×
19.03.2020
220.018.0dd8

Устройство и способ формирования пучков многозарядных ионов

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области ускорительной техники и может быть использовано для формирования пучков (потоков) низкоэнергетических двух- и трехзарядных ионов щелочноземельных и редкоземельных металлов в установках для ионной имплантации и литографии, микрозондового анализа, в ионно-лучевых приборах для модификации поверхности, а также при разработке квантовых компьютеров и атомных часов. Технический результат - повышение эффективности работы источника ионов за счет генерации ионных пучков с заданной зарядностью и малым пространственным и энергетическим «размытием», что позволяет создать компактную модульную конструкцию источника, не требующую использования сложного и дорогостоящего масс-сепаратора. Устройство содержит съемный эмиттерный узел, состоящий из цилиндрического основания, выполняющего роль катодного электрода и изготовленного из металла с хорошей электро- и теплопроводностью, например меди, с плоскими торцами, на один из которых последовательно нанесены тонкая пленка рабочего вещества - щелочноземельного или редкоземельного металла, тонкая пленка твердого электролита на основе Na-β''-AlO керамики, в котором ионы Na замещаются двух- или трехвалентными подвижными ионами рабочего вещества, и тонкая пленка пористого проводящего материала, например углерода, выполняющего роль анодного электрода, и омический нагреватель, расположенный с другого торца твердотельного резервуара. Cпособ формирования пучков многозарядных ионов состоит в образовании двухзарядных ионов щелочноземельных металлов или трехзарядных ионов редкоземельных металлов за счет окислительно-восстановительных реакций на границе «катодный электрод-твердый электролит» с последующим их быстрым транспортированием через твердый электролит, стимулированным нагревом до температуры ниже температуры плавления, полевого испарения, в вакуум, и ускорения внешним электрическим полем в пространстве между анодным электродом и входной диафрагмой устройства. 2 н.п. ф-лы, 1 ил.
Реферат Свернуть Развернуть

Изобретение относится к области ускорительной техники и может быть использовано для формирования пучков (потоков) низкоэнергетических двух- и трехзарядных ионов щелочноземельных и редкоземельных металлов в установках для ионной имплантации и литографии, микрозондового анализа, в ионно-лучевых приборах для модификации поверхности, а также при разработке квантовых компьютеров и атомных часов. Особенностью взаимодействия низкоэнергетических (0.1-10 кэВ) многозарядных ионов с поверхностью твердых тел является низкий уровень радиационных дефектов, что способствует созданию неглубоких (приповерхностных) р-n переходов, актуальных для современных микро- и наноэлектронных полупроводниковых приборов. Также за счет повышенной по сравнению с однозарядными ионами потенциальной энергии многозарядные ионы могут использоваться для селективного наноструктурирования поверхности [1].

Из существующего уровня техники известны устройства для формирования многозарядных ионов, построенные на базе электронно- и ионно-лучевых источников, плазменных и лазерно-плазменных генераторов, приборов с электронно-циклотронным резонансом [2-5]. Способом формирования многозарядных ионов в этих устройствах является многократная ионизация рабочего вещества в плазме различной плотности и температуры, создаваемой за счет воздействия на рабочее вещество в твердом, паро- или газообразном состоянии электронными и ионными пучками, лазерным излучением. Недостатком подобных технических решений является широкий спектр зарядовых и энергетических состояний формируемых ионов. Для выделения ионов с заданным электрическим зарядом (зарядностью) и энергией используются масс-энергосепараторы, что усложняет конструкцию, повышает габариты и увеличивает стоимость таких устройств. Кроме того, вышеперечисленные устройства как правило работают при энергиях ионных пучков свыше 100 кэВ, что необходимо для хорошей фокусировки ионных пучков, но приводит к повышенному уровню радиационных дефектов в приповерхностных слоях облучаемых материалов.

Известно устройство для формирования низкоэнергетических пучков многозарядных ионов переходных и редкоземельных металлов, в котором ионы с зарядностью до 6+ создаются за счет испарения и ионизации рабочего вещества электронным пучком [6]. Устройство содержит накаливаемый катод-источник электронов, анод-резервуар рабочего вещества и электроды для формирования бомбардирующего электронного пучка, экстракции и фокусировки ионного пучка. В состав устройства входят блок питания катода и источники ускоряющего напряжения для электронов и ионов. Для выделения ионов с заданной отношением массы к заряду используется магнитный масс-спектрометр. Недостатком прототипа является присутствие в сформированном пучке ионов с различной зарядностью и разными продольными и поперечными скоростями (для каждой зарядности), что приводит к пространственному и энергетическому «размытию» пучка.

Задача предлагаемого изобретения состоит в создании компактного твердотельного источника ионов щелочноземельных и редкоземельных металлов, позволяющего генерировать пучок ионов заданной зарядности с меньшим пространственным и энергетическим «размытием», чем у известного прототипа, за счет физических процессов, протекающий в суперионных проводниках (твердых электролитах с быстрым ионным транспортом) без использования плазменного или электронно-лучевого ионизатора и масс-сепаратора сформированного пучка.

Решение указанной задачи достигается тем, что устройство для формирования пучков многозарядных ионов содержит съемный эмиттерный узел, состоящий из цилиндрического основания, выполняющего роль катодного электрода и изготовленного из металла с хорошей электро- и теплопроводностью, например, меди, с плоскими торцами, на один из которых последовательно нанесены тонкая пленка рабочего вещества - щелочноземельного или редкоземельного металла, тонкая пленка твердого электролита на основе Na-β''-Al2O3 керамики, в котором ионы Na+ замещаются двух- или трехвалентными подвижными ионами рабочего вещества, и тонкая пленка пористого проводящего материала, например, углерода, выполняющего роль анодного электрода, и омический нагреватель, расположенный с другого торца твердотельного резервуара. При этом способ формирования пучков многозарядных ионов состоит в образовании двухзарядных ионов щелочноземельных металлов или трехзарядных ионов редкоземельных металлов за счет окислительно-восстановительных реакций на границе «катодный электрод-твердый электролит» с последующим их быстрым транспортом через твердый электролит, стимулированном нагревом до температуры ниже температуры плавления, полевого испарения в вакуум и ускорения внешним электрическим полем в пространстве между анодным электродом и входной диафрагмой устройства.

Техническим результатом, обеспечиваемым приведенной совокупностью признаков, является повышение эффективности работы источника ионов за счет генерации ионов с заданной зарядностью и малым пространственным и энергетическим «размытием», что позволяет создать компактную модульную конструкцию источника, не требующую использования сложного и дорогостоящего масс-сепаратора.

Сущность технического решения поясняется фиг. 1, на которой приведена схема изобретения - устройства для формирования пучков (потоков) низкоэнергетических двух- и трехзарядных ионов щелочноземельных и редкоземельных металлов.

Изобретение содержит цилиндрическое основание 1, изготовленное из металла с хорошей электро- и теплопроводностью, например, меди. Основание выполняет роль катодного электрода; на его внешний торец методом магнетронного напыления наносится пленка рабочего вещества 2 - щелочноземельного (например, Sr или Ва) или редкоземельного (например, Се или Eu) металла толщиной несколько мкм. Пленка является резервуаром рабочего вещества, ее толщина, как и диаметр основания, на которое она наносится, не оказывают принципиального влияния на работу устройства, но определяют запас рабочего вещества и величину ионного тока. На поверхность пленки-резервуара методом импульсного лазерного напыления наносится тонкая пленка (1-1.5 мкм) твердого электролита 3. В качестве твердого электролита используются суперионный проводник на основе Na-β''-Al2O3 керамики [7-9], в котором ионы Na+ замещаются двух- или трехвалентными мобильными ионами щелочноземельного или редкоземельного металла (рабочего вещества). Далее на поверхность твердого электролита наносится тонкий слой (0.2-0.5 мкм) пористого проводящего материала 4, например, углерода, который выполняет роль анодного электрода и одновременно предохраняет твердый электролит от воздействия влаги и атмосферного воздуха. Цилиндрическое основание с пленкой твердого электролита и анодным электродом образуют съемный эмиттерный узел 5, который с внутреннего торца подогревается омическим нагревателем 6 до температуры ниже температуры плавления твердого электролита. Источник тока 7 используется для питания омического нагревателя, а источник напряжения 8 создает разность потенциалов между катодным и анодным электродами эмиттерного узла, которая определяет интенсивность формируемого ионного потока 9. Этот поток ускоряется разностью потенциалов между эмиттерным узлом и входной диафрагмой 10, находящейся под потенциалом земли, а затем фокусируется и отклоняется электростатической системой 11, состоящей в простейшем случае из одиночной линзы и отклоняющих X-Y пластин. Источником ускоряющего напряжения для потока эмитированных ионов служит высоковольтный блок питания 12, который задает кинетическую энергию ионов. Питание электростатической системы фокусировки и отклонения ионного потока осуществляется блоком 13. Устройство помещается в вакуумную камеру и откачивается до давления остаточных газов не хуже 10-4 Па.

Способ формирования пучков многозарядных ионов осуществляется следующим образом. Между катодным и анодным электродами эмиттерного узла подается ускоряющее напряжение порядка 100-500 В, что соответствует напряженности электрического поля внутри пленки твердого электролита порядка (1-5)×106 В/см при толщине этой пленки ~1 мкм. Под действием приложенного электрического поля атомы металла, из которого изготовлен резервуар, в результате окислительно-восстановительных реакций на границе «катодный электрод-твердый электролит» образуют положительные двухзарядные (например, Sr2+ или Ва2+ в случае щелочноземельных металлов) или трехзарядные (например, Се3+ или Eu3+ в случае редкоземельных металлов) подвижные ионы. Эти ионы перемещаются по туннелям быстрого ионного транспорта внутри электролита к границе «твердый электролит - анодный электрод», испаряются в вакуум и ускоряются внешним электрическим полем в пространстве между анодным электродом и входной диафрагмой. На подобном принципе работает твердотельный источник однозарядных положительных ионов серебра с твердым электролитом [10, 11]. Наличие двух источников электрического напряжения позволяет осуществлять независимую регулировку интенсивности и кинетической энергии потока эмитированных ионов. Нагрев источника до температуры 150-200°С стимулирует миграцию ионов рабочего вещества через электролит, что улучшает эффективность работы источника. Уменьшение концентрации ионов в пленке твердого электролита из-за их эмиссии в вакуум компенсируется доставкой этих ионов из резервуара, и в идеальном случае источник может работать до тех пор, пока не израсходуется весь объем резервуара.

Эффективность работы заявленного устройства выше, чем у известных технических решений за счет того, что способ формирования многозарядных ионов в таком устройстве базируется на физических процессах образования мобильных ионов на границе «резервуар-твердый электролит» и их быстрого транспорта в пленке твердого электролита, которые определяют зарядность, пространственный и энергетический разброс сформированного ионного потока. Заявленное устройство отличается компактным исполнением, так оно работает без плазменного или электронно-лучевого ионизатора и масс-сепаратора сформированного пучка, а переход от одного типа ионов к другому осуществляется простой заменой съемного эмиттерного узла.

ЛИТЕРАТУРА

1. Aumayr F., Winter H. // e-J. Surface Science and Nanotechnology. 2003. V. 1. P. 171.

2. Симонов В.В., Корнилов Л.А., Шашелев А.В., Шокин Е.В. Оборудование для ионной имплантации. М.: Радио и связь, 1988. 184 с.

3. Форрестер А.Т. Интенсивные ионные пучки. Перевод с англ. Под редакцией Н.Н. Семашко. М.: Мир, 1992. 358 с.

4. Elsayed-Ali Н.Е., Korwin M.L. Patent WO 2013106759 // Priority 18.07. 2013.

5. Турчин В.И. Патент на изобретение RU 2538764 // Опубл. 20.07. 2014. Бюл. №1.

6. Evtukhov R.N., Belykh S.F., Redina I.V. // Rev. Sci. Instrum. 1992. V. 63 (4). P. 2463.

7. Carrillo-Cabrera W., Thomas J.O., Farrington G.C. // Solid State Ionics 1983. V. 9-10. P. 245.

8. Dunn B. // Solid State Ionics 1986. V. 19. P. 31.

9. Иванов-Шиц A.К., Мурин И.В. Ионика твердого тела. Т. 1. СПб.: СПбГУ, 2000. 616 с.

10. Tolstogouzov A., Aguas Н., Ayouchi R., Belykh S.F., Fernandes F., Gololobov G.P., Moutinho A.M.C., Schwarz R., Suvorov D.V., Teodoro O.M.N.D. // Vacuum. 2016. V. 131. P. 252.

11. Толстогузов А.Б., Дягилев А.А. Патент на полезную модель RU 165683 // Опубл. 27.10.2016. Бюл. №30.


Устройство и способ формирования пучков многозарядных ионов
Устройство и способ формирования пучков многозарядных ионов
Источник поступления информации: Роспатент

Показаны записи 1-10 из 88.
25.08.2017
№217.015.aafb

Способ восстановления изображений в двухканальной сканирующей системе

Изобретение относится к пассивным двухканальным сканирующим системам наблюдения с двумя приемниками, работающими в оптическом, инфракрасном или миллиметровом диапазонах длин волн. Технический результат направлен на восстановление пропущенных строк и столбцов искомой матрицы изображения с целью...
Тип: Изобретение
Номер охранного документа: 0002612323
Дата охранного документа: 07.03.2017
25.08.2017
№217.015.ac0f

Способ формирования изображений объектов в двухканальной радиометрической системе

Изобретение относится к пассивным системам радионаблюдений за объектами с помощью двухканального сканирующего радиометра, работающего в миллиметровом диапазоне длин волн, и может быть использовано также в оптических системах инфракрасного диапазона. Технический результат направлен на повышение...
Тип: Изобретение
Номер охранного документа: 0002612193
Дата охранного документа: 03.03.2017
25.08.2017
№217.015.c638

Ионный источник для электростатического ракетного двигателя

Изобретение относится к области электростатических ионных двигателей. Ионный источник содержит ионные и электронные эмиттеры, изготовленные из серебра высокой степени чистоты в виде конусов или пирамид, выполняющих роль резервуаров рабочего вещества, причем поверхность ионных эмиттеров покрыта...
Тип: Изобретение
Номер охранного документа: 0002618761
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.d0ba

Способ увеличения скорости электрического ветра и устройство для его осуществления

Изобретение относится к системам продувки и очистки воздуха от пылевых, бактериальных и химических загрязнений в бытовых помещениях, производственных цехах, медицинских кабинетах, овощехранилищах и т.д. Способ увеличения скорости электрического ветра, заключающийся в подаче постоянного...
Тип: Изобретение
Номер охранного документа: 0002621386
Дата охранного документа: 05.06.2017
26.08.2017
№217.015.de01

Автокомпенсатор доплеровских сдвигов фазы помех

Изобретение относится к радиолокационной технике и предназначено для автокомпенсации доплеровских сдвигов фазы пассивных помех. Предложен автокомпенсатор доплеровских сдвигов фазы помех, содержащий блок оценивания фазы, первый блок задержки, первый и второй блоки комплексного умножения, блок...
Тип: Изобретение
Номер охранного документа: 0002624795
Дата охранного документа: 06.07.2017
26.08.2017
№217.015.de06

Способ обработки последовательности изображений для автоматического обнаружения танкера и оценивания его траекторных параметров при дозаправке в воздухе на фоне звездного неба

Изобретение относится к области цифровой обработки изображений и может быть использовано в бортовых системах технического зрения, предназначенных для дозаправки в воздухе летательных аппаратов, в том числе и беспилотных, методом штанга-конус на фоне звездного неба. Технический результат –...
Тип: Изобретение
Номер охранного документа: 0002624828
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.df5a

Способ определения знака разности частот и устройство для его реализации

Изобретение относится к радиотехнике и может быть использовано в дискретных системах автоматики для получения информации о знаке разности частот двух импульсных колебаний. Технический результат - повышение быстродействия. Способ определения знака разности частот основан на анализе знака и...
Тип: Изобретение
Номер охранного документа: 0002625054
Дата охранного документа: 11.07.2017
26.08.2017
№217.015.df6a

Способ формирования периодических двуполярных колебаний с заданным фазовым сдвигом и устройство для его реализации

Изобретение относится к области измерительной техники и может быть использовано для формирования периодических колебаний с заданным фазовым сдвигом. Достигаемый технический результат - реализация регулируемого фазового сдвига двуполярных колебаний одинаковых частот в диапазоне [0, 2] с...
Тип: Изобретение
Номер охранного документа: 0002625047
Дата охранного документа: 11.07.2017
26.08.2017
№217.015.e15e

Позиционно-чувствительный датчик для измерения амплитудно-временных параметров и профиля импульсного электронного пучка

Изобретение относится к датчикам для измерения тока электронного пучка и может найти применение в исследовательских и промышленных установках. Позиционно-чувствительный датчик для измерения амплитудно-временных параметров и профиля плотности тока импульсного электронного пучка содержит нижнюю...
Тип: Изобретение
Номер охранного документа: 0002625601
Дата охранного документа: 17.07.2017
26.08.2017
№217.015.edba

Вычислитель для компенсации помех

Изобретение относится к вычислительной технике и предназначено для выделения сигналов движущихся целей на фоне пассивных помех при групповой перестройке несущей частоты зондирующих импульсов. Технический результат заключается в повышении эффективности выделения сигналов движущихся целей....
Тип: Изобретение
Номер охранного документа: 0002628907
Дата охранного документа: 22.08.2017
Показаны записи 1-10 из 28.
20.08.2013
№216.012.619c

Электростатический энергоанализатор заряженных частиц

Изобретение относится к области энергетического анализа потоков заряженных частиц, возбуждаемых первичными электронами с поверхности твердого тела. Сущность изобретения заключается в том, что электростатический энергоанализатор заряженных частиц содержит коаксиально размещенные внутренний и...
Тип: Изобретение
Номер охранного документа: 0002490620
Дата охранного документа: 20.08.2013
10.03.2014
№216.012.aa40

Способ определения зарядового состояния атомов в субнанослойных пленках на поверхности металлов и полупроводников

Использование: для определения зарядового состояния атомов в субнанослойных пленках на поверхности металлов и полупроводников. Сущность: заключается в том, что поверхность анализируемого объекта облучают ионами инертных газов низких энергий, регистрируют энергетический спектр отраженных ионов...
Тип: Изобретение
Номер охранного документа: 0002509299
Дата охранного документа: 10.03.2014
10.03.2014
№216.012.aa42

Способ определения кристаллической фазы в аморфных пленках наноразмерной толщины

Использование: для определения кристаллической фазы в аморфных пленках наноразмерной толщины. Сущность заключается в том, что выполняют бомбардировку поверхности пучком ионов и регистрацию интенсивности отраженных ионов, при этом анализируемую поверхность бомбардируют ионами инертного газа с...
Тип: Изобретение
Номер охранного документа: 0002509301
Дата охранного документа: 10.03.2014
20.04.2014
№216.012.bb3e

Способ изготовления фотоэмиттера с отрицательным электронным сродством для инфракрасного диапазона

Изобретение относится к области эмиссионной и наноэлектроники и может быть использовано в разработке и в технологии производства фотоэлектронных преобразователей второго поколения, эмиттеров с отрицательным электронным сродством для приборов ИК-диапазона. Способ изготовления фотоэмиттера с...
Тип: Изобретение
Номер охранного документа: 0002513662
Дата охранного документа: 20.04.2014
10.11.2014
№216.013.04a8

Способ измерения контактной разности потенциалов

Изобретение относится измерительной технике и представляет собой способ измерения контактной разности потенциалов между проводящими материалами (металлами, полупроводниками, электролитами) и может быть использовано для измерения электродных потенциалов, работы выхода поверхности, для контроля...
Тип: Изобретение
Номер охранного документа: 0002532590
Дата охранного документа: 10.11.2014
27.11.2014
№216.013.0b16

Способ определения атомного состава активных нанопримесей в жидкостях

Изобретение относится к области нано-, микроэлектроники и аналитического приборостроения и может быть использовано в разработке технологии и в производстве изделий микро- и наноэлектроники, а также в производстве чистых материалов и для диагностики и контроля жидких технологических сред. Способ...
Тип: Изобретение
Номер охранного документа: 0002534246
Дата охранного документа: 27.11.2014
10.12.2014
№216.013.0ee3

Способ определения длительности времени плазмохимического травления поверхности полупроводниковых пластин для субмикронных технологий

Изобретение относится к области микроэлектроники. Технический результат направлен на повышение достоверности определения типа и количества загрязняющих примесей на поверхности полупроводниковых пластин после плазмохимического травления и определения оптимального значения длительности времени...
Тип: Изобретение
Номер охранного документа: 0002535228
Дата охранного документа: 10.12.2014
27.06.2015
№216.013.5829

Способ преобразования энергии ионизованной среды в электрическую энергию

Изобретение относится к способам получения электрической энергии и может быть использовано для создания морской электростанции по преобразованию потенциальной энергии ионов морской воды в энергию электрического тока, а также по созданию преобразователей энергии ионов плазмы в электрическую...
Тип: Изобретение
Номер охранного документа: 0002554110
Дата охранного документа: 27.06.2015
12.01.2017
№217.015.61d2

Способ рафинирования металлургического кремния

Изобретение относится к области очистки кремния, пригодного для изготовления солнечных элементов, полупроводниковых приборов, МЭМС устройств, а также использования в химической и фармацевтической промышленности. Способ рафинировании кремния, находящегося в твердой фазе, производят в графитовом...
Тип: Изобретение
Номер охранного документа: 0002588627
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.8c66

Способ и устройство определения температурных характеристик антиэмиссионных материалов

Изобретение относится к электронной промышленности, области тонкопленочных технологий, нанесения и контроля пленочных покрытий с заданными характеристиками для эмиссионной электроники. Технический результат - повышение достоверности и информативности измерений. Определяется содержание атомов...
Тип: Изобретение
Номер охранного документа: 0002604836
Дата охранного документа: 10.12.2016
+ добавить свой РИД