью для сбора жидких радиоактивных отходов.

Пропускание топливного раствора порциями через сорбционную колонку с возвратом каждой порции в реактор позволяет избежать опорожнения внутреннего объема реактора и, как следствие, отменяет необходимость заново формировать активную зону. Поскольку расход топливного раствора через сорбционную колонку и, соответственно, скорость возврата порции топлива в корпус реактора существенно ниже требуемой правилами НП-009-17 максимально допустимой скорости ввода реактивности 0,07 βэф, длительность процесса сорбции определяется оптимальной скоростью прокачки топлива через сорбционную колонку. Отказ от дополнительных длительных операций существенно увеличивает производительность установки.

Применение в качестве дистиллированной воды конденсата из системы каталитической рекомбинации реактора для промыва сорбционной колонки от остатков топливного раствора позволяет вернуть содержащийся в них уран в реактор, не нарушая баланса воды топливного раствора. Снижение потерь урана из топливного раствора приводит к снижению себестоимости производства за счет того, что нормализация топливного раствора проводится значительно реже.

Преимущество использования в средстве очистки от йода сорбента на основе диоксида титана для нанесения на него соединений серебра вместо инертного носителя заключается в том, что на диоксиде титана будут в значительной степени задерживаться нежелательные продукты деления урана, которые перешли в элюат совместно с молибденом, в то время как сам молибден в щелочной среде на этом сорбенте не задерживается. Таким образом, устройство для очистки от йода также выполняет функцию первичной очистки препарата молибдена от примесей, что положительно сказывается на чистоте конечного продукта и позволяет упростить последующие операции тонкой очистки препарата молибдена-99.

Подкисление элюата молибдена, прошедшего через средство для очистки от йода, позволяет удалить остатки йода, которые переходят в газовую форму при кипячении раствора в кислой форме, чего не происходит при выпаривании щелочного раствора. Данный признак позволяет значительно повысить эффективность очистки конечного продукта от йода.

Выполнение сорбционной системы в виде двух контуров и средства перемещения сорбционной колонки между ними дает устройству два преимущества: во-первых, появляется возможность расположения реакторного блока и участка тонкой очистки на различных площадках, что увеличивает вариативность реализации комплекса по производству молибдена-99; во-вторых, исключается вероятность загрязнения топливного раствора реагентами, использующимися при десорбции молибдена и обработке сорбционной колонки, что повышает безопасность ядерной установки и упрощает процесс нормализации топлива.

Возможность введения третьего контура в сорбционную систему позволяет проводить удаление с сорбционной колонки продуктов деления урана, оставшихся на ней после десорбции молибдена, что упростит процедуру обращения с отработанными сорбционными колонками и, как следствие, снизит себестоимость работы комплекса. В одном из вариантов реализации удаление продуктов деления с сорбционной колонки можно проводить во втором контуре, при этом перенаправление потоков элюата молибдена-99 в средство очистки от йода и обмывочных растворов в баки для жидких радиоактивных растворов осуществляется с помощью переключающего устройства.

На рисунке представлена схема заявляемого устройства для осуществления заявляемого способа (сорбционная колонка находится в гнезде контура сорбции).

На представленной схеме введены следующие обозначения:

1 - растворный реактор;

2 - дозирующее средство для подачи в сорбционную колонку топливного раствора;

3 - сорбционная система;

4 - гнездо контура сорбции;

5 - сорбционная колонка;

6 - гнездо контура десорбции;

7 - средство перемещения колонки;

8 - средство для подачи в сорбционную колонку реагентов для десорбции Мо-99;

9 - средство для удаления йода из элюата;

10 - испаритель;

11 - средство для тонкой очистки элюата;

12 - приемная тара для очищенного продукта Мо-99.

Заявляемый способ осуществляется в следующей последовательности.

Для первичной наработки Мо-99 реактор 1 работает на мощности в течение промежутка времени, при котором достигается максимальная концентрация Мо-99 (скорость наработки молибдена сравняется со скоростью его распада). После прекращения цепной реакции топливо выдерживается в реакторе для охлаждения и распада короткоживущих радионуклидов. Для сокращения потерь молибдена-99 за счет распада время выдержки топлива должно быть минимально необходимым, при котором активность топливного раствора достигает значения, приемлемого для дальнейшей работы.

Затем с помощью дозирующего средства 2 раствор топлива порциями подается снизу вверх через сорбционную колонку 5, находящуюся в гнезде 4 контура сорбции сорбционной системы 3. Колонка 5 заполнена сорбентом, способным селективно поглощать молибден. Каждая порция топливного раствора, проходящая через сорбционную колонку 5, сразу же возвращается в корпус реактора 1, причем объем порции подбирается, исходя из условия полного исключения возможности возникновения ядерной аварии на всех этапах процесса сорбции (ядерно-безопасный объем). Так как топливо в процессе прохождения сорбционной колонки 5 охлаждается, забор топлива из корпуса реактора 1 осуществляется сверху, а возврат - снизу, для того, чтобы минимизировать перемешивающие конвективные потоки в топливном растворе.

Забор следующей порции топлива осуществляется только после завершения возврата предыдущей порции. Поскольку расход топливного раствора через сорбционную колонку 5 и, соответственно, скорость возврата порции топлива в корпус реактора 1 существенно ниже требуемой правилами НП-009-17 максимально допустимой скорости ввода реактивности 0,07 βэф, никаких потерь времени на формирование активной зоны не возникает, и длительность процесса сорбции определяется оптимальной скоростью прокачки топлива через сорбционную колонку 5.

Затем для удаления остатков топливного раствора сорбционную колонку 5 промывают дистиллированной водой. Предпочтителен вариант осуществления устройства, в котором для промывки используется конденсат из системы каталитической регенерации реактора (на рисунке не показано), накопившийся в процессе работы реактора. В этом случае промывочная вода возвращается в корпус реактора 1 для сохранения баланса воды и снижения потерь урана. В данном варианте упрощается процесс нормализации топлива, необходимый для стабильной и безопасной работы установки.

По окончании промывки водой сорбционная колонка 5 перемещается в гнездо 6 контура десорбции сорбционной системы 3 с помощью средства 7 перемещения колонки.

В гнезде 6 осуществляется десорбция Мо-99 с сорбента (на рисунке не показано). Для этого с помощью средства 8 подачи реагентов через сорбционную колонку 5, находящуюся в гнезде 6 контура десорбции, подается щелочной десорбирующий реагент, а полученный элюат по трубопроводу поступает в средство 9 для очистки от йода. Также в гнезде 6 контура десорбции возможна обработка сорбента в колонке 5 различными реагентами как до десорбции Мо-99 (смыв нежелательных продуктов деления), так и после (регенерация сорбента или подготовка его к утилизации).

В случае необходимости расположения реактора 1 и участка со средствами очистки 9 и 11 на больших расстояниях друг от друга, а также в других случаях, когда невозможно организовать передачу элюата молибдена по трубопроводу, можно разнести контуры сорбции и десорбции. В этом варианте контур сорбции расположен в реакторном блоке, а контур десорбции - на участке очистки, при этом перемещение сорбционной колонки 5 между ними осуществляется в транспортном контейнере любым подходящим для этого средством (автотранспорт, рельсовая тележка, конвейерный транспортер и т.п.)

Средство 9 для очистки элюата от йода содержит сорбирующий слой, например, тот же сорбент, что и в сорбционной колонке 5, с тем отличием, что на него нанесены соединения серебра для связывания йода в нерастворимые соединения. Преимущество использования сорбента на основе диоксида титана для нанесения на него соединений серебра вместо инертного носителя заключается в том, что на нем будут в значительной степени задерживаться нежелательные продукты деления урана, которые перешли в элюат совместно с молибденом, в то время как сам молибден в щелочной среде на этом сорбенте не задерживается. Таким образом, средство 9 для очистки от йода также выполняет функцию первичной очистки препарата молибдена от примесей.

Затем щелочной элюат, очищенный от большей части йода и частично очищенный от прочих продуктов деления урана, поступает в испаритель 10. Здесь щелочной раствор переводится в кислую форму и осуществляется его выпаривание досуха. Подкисление необходимо для удаления остатков йода, которые переходят в газовую форму при кипячении раствора в кислой форме. Сухой остаток, представляющий собой соль молибдена, растворяется в кислоте и подается в средство 11 для тонкой очистки элюата, которое является ионообменным устройством для выделения молибдена из раствора. Здесь могут применяться любые радиационно-стойкие ионообменные смолы, обладающие достаточной селективностью к молибдену и высоким коэффициентом распределения.

Очищенный продукт собирается в приемную тару 12.

Пример конкретного исполнения:

Выделение Мо-99 из водного раствора уранилсульфата с концентрацией урана 400 г/л при температуре Тр=50°C происходит на сорбенте сорбционной колонки при прокачке через нее раствора порциями по ~2 л. Большинство продуктов деления урана остается в растворе, в то время как молибден и некоторая часть других продуктов деления сорбируется на зернах сорбента сорбционной колонки, которая является частью сорбционной системы.

Для применения в качестве сорбента наиболее приемлемым является сорбент на основе диоксида титана марки «Термоксид-5М», выпускаемый ЗАО ПНФ "ТЕРМОКСИД". В качестве альтернативных вариантов может быть использован сорбент марки «Термоксид-52М» той же фирмы, либо другие сорбенты на основе неорганических материалов.

После прокачивания 15 порций (объем топливного раствора в реакторе 30 л) колонка промывается порцией дистиллированной воды, накопленной в конденсаторе системы каталитической регенерации при работе реактора на мощности. При этом остатки топливного раствора удаляются из пор сорбента и возвращаются в реактор. Таким образом, сохраняется первоначальный баланс воды и топлива в активной зоне реактора.

По окончании промывки водой внутренний объем сорбционной колонки продувается воздухом для удаления остатков влаги.

После завершения процесса сорбции колонка с помощью средства перемещения колонки, например, штанги-манипулятора, перемещается из гнезда сорбции в гнездо десорбции, в котором через сорбент последовательно прокачиваются следующие реагенты:

- дистиллированная вода для смачивания сорбента и заполнения межзеренного пространства сорбента жидкостью;

- азотная кислота с концентрацией 0,5 М для удаления растворимых в данных условиях продуктов деления урана с сорбента (при этом молибден остается на колонке);

- дистиллированная вода для промывки сорбента от остатков азотной кислоты;

- натриевая щелочь с концентрацией 0,2 М для десорбции молибдена-99 с сорбента (при этом некоторые продукты деления переходят в раствор совместно с молибденом);

- дистиллированная вода для промывки сорбента и трубопроводов и сбора остатков раствора с десорбированным молибденом-99.

Все пропускаемые через сорбент растворы из второго гнезда сорбционной установки поступают по трубопроводу в радиохимическую лабораторию, раствор десорбированного щелочью молибдена-99 собирается в емкость для дальнейшей очистки, промывные растворы отправляются на утилизацию жидких радиоактивных отходов.

После чего сорбционная колонка вновь продувается воздухом для осушения и отправляется в хранилище для выдержки, в течение которой распадаются короткоживущие продукты деления, оставшиеся на зернах сорбента.

Для снижения общего радиоактивного излучения от облученного раствора, а также соблюдения требований по чистоте продукта необходимо провести его очистку от радиоактивного йода, т.к. он вносит наибольший вклад в активность раствора среди всех продуктов деления, которые из топливного раствора переходят совместно с молибденом в элюат.

Для этого полученный на предыдущей операции раствор поступает в средство для удаления йода из элюата и пропускается через йодный фильтр, который представляет собой тот же сорбент, что и на операции выделения молибдена из топливного раствора, но содержащий соединения серебра для связывания йода в нерастворимые соединения. Применение в йодном фильтре того же сорбента вместо инертного носителя позволяет одновременно с удалением йода задержать часть других продуктов деления, снизив их содержание в рабочем растворе.

Очищенный от йода раствор поступает в испаритель, где щелочной раствор переводится в кислую форму и осуществляется его выпаривание и сушка. В сухом виде он поступает на стадию тонкой очистки.

Для получения конечного препарата, соответствующего заявленным требованиям, проводится финальная очистка, заключающаяся в выделении молибдена-99 из кислого раствора на неорганическом сорбенте.

На этой стадии могут применяться те же сорбенты, что и на стадии выделения молибдена из топливного раствора, однако для более качественной очистки молибдена необходимо проводить сорбцию из другого растворителя, например, азотной кислоты.

Для этого сухой препарат, полученный на предыдущей стадии, растворяется в выбранном растворителе и пропускается через сорбционную колонку, на которой происходит выделение молибдена. Затем проводится десорбция молибдена с получением конечного продукта, готового к упаковке в транспортный контейнер. При необходимости может быть произведена расфасовка раствора на отдельные порции.

К препарату молибдена, применяемому в радиофармацевтике в качестве промежуточного сырья для получения Тс-99m, предъявляют общепринятые требования, приведенные в таблице 1.

Заявляемый алгоритм проведения технологических операций по выделению и очистке Мо-99 был отработан на лабораторном макете установки со следующими параметрами:

- модельный топливный раствор - 370 г/л по U, 0,167 мг/л по Мо, рН=1,06, 30 мл;

- сорбент - «Термоксид-5М», 1 мл;

- промывочный раствор - дистиллированная вода, 15 мл;

- десорбирующий реагент - 0,2М NaOH, 30 мл;

- поглотитель йода - «Термоксид-5М», модифицированный серебром, 1 мл.

В результате отработки на лабораторном макете был получен препарат Мо-99, содержащий 90% от исходного Мо в форме раствора молибдата натрия, в котором присутствие радионуклидных примесей находится ниже предела обнаружения гамма-спектрометра, что позволяет прогнозировать работоспособность заявляемого способа и возможность достижения качества конечного продукта, соответствующего приведенному в таблице 1.

Совокупность признаков заявляемых способа и устройства позволяет получить указанный технический результат, а именно, повышение вероятности достижения чистоты конечного препарата Мо-99 в соответствии с предъявляемыми к нему требованиями в радиофармацевтике; снижение потерь Мо-99 за счет уменьшения затрат времени на выполнение операций; повышение радиационной безопасности персонала в процессе работы; увеличение вариативности реализации комплекса.


СПОСОБ ВЫДЕЛЕНИЯ МОЛИБДЕНА-99 ИЗ ТОПЛИВА РАСТВОРНОГО РЕАКТОРА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ВЫДЕЛЕНИЯ МОЛИБДЕНА-99 ИЗ ТОПЛИВА РАСТВОРНОГО РЕАКТОРА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 11-20 из 495.
13.01.2017
№217.015.6e76

Устройство формирования объемного разряда

Использование: для формирования объемного самостоятельного разряда в электроразрядных импульсно-периодических газовых лазерах. Сущность изобретения заключается в том, что устройство формирования объемного разряда включает разрядную камеру с рабочим газом, по меньшей мере, с одной электродной...
Тип: Изобретение
Номер охранного документа: 0002596908
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.7a2c

Устройство для аварийного перекрытия трубопроводов

Изобретение относится к запорным устройствам одноразового (взрывного) действия и предназначено для аварийной отсечки трубопроводов, через которые возможен выход в окружающую среду продуктов аварии. Устройство для аварийного перекрывания трубопроводов включает соединенный с трубопроводом корпус...
Тип: Изобретение
Номер охранного документа: 0002599213
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.808d

Устройство для охранной сигнализации

Изобретение относится к сигнальным устройствам и может быть использовано для охраны помещений и объектов различного назначения. Устройство для охранной сигнализации содержит корпус, подпружиненный относительно корпуса подвижный элемент, магнитоэлектрический генератор, вал которого во взведенном...
Тип: Изобретение
Номер охранного документа: 0002602227
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8237

Способ диагностики импульсного сильноточного релятивистского пучка электронов в тракте линейного индукционного ускорителя

Изобретение относится к области ускорительной техники, а именно к способам диагностики проводки импульсных сильноточных релятивистских пучков электронов (ИСРПЭ) в мощных линейных ускорителях. Способ диагностики импульсного сильноточного релятивистского пучка электронов в тракте линейного...
Тип: Изобретение
Номер охранного документа: 0002601772
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.82ae

Резонансный генератор импульсов

Использование: для питания импульсных источников света, искровых камер, лазеров и ускорителей. Сущность изобретения заключается в том, что первая ступень умножения состоит из первого накопительного конденсатора, первого дросселя, общего коммутатора и внешнего накопительного конденсатора,...
Тип: Изобретение
Номер охранного документа: 0002601510
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.866c

Способ гиперскоростного метания металлического элемента и кумулятивное метающее устройство для его осуществления

Группа изобретений относится к области экспериментальном физики. Способ гиперскоростного метания металлического элемента, закрепленного со стороны свободного торца осесимметричного трубчатого заряда взрывчатого вещества (ВВ), противоположного устройству инициирования заряда, включает...
Тип: Изобретение
Номер охранного документа: 0002603660
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.866e

Гольмиевый лазер для накачки параметрического генератора света

В гольмиевом лазере для накачки параметрического генератора света, включающем источник накачки и размещенные в двухпроходном оптическом резонаторе активный элемент, модулятор добротности, выполненный из материала с кристаллической структурой, новым является то, что модулятор добротности...
Тип: Изобретение
Номер охранного документа: 0002603336
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8675

Система термостабилизации приборного отсека космического аппарата

Изобретение относится к космической технике и может использоваться в системах терморегулирования приборных отсеков. Система термостабилизации приборного отсека космического аппарата включает радиатор-излучатель и тепловые трубы. Радиатор-излучатель выполнен в виде цилиндрического экрана с...
Тип: Изобретение
Номер охранного документа: 0002603690
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8678

Способ формирования гиперскоростного металлического компактного элемента и кумулятивное метающее устройство для его осуществления (варианты)

Изобретения относятся к области экспериментальной физики и могут быть использованы при исследовании высокоскоростного взаимодействия тел. Способ включает инициирование осесимметричного трубчатого заряда взрывчатого вещества (ВВ), формирование под воздействием маховской ударной волны...
Тип: Изобретение
Номер охранного документа: 0002603684
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.86da

Способ калибровки датчика, содержащего термочувствительный элемент

Изобретение относится к области измерительной техники и может быть использовано для калибровки датчиков, содержащих термочувствительные элементы (ТЧЭ), например болометра. В способе калибровки датчика, содержащего термочувствительный элемент, основанном на измерении изменения сопротивления ТЧЭ...
Тип: Изобретение
Номер охранного документа: 0002603338
Дата охранного документа: 27.11.2016
Показаны записи 11-20 из 31.
27.12.2014
№216.013.1399

Чехол для размещения и хранения отработавших тепловыделяющих сборок реактора рбмк-1000

Изобретение относится к ядерной технике, а именно к дистанционирующим устройствам, в которых размещаются изделия с установленными в них разделанными на пучки отработавшими топливными элементами (ПТ) реактора РБМК-1000 во время их транспортирования и хранения в контейнерах. Чехол предназначен...
Тип: Изобретение
Номер охранного документа: 0002536441
Дата охранного документа: 27.12.2014
10.04.2015
№216.013.36d8

Контейнер для транспортировки отработавшего ядерного топлива реактора рбмк-1000

Изобретение относится к транспортированию, выгрузке и размещению пучков тепловыделяющих элементов реактора РБМК-1000 в пеналах сухого хранилища. Контейнер содержит корпус, в котором размещен чехол, и защитную крышку. В чехле на нижней диафрагме установлены гнезда с возможностью размещения в них...
Тип: Изобретение
Номер охранного документа: 0002545528
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3d83

Многомодульный генератор высоковольтных импульсов мультитераваттной мощности

Изобретение относится к средствам систем энергоснабжения установок для исследований в различных областях физики высоких плотностей энергии. Технический результат заключается в уменьшении разброса времени срабатывания модулей мультитераваттного генератора. В устройстве система формирования...
Тип: Изобретение
Номер охранного документа: 0002547235
Дата охранного документа: 10.04.2015
10.08.2015
№216.013.69f9

Чехол контейнера для транспортировки отработавшего ядерного топлива реактора рбмк-1000

Изобретение относится к ядерной технике, в частности к транспортированию, выгрузке и размещению пучков тепловыделяющих элементов реактора РБМК-1000 в пеналах сухого хранилища. Чехол контейнера содержит установленные на нижней диафрагме центральную трубу, трубчатые элементы (гнезда) для выемных...
Тип: Изобретение
Номер охранного документа: 0002558682
Дата охранного документа: 10.08.2015
13.01.2017
№217.015.7d65

Способ подготовки твердой фазы жидких радиоактивных отходов к захоронению

Изобретение относится к области охраны окружающей среды, а точнее к области переработки жидких радиоактивных отходов (ЖРО) к захоронению. Способ подготовки твердой фазы жидких радиоактивных отходов к захоронению включает разделение жидких радиоактивных отходов на жидкую и твердую фазы. Твердую...
Тип: Изобретение
Номер охранного документа: 0002600940
Дата охранного документа: 27.10.2016
25.08.2017
№217.015.afe7

Контейнер для хранения и транспортирования отработавших тепловыделяющих сборок и чехол для их размещения

Изобретение относится к контейнерам и чехлам, предназначенным для транспортирования и хранения отработавшего ядерного топлива. Контейнер содержит металлический корпус, концентрично закрепленные на комингсе цилиндрические обечайки. Между вкладышами и наружной обечайкой размещены цилиндрические...
Тип: Изобретение
Номер охранного документа: 0002611057
Дата охранного документа: 21.02.2017
26.08.2017
№217.015.e4a7

Система разведки наземных объектов и целеуказания

Система разведки наземных объектов и целеуказания содержит беспилотный летательный аппарат вертолетного типа, подвесной контейнер с оборудованием, наземную аппаратуру управления. Подвесной контейнер содержит блок датчиков, устройство информационно-командной радиолинии, радионавигационное...
Тип: Изобретение
Номер охранного документа: 0002625691
Дата охранного документа: 18.07.2017
19.01.2018
№218.016.02af

Комплекс ядерных растворных реакторов

Изобретение относится к комплексу ядерных растворных реакторов. В данном комплексе предусмотрено одновременное применение трех технологических петель: для ускорения сорбции и десорбции топливного раствора в трех сорбционных колонках. Порядок ускоренной выгрузки нуклидного продукта может...
Тип: Изобретение
Номер охранного документа: 0002630259
Дата охранного документа: 06.09.2017
10.05.2018
№218.016.42a1

Способ определения электроанатомического субстрата при контактном картировании высокой плотности эндокардиальной поверхности левого предсердия для стратификации риска рецидива фибрилляции предсердий после циркулярной изоляции легочных вен у пациентов с пароксизмальной и персистирующей фибрилляцией предсердий

Изобретение относится к медицине, в частности к кардиологии, интервенционной аритмологии и кардиохирургии. Способ определения электроанатомического субстрата при контактном картировании высокой плотности эндокардиальной поверхности левого предсердия для стратификации риска рецидива фибрилляции...
Тип: Изобретение
Номер охранного документа: 0002649506
Дата охранного документа: 03.04.2018
02.02.2019
№219.016.b653

Комбикорм для кур-несушек

Изобретение относится к сельскому хозяйству и может быть использовано в кормлении кур-несушек. Комбикорм для кур-несушек содержит кукурузу желтую дробленую, пшеницу яровую дробленую, ячмень яровой дробленый, жмых подсолнечный, нут кормовой сорта Приво 1, шрот соевый, масло подсолнечное, рыбную...
Тип: Изобретение
Номер охранного документа: 0002678754
Дата охранного документа: 31.01.2019
+ добавить свой РИД