×
19.03.2020
220.018.0d70

Результат интеллектуальной деятельности: ТРУБЧАТЫЙ ВАЛ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ, ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ И СПОСОБ ОБНАРУЖЕНИЯ ПРИСУТСТВИЯ МАСЛА ВНУТРИ ТРУБЧАТОГО ВАЛА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ

Вид РИД

Изобретение

№ охранного документа
0002716959
Дата охранного документа
17.03.2020
Аннотация: Трубчатый вал газотурбинного двигателя содержит на внутренней поверхности вала углубление. Углубление содержит, по меньшей мере, одну выемку, выполненную на поверхности вала, центрованной по оси вращения вала. Другое изобретение относится к газотурбинному двигателю, содержащему указанный выше вал. При обнаружении присутствия масла внутри указанного выше трубчатого вала газотурбинного двигателя на уровне углубления во внутренней поверхности вала измеряют значения дисбаланса вала, синхронного с режимом вращения вала. Затем подают сигнал, когда разность между значением дисбаланса и значением дисбаланса только самого вала превышает заданный порог, соответствующий возможному присутствию масла, захваченного, по меньшей мере, в одну выемку и создающего дисбаланс, синхронный с режимом вала. Группа изобретений позволяет обеспечить возможность обнаружения скопления масла в выемках вала путем обнаружения, создаваемого маслом дисбаланса. 3 н. и 12 з.п. ф-лы, 13 ил.

Область техники

Настоящее изобретение относится к области газотурбинных двигателей и, в частности, к области валов, передающих мощность между различными роторами газотурбинного двигателя.

Уровень техники

Как правило, если газотурбинный двигатель является двухконтурным, как схематично показано на фиг. 1, он содержит от входа к выходу в направлении потока газов вентилятор 1, одну или несколько ступеней компрессора низкого давления 2, затем высокого давления 3, камеру 4 сгорания, одну или несколько ступеней турбины высокого давления 5, затем низкого давления 6, и сопло для выпуска газов. Роторы, вращающиеся вокруг главной оси LL газотурбинного двигателя, которые могут быть связаны между собой через различных системы трансмиссии и зубчатых передач, соответствуют эти различным элементам.

В частности, приведение во вращение компрессора 2 низкого давления турбиной 6 низкого давления происходит через соединение между валами 7 и 8, которые соответственно с ними связаны. Таким образом, между этими двумя валами необходимо соединение для передачи крутящего момента от турбины 6 низкого давления к компрессору 2 низкого давления.

Как известно и как показано на фиг. 2, передачу этого крутящего момента обеспечивают шлицы 9, распределенные на периферии вблизи конца 10 вала 8 турбины 6 низкого давления, который заходит в вал 7 компрессора 2 низкого давления.

Кроме того, вал 8 турбины низкого давления обычно имеет полую трубчатую форму вблизи этого конца 10. Как известно также, во внутренней периферии вала 8 напротив шлиц 9 выполнено углубление 11, и его форма оптимизирована таким образом, чтобы свести к минимуму массу вала 8 и одновременно обеспечивать механическую прочность при прохождении крутящего момента.

При такой технологии вал 8 турбины низкого давления содержит также радиально внутреннюю трубчатую деталь 12 на уровне конца 10. Эта внутренняя трубчатая деталь 12 предназначена, в частности, для закрывания углубления 11 и образует вместе с валом 8 кольцевую полость 13 на уровне углубления 11.

Как правило, герметичность этой кольцевой полости 13 обеспечивают при помощи кольцевых прокладок 14, установленных на ее концах между валом 8 и трубчатой деталью 12. Действительно, конец 10 вала 8 обдувается воздушным потоком 15, поступающим из других частей газотурбинного двигателя. Этот воздух очищен от масла, но все же содержит незначительно количество масла. Эта технология позволяет избегать скапливания масла в углублении 11 за счет центробежного эффекта, что может привести к усталости конструкции вала 8 из-за явлений дисбаланса.

Хотя этого обычно не происходит, при проектировании газотурбинного двигателя необходимо учитывать риск скапливания масла в углублении 11, если герметичность одной из прокладок 14 оказывается нарушенной. В этом случае появляющийся масляный объем прижимается к наружным стенкам углубления 11 под действием центробежной силы и перемещается скольжением во вращающемся валу 8. Этот объем не вращается с такой же скоростью, как и вал. Например, на фиг. 3 показан эффект максимального дисбаланса на 180°, где объем масла 16 скапливается только с одной стороны кольцевой полости 12, то есть внизу на фигуре, оставляя пустой диаметрально противоположную часть кольцевой полости 13.

Как показывает опыт, частоты вибраций, создаваемых таким масляным объемом 16 на конструкциях, появляются примерно при 90% режима вращения вала 8. Эти вибрации являются несинхронными и не могут быть обнаружены датчиками. По этой причине вал 8 турбины 6 низкого давления является местом чередующихся напряжений, которые оказывают на него воздействие усталости в соответствии с высокочастотными циклами.

В документе FR-А1-2 993 311 описано устройство, позволяющее удалять масло, присутствующее в полости, образованной на уровне соединения между двумя валами, путем выполнения отверстий в области внутренней стенки, наиболее удаленной от оси. Однако, учитывая свою форму, углубление 11 может захватывать масло, которое не может быть перемещено центробежными силами к отверстиям удаления. Кроме того, эти отверстия удаления нельзя выполнить в углублении 11, так как оно находится напротив соединительных шлиц 9.

Поэтому существует потребность в обнаружении присутствия масла в случае нарушения герметичности полости, соответствующей углублению, выполненному на таком валу передачи мощности, между двумя валами. Задачей настоящего изобретения является удовлетворение этой потребности.

Сущность изобретения

В связи с этим объектом изобретения является трубчатый вал газотурбинного двигателя, содержащий на внутренней периферии углубление, отличающийся тем, что упомянутое углубление содержит по меньшей мере одну выемку, выполненную в поверхности, центрованной по оси вращения вала.

В данном случае под углублением следует понимать впадину, сформированную на всей окружности вала вращения по существу в цилиндрическом участке внутренней периферии трубчатого вала.

Таким образом, когда упомянутый вал приводится во вращение в газотурбинном двигателе, если масло поступает на уровне углубления, оно начинает скапливаться за счет центробежного эффекта в выемке или выемках, которые образуют радиально наиболее удаленную часть стенки углубления. Масло, задерживающееся в этих выемках, вращается с такой же скоростью, что и вал, и можно обнаружить создаваемый этим маслом дисбаланс.

Кроме того, как правило, углубление такого типа обычно находится вблизи конца вала, что усиливает величину дисбаланса и облегчает его обнаружение. Кроме того, в этом случае выполнение заявленного вала газотурбинного двигателя включает в себя изменение его внутренней стенки вблизи конца. Это можно осуществлять до сборки с внутренней трубчатой деталью, перекрывающей углубление, не изменяя ни эту деталь, ни соединения с этой деталью. Таким образом, речь идет об относительно простом и легко реализуемом изменении, вносимом при проектировании вала газотурбинного двигателя.

Предпочтительно упомянутое углубление содержит часть, в которой упомянутая по меньшей мере одна выемка выполнена на поверхности, образуемой при вращении вокруг оси вращения кривой, заключенной в меридиональной плоскости.

Таким образом, получают углубление, в котором масло могло бы распределяться без предопределения по причине симметрии вращения геометрии без наличия ячеек.

Предпочтительно вал газотурбинного двигателя содержит по меньшей мере две выемки, распределенные по окружности вокруг оси вращения.

Предпочтительно выемки равномерно распределены вокруг упомянутой оси вращения.

Предпочтительно выемки являются симметричными относительно упомянутой оси вращения или относительно плоскости, проходящей через упомянутую ось вращения.

Число ячеек позволяет изменять частоту и интенсивность дисбаланса, создаваемого присутствием количества масла в полости. Геометрия и число ячеек определяют объем масла, который будет задерживаться. Эти параметры регулируют в зависимости от значения дисбаланса, который необходимо обнаруживать.

Предпочтительно выемку или выемки выполняют посредством фрезерования или электроискровой обработки внутренней стенки вала.

Согласно другому варианту выполнения, выемка или выемки образованы деталями, образующими перегородки и проходящими по существу радиально от внутренней стенки вала. Детали, образующие перегородки, могут быть закреплены на внутренней стенке вала посредством пайки или сварки.

Предпочтительно трубчатый вал газотурбинного двигателя содержит средства соединения, расположенные на наружной периферии и выполненные с возможностью передачи крутящего момента на другой вал.

Предпочтительно углубление находится по существу напротив упомянутых средств соединения.

Когда упомянутый вал используют в газотурбинном двигателе для передачи крутящего момента, например, крутящего момента силовой турбины, изобретение позволяет обнаруживать возможное скопление в углублении, выполненном для целей механики, масла, проходящего через отверстие вала на уровне соединения между валами.

Упомянутые средства соединения могут представлять собой шлицы.

Объектом изобретения является также узел, содержащий такой вал газотурбинного двигателя и средства, герметично закрывающие упомянутое углубление, образуя полость вращения. Средства закрывания могут содержать полую трубчатую деталь, цилиндрическую на уровне углубления.

Кроме того, объектом изобретения является газотурбинный двигатель, содержащий вышеупомянутые вал или узел. В частности, он может соответствовать случаю, когда вал приводится во вращение турбиной низкого давления и вращает вал компрессора низкого давления.

Объектом изобретения является также способ обнаружения присутствия масла внутри вала газотурбинного двигателя на уровне углубления в его внутренней периферии, отличающийся тем, что в рамках способа используют описанный выше вал, и тем, что способ содержит этап измерения значения дисбаланса вала, синхронного с режимом вращения вала, и этап передачи тревожного сигнала, когда разность между упомянутым значением дисбаланса и значением дисбаланса только самого вала превышает определенный порог, что соответствует возможному присутствию масла, захваченного по меньшей мере в одну выемку и создающего дисбаланс, синхронный с режимом вала.

Краткое описание фигур

Настоящее изобретение и его другие особенности, отличительные признаки и преимущества будут более очевидны из нижеследующего описания не ограничительного примеры со ссылками на прилагаемые чертежи, на которых:

Фиг. 1 - схематичный вид архитектуры известного газотурбинного двигателя.

Фиг. 2 - вид в разрезе по меридиональной плоскости конца известного вала.

Фиг. 3 - вид в разрезе по меридиональной плоскости конца известного вала с масляным объемом.

Фиг. 4 - вид в разрезе по меридиональной плоскости конца заявленного вала.

Фиг. 5 - заявленный вал, рассеченный на две части по меридиональной плоскости, при этом трубчатая деталь удалена.

Фиг. 6A и 6B - вид в разрезе по плоскости ВВ фиг. 5 различных версий заявленного вала для первого варианта выполнения, полученного при помощи первого способа механической обработки.

Фиг. 7A и 7B - вид в разрезе по плоскости ВВ фиг. 5 различных версий заявленного вала для первого варианта выполнения, полученного при помощи второго способа механической обработки.

Фиг. 8A и 8B - вид в разрезе по плоскости ВВ фиг. 5 различных версий заявленного вала для третьего варианта выполнения.

Описание варианта выполнения

Как показано на фиг. 4, заявленный вал газотурбинного двигателя отличается от вала, показанного на фиг. 2, тем, что форма внутренней поверхности трубчатого вала 8 была изменена на уровне углубления 11.

Поверхность углубления 11 содержит часть, более близкую к оси вращения LL, образованную вращением кривой 11а в меридиональной плоскости, которое дает первую форму углубления на уровне шлиц 9. С другой стороны, она содержит по меньшей мере одну выемку 17, полученную в данном угловом секторе при соединении между этой первой поверхностью и линией 11b, следующей в меридиональной плоскости по точкам максимального радиуса в поверхности выемки 17.

На фиг. 5 показаны две выемки 17а, 17b, выполненные таким образом в углублении 11 на внутренней поверхности вала 8.

Поверхность выемки может следовать или не следовать линии 11b максимальных радиусов на определенном угловом смещении вокруг оси LL и может соединяться разными способами с поверхностью, которая следует образующей линии 11а. Число ячеек тоже может меняться. Это в определенной мере зависит от технологии, используемой для создания этих ячеек.

Согласно первому варианту выполнения, выемки 17а, 17b можно создавать в виде выемок во внутренней стенке вала 8.

Показанные на фиг. 6A и 6B выемки можно получить посредством фрезерования в стенке вала 8.

На фиг. 6A показан вал 8 в поперечном разрезе по плоскости ВВ, показанной на фиг. 4 и 5, где посредством фрезерования выполнены две выемки 17а, 17b. Здесь же показаны шлицы 9 на радиально наружном сечении вала 8. Наименьшая окружность отображает внутреннее сечение 18 вала 8 между концом 10 и углублением 11. Именно через это сечение можно вести инструменты для выполнения выемок во внутренней стенке вала 8 на уровне углубления 11.

Вторая окружность 19 ограничивает сечение внутренней стенки в углублении 11, соответствующее кривой 11а за пределами ячеек 17а, 17b. На фиг. 6A показаны две выемки 17а и 17b. В данном случае они являются симметричными на фигуре относительно горизонтальной плоскости. Радиус их сечения равномерно уменьшается между центральной частью с максимальным радиусом, соответствующим положению линии 11b на фиг. 4 в плоскости разреза, и концами, соединяющимися с минимальным сечением 19 в углублении 11. Они являются симметричными относительно вертикальной меридиональной плоскости. Таким образом, в данном случае углубление 11 со своими выемками 17а, 17b имеет симметрию порядка 2.

На фиг. 6A показаны различные положения сечения 20 фрезеровочного инструмента во время его введения через конец 10 вала 8 в углубление 11. На фигуре видно, что его вводят напротив центра каждой выемки 17а, 17b, после чего перемещают для снятия материала и создания соответствующей выемки. Эта процедура позволяют получать одинаковые формы для разных ячеек, каждый раз воспроизводя одинаковую последовательность команд для инструмента.

На фиг. 6B представлена версия, в которой посредством фрезерования выполняют три выемки 17а, 17b, 17с в стенке углубления 11 с первоначальным круглым сечением 19, соответствующим кривой 11а. Точно так же, фрезеровочный инструмент 20 устанавливают перед центром каждой выемки 17а, 17b, 17с в начале фрезерования каждой выемки. В данном случае все три выемки являются идентичными и отстоят друг от друга через равномерные промежутки, то есть углубление имеет симметрию порядка 3.

Согласно другому способу обработки, как показано на фиг.7A-7D, выемки, соответствующие выемкам, получены путем электроискровой обработки внутренней стенки 19, соответствующей кривой 11а на фиг. 4, вала 8 на уровне углубления 11.

На фиг. 7A в поперечном разрезе показан вал 8, в котором при помощи этого способа получены две симметричные выемки 17а, 17b. На фигуре показан электрод 21 инструмента в его конечном положении, когда завершено выполнение верхней выемки 17а. Как и в предыдущем варианте электрод 21 был введен внутрь вала 8 на уровне углубления 11 через конец 10 минимального поперечного сечения 18. В данном случае электрод 21 был введен через центр, затем поступательным движением перемещался к дну выемки 17а, следуя пути, показанному в виде заштрихованной поверхности, во время способа электроискровой обработки. На противоположной выемке 17b в разрезе видно, что она имеет форму следа электрода 21.

На фиг. 7B, 7C и 7D представлены версии, в которых электрод используют в трех, восьми или семи направлениях для создания такого же числа подобных и равномерно распределенных ячеек.

Фиг. 7C с восемью выемками иллюстрирует случай, когда, учитывая ширину электрода 21 и число ячеек 17а-17h, края ячеек соединяются. Таким образом, радиус минимального сечения 11а углубления 11 с выемками 17а-17h превышает радиус сечения 19 первоначального углубления 11.

В другой версии, не описанной в настоящей заявке, но доступной для специалиста в данной области, можно применить оба способа обработки для прямого создания углубления 11 с его выемками 17а-17h в зависимости от желаемой формы внутри вала 8, стенка которого должна быть цилиндрической, в виде предварительно выполненного углубления.

Согласно второму варианту выполнения, выемки можно получить путем заполнения пространства внутри углубления 11, первоначально выполненного в валу 8.

Как показано на фиг. 8A, две идентичные детали 22, имеющие поперечное сечение, соответствующее кольцевому сектору менее 180°, установлены симметрично справа и слева на внутренней стенке 23 первоначального углубления 11, соответствующей в данном случае положению линии 11b на уровне сечения ВВ поперечного разреза. Таким образом, вверху и внизу получают две выемки 17а, 17b, соответствующие угловым секторам, имеющим такую же толщину, как и угловые сектора деталей 22. Система имеет симметрию порядка 2.

В версии выполнения на внутренней стенке 23 первоначального углубления 11 в радиальном направлении устанавливают ряд относительно тонких перегородок 24. Эти перегородки 24, установленные через равномерные промежутки, образуют ряд ячеек 17а-17g с симметрией порядка 7 на фиг. 8B. Радиально внутренний конец этих перегородок 24 следует изменению кривой 11а с минимальным радиусом на фиг. 4. Эти перегородки 24 могут быть объединены между собой одной или несколькими обечайками 25 для обеспечения их механической прочности.

Эти детали 22 или перегородки 24 можно закрепить на внутренней стенке 23 вала 8 в углублении 11 посредством пайки или сварки.

Как видно из представленных примеров, вал 8 можно выполнить, не прибегая к изменению других деталей, в частности, внутренней трубчатой детали 12, выполненной в соответствии с известным решением. Затем, как в известном решении, можно произвести полную сборку вала, установив внутреннюю трубчатую деталь 12 в валу 8, оснащенном выемками 17 в углублении 11.

Изобретение было представлено с предпочтительным использованием двух ячеек для сохранения симметрии вала, когда масло отсутствует, однако можно предусмотреть выполнение только одной выемки, которая обязательно будет задерживать масло в соответствии с несимметричным вариантом.

Кроме того, выполнение ячеек было представлено в углублении, выполненном на уровне средств соединения вала, так как это углубление находится близко к прохождению масла на соединительном конце вала и, следовательно, соответствует идентифицированному риску. Однако, разумеется, изобретение можно применять для любого вала, имеющего углубление в любом месте своей внутренней периферии, где существует риски скапливания масла, что может привести к появлению паразитных усилий во время вращения. В частности, можно применить описанные выше способы создания ячеек путем фрезерования или электроискровой обработки, вводя инструменты на уровне углубления через один из открытых концов трубчатого вала, как было указано выше.

Наконец, когда описанный выше вал устанавливают в газотурбинном двигателе, этот газотурбинный двигатель можно снабдить датчиками вибрации в соответствии с известными технологиями. Если уплотнительная прокладка 14 полости 13 оказывается поврежденной и масло начинает скапливаться в полости 13, то, благодаря изобретению, масло попадает по меньшей мере в одну из ячеек 17, и дисбаланс становится синхронным с режимом вала. При этом система контроля газотурбинного двигателя, оснащенная вычислительным устройством с соответствующей программой, может измерять значение дисбаланса вала и сравнивать его с контрольным значением дисбаланса, измеренным заранее только на самом валу, без масла. Если это значение отклоняется от контрольного значения за пределы заранее определенного порога, система может передать тревожный сигнал, указывающий на появление соответствующих вибраций, которые вероятнее всего связаны с присутствием масла в выемках 17 углубления 11, и, следовательно, с появлением масляного дисбаланса.


ТРУБЧАТЫЙ ВАЛ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ, ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ И СПОСОБ ОБНАРУЖЕНИЯ ПРИСУТСТВИЯ МАСЛА ВНУТРИ ТРУБЧАТОГО ВАЛА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ
ТРУБЧАТЫЙ ВАЛ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ, ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ И СПОСОБ ОБНАРУЖЕНИЯ ПРИСУТСТВИЯ МАСЛА ВНУТРИ ТРУБЧАТОГО ВАЛА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ
ТРУБЧАТЫЙ ВАЛ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ, ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ И СПОСОБ ОБНАРУЖЕНИЯ ПРИСУТСТВИЯ МАСЛА ВНУТРИ ТРУБЧАТОГО ВАЛА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 234.
20.01.2018
№218.016.1534

Способ обнаружения неисправности вентиля в газотурбинном двигателе

Объектом изобретения является способ контроля вентиля в газотурбинном двигателе, при этом упомянутый вентиль производит переключение в ответ на команду (С), переданную в определенный момент (t), при этом упомянутый способ содержит этап (Е2) вычисления первой формы (S1) временного сигнала (S(t))...
Тип: Изобретение
Номер охранного документа: 0002634993
Дата охранного документа: 08.11.2017
10.05.2018
№218.016.4274

Способ содействия обнаружению повреждения трубопровода турбореактивного двигателя

Объектом изобретения является способ обеспечения обнаружения повреждения трубопровода, при этом упомянутый трубопровод выполнен с возможностью доставки сжатого воздушного потока, отбираемого на выходе компрессора высокого давления газотурбинного двигателя, до первого датчика давления и второго...
Тип: Изобретение
Номер охранного документа: 0002649518
Дата охранного документа: 03.04.2018
10.05.2018
№218.016.48d7

Коробка приводов для авиационного газотурбинного двигателя

Коробка приводов содержит картер, образующий камеру для размещения смазываемых маслом вращающихся элементов, трубчатую муфту, соединяемую с вращающимися элементами и выполненную с возможностью приведения во вращение вала, а также средства сбора масла для смазки вращающихся элементов и доставки...
Тип: Изобретение
Номер охранного документа: 0002651004
Дата охранного документа: 18.04.2018
29.05.2018
№218.016.55d3

Способ и устройство контроля параметра ракетного двигателя

Изобретение относится к общей области аэронавтики, в частности оно относится к контролю ракетного двигателя. Способ содержит: этап (Е10) получения измерения контролируемого параметра, измеряемого датчиком и соответствующего рабочей точке двигателя, причем эту рабочую точку определяют по меньшей...
Тип: Изобретение
Номер охранного документа: 0002654310
Дата охранного документа: 17.05.2018
09.06.2018
№218.016.5fe3

Способ изготовления мартенситно-стареющей стали

Изобретение относится к области металлургии и может быть использовано для изготовления стального слитка из мартенситно-стареющей стали. В способе осуществляют стадию изготовления методом вакуумной плавки переплавляемого электрода, содержащего от 0,2 до 3,0 мас.% титана и от 0,0025...
Тип: Изобретение
Номер охранного документа: 0002656899
Дата охранного документа: 07.06.2018
05.07.2018
№218.016.6ae5

Способ и устройство для изготовления композитной лопатки

Изобретение относится к способу изготовления композитной лопатки турбомашины, а также к устройству уплотнения, используемому в этом способе. Композитной лопаткой может быть лопатка, содержащая заготовку из нитей или волокон, выполненную посредством трехмерного тканья, и связующее, удерживающее...
Тип: Изобретение
Номер охранного документа: 0002659995
Дата охранного документа: 04.07.2018
10.07.2018
№218.016.6f3c

Система и способ экстренного запуска газотурбинного двигателя летательного аппарата

Предложена система экстренного запуска газотурбинного двигателя, содержащая, по меньшей мере, один газогенератор на твердом ракетном топливе, электрически управляемое устройство воспламенения, вычислительное устройство, связанное с устройством воспламенения, и, по меньшей мере, два независимых...
Тип: Изобретение
Номер охранного документа: 0002660725
Дата охранного документа: 09.07.2018
19.07.2018
№218.016.7289

Волокнистая заготовка для полой лопатки газотурбинного двигателя

Изобретение относится к волокнистой заготовке для полой лопатки газотурбинного двигателя, к такой полой лопатке и способу изготовления такой полой лопатки. Изобретение также относится к газотурбинному двигателю и летательному аппарату, содержащим такую полую лопатку. Волокнистая заготовка для...
Тип: Изобретение
Номер охранного документа: 0002661582
Дата охранного документа: 17.07.2018
26.07.2018
№218.016.75c9

Противопожарная защита картера вентилятора из композиционного материала

Изобретение относится к противопожарной защите картера газовой турбины. Картер содержит цилиндрический корпус (10), главное направление которого проходит вдоль продольной оси (X), и входной фланец (20), выполненный радиально относительно продольной оси (X) от входного конца корпуса (10). Картер...
Тип: Изобретение
Номер охранного документа: 0002662264
Дата охранного документа: 25.07.2018
02.08.2018
№218.016.7805

Лопатка спрямляющего аппарата газотурбинного двигателя

Изобретение относится к лопатке спрямляющего аппарата газотурбинного двигателя (1). Содержит множество сечений (35) лопатки, наслоенных вдоль радиальной оси Z. На нижнем участке лопатки от 0 до 50% общей высоты передняя кромка (BA) каждого сечения выступает вперед относительно передней кромки...
Тип: Изобретение
Номер охранного документа: 0002662761
Дата охранного документа: 30.07.2018
Показаны записи 1-4 из 4.
10.04.2014
№216.012.b43a

Неподвижный блок лопаток для газотурбинного двигателя, имеющий сниженный вес, и газотурбинный двигатель, содержащий, по меньшей мере, один такой неподвижный блок лопаток

Неподвижный блок лопаток газотурбинного двигателя содержит внутренний корпус, угловые сектора, снабженные лопатками, а также штифты радиального удержания угловых секторов. Каждый угловой сектор содержит платформу и крепежную пластину крепления углового сектора на корпусе, выступающую из...
Тип: Изобретение
Номер охранного документа: 0002511857
Дата охранного документа: 10.04.2014
20.05.2014
№216.012.c30f

Узел неподвижных лопаток для облегченного газотурбинного двигателя и газотурбинный двигатель, содержащий, по меньшей мере, один такой узел неподвижных лопаток

Узел неподвижных лопаток газотурбинного двигателя содержит кожух, оснащенные лопатками угловые секторы, неподвижно закрепленные в кожухе, кольцо из изнашиваемого материала, опирающееся на опору, неподвижно закрепленную в кожухе при помощи множества резьбовых соединений, а также шпильки для...
Тип: Изобретение
Номер охранного документа: 0002515694
Дата охранного документа: 20.05.2014
20.07.2014
№216.012.e0b2

Способ изготовления турбомашинной лопатки, сделанной из композиционного материала

Изобретение относится к способу изготовления турбомашинной лопатки из композиционного материала. Согласно способу применяют пространственное плетение для изготовления гибкой, состоящей из единой части волокнистой заготовки, включающей в себя участки преформы аэродинамической поверхности и...
Тип: Изобретение
Номер охранного документа: 0002523308
Дата охранного документа: 20.07.2014
27.07.2019
№219.017.b9d7

Роторное устройство для турбомашины (варианты), турбина для турбомашины и турбомашина

Роторное устройство для турбомашины содержит диск, лопатки, уплотнительный фланец, промежуточное кольцо и уплотнение. На наружной периферии диска расположены чередующиеся пазы и зубцы, проходящие в нижнем по потоку направлении на диске. Лопатки проходят в радиальном направлении от диска и имеют...
Тип: Изобретение
Номер охранного документа: 0002695545
Дата охранного документа: 25.07.2019
+ добавить свой РИД