×
15.03.2020
220.018.0c8a

Результат интеллектуальной деятельности: Авиационная силовая установка

Вид РИД

Изобретение

Аннотация: Изобретение относится к области авиационного двигателестроения, а конкретно к авиационным силовым установкам широкофюзеляжных самолетов с высокой скоростью полета. Установка состоит из осесимметричного корпуса (1), прикрепленного к торцевой поверхности фюзеляжа (2) центральной и обтекаемыми пластинами (3, 4) соответственно, включающего две кольцевые обечайки (5, 6) контура основного потока воздуха (7) и тракта пограничного слоя фюзеляжа (8). В тракте (8) установлены воздухозаборник (9), вентилятор (10) и сопло (11). В контуре (7) установлены кольцевой воздухозаборник (12), вентилятор (13) и сопло (14). Газогенераторный контур (15) расположен за корневыми частями лопаток вентилятора (13) и включает турбокомпрессор (16), четырехтактные поршневые газогенераторы (17), каждый снабжен двумя оппозитными рабочими поршнями. Каждые несколько пар газогенераторов (17) взаимодействуют с гидравлическими двигателями (18) и радиальными валами (19), газогенераторы (17) и гидравлические двигатели (18) осесимметрично расположены на наружной поверхности контура основного потока воздуха (7). За вентилятором (13) расположены полые лопатки (20), через которые воздух от турбокомпрессора (16) и горячий газ от поршневых газогенераторов (17) поступает туда и обратно к турбине (21) и далее к соплу (22). Центральный вал (23) вентиляторов (10, 13) тракта пограничного слоя фюзеляжа (8) и контура основного потока (7) воздуха соответственно и турбины (20) связан планетарным редуктором (24) и коническим редуктором (25) с радиальными валами (19) гидравлических двигателей (18). Технический результат, на достижение которого направлено предлагаемое изобретение, заключается в увеличении дальности, скорости полета самолета и увеличении полезной нагрузки. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области авиационного двигателестроения, а конкретно к авиационным силовым установкам широкофюзеляжных самолетов с высокой скоростью полета.

Известен ТРДД смешанного цикла (Немецкий проектный институт BauhausLuftfahrt, Aviation Week) с поршневыми газогенераторами рядного исполнения с двумя коленчатыми валами, расположенными параллельно оси двигателя, где каждый коленчатый вал взаимодействует с двумя рядами расположенных на периферии оси двигателя под углами друг к другу рядов поршневых цилиндров. Шестерни коленчатых валов передают крутящий момент центральному валу турбокомпрессора и турбины и далее через планетарный редуктор вентилятору. Преимуществом данного двигателя является то, что высокие степени повышения давления и температура в камере поршневого газогенератора обеспечивают высокий КПД термодинамического цикла без использования дорогих технологий производства турбинных лопаток каскада высокого давления. Недостатками данного двигателя является то, что плохо заполняется центральный объем корпуса двигателя и периферийное пространство поршневыми рабочими цилиндрами, что потребует для увеличения пропускной способности объемного поршневого устройства увеличения степени повышения давления турбокомпрессора.

Известен ТРДД с кольцевым воздухозаборником на конце широкой части фюзеляжа, за которым расположен вентилятор с приводом через планетарный редуктор от турбореактивного двигателя (Немецкий проектный институт BauhausLuftfahrt, AviationWeek). Преимуществом данного двигателя является то, что для создания тяги двигателя на входе в вентилятор используется толщина пограничного слоя, полученная при обтекании внешним потоком всего фюзеляжа. В результате снижаются затраты энергии на получение заданной тяги двигателя. Недостатками данного двигателя является то, что длина газогенератора привода вентилятора вместе со своим заборным патрубком значительно увеличивает длину самолета. Другим недостатком является то, что на самолете используются и другие обычные двигатели. Это снижает эффективность крыльев, на которых они установлены.

Известен ТРД (Сравнительный анализ параметров и характеристик различных схем силовой установки с дополнительным выносным вентилятором, НАУКА и ОБРАЗОВАНИЕ, Инженерное образование #12, декабрь 2012, авторов Эзрохи Ю.А. и др) с двумя двухконтурными двигателями на пилонах с отбором части мощности на установленные внутри и конце фюзеляжа специальные устройства, заканчивающими двумя винтовентиляторами противоположного вращения. Преимуществом данного двигателя является то, что для создания тяги двигателя на входе в вентилятор используется толщина пограничного слоя, полученная при обтекании внешним потоком всего фюзеляжа. Недостатком является большая длина перехода к малому диаметру вентилятора и усложнение конструкции из-за того, что для получения тяги на самолете в пилонах используются дополнительные вентиляторы и редукторы.

За прототип силовой установки принято устройство, описанное в патенте RU №2578760 С2, МПК F02B 71/04, опуб. 27.03.2016. Силовая установка состоит из кольцевых рядов двухтактных поршневых газогенераторов продольного расположения, турбокомпрессора и турбины с выходным соплом. Шестерни радиальных валов передают крутящий момент от пластинчатых гидравлических двигателей центральному валу двигателей и далее через редуктор центральному валу фюзеляжа и на его конце двум винтам разного вращения. Преимуществом данного двигателя является то, что высокие степени повышения давления и температура в камере сгорания поршневого газогенератора обеспечивают высокий КПД термодинамического цикла без использования дорогих технологий производства турбинных лопаток каскада высокого давления. Упрощается конструкция движителя за счет объединения всех винтов с редукторами и повышается его КПД. Недостатками данного двигателя является то, что заполняемый центральный объем корпуса подвесных двигателей увеличивает поперечные габариты двигателя. Наличие вторых поршней в каждом газогенераторе увеличивает его объемные габариты, не позволяя повысить число циклов в минуту рабочих цилиндров. Так как эпюра входных скоростей перед винтами состоит из участка с резким изменением скоростей в пограничном слое и одинаковых скоростей во внешнем потоке, то могут возникнуть сложности при проектировании и изготовлении винтов. Сохраняется большая длина плавного уменьшения диаметров конца фюзеляжа перед винтами.

Технической проблемой, на решение которой направлено предлагаемое изобретение является создание авиационной силовой установки повышенной эффективности и снижение массы - ее и самолета.

Технический результат, на достижение которого направлено предлагаемое изобретение, заключается в увеличении дальности, скорости полета самолета и увеличении полезной нагрузки.

Технический результат достигается тем, что в авиационной силовой установке, содержащей осесимметричный корпус с установленными в нем газогенераторным контуром, включающим в себя воздухозаборник, турбокомпрессор, соединенный центральным валом с турбиной на выхлопных газах расположенных осесимметрично гидравлических поршневых газогенераторов, каждый снабжен двумя оппозитными рабочими поршнями, гидравлические двигатели поршневых газогенераторов - один на несколько пар гидравлических поршневых газогенераторов, расположенных вдоль осевой линии силовой установки и механически связанных радиальными валами гидравлических двигателей и коническими шестернями с центральным валом, сопло за турбиной новым является то, что корпус авиационной силовой установки, включает в себя две кольцевые обечайки - контура основного потока воздуха и тракта пограничного слоя фюзеляжа, в контуре основного потока воздуха и тракта пограничного слоя фюзеляжа установлены закрепленные на центральном валу вентиляторы основного потока воздуха и пограничного слоя фюзеляжа соответственно, газогенераторный контур расположен за корневыми частями лопаток вентилятора контура основного потока воздуха, четырехтактные поршневые газогенераторы и гидравлические двигатели расположены в конце силовой установки между стенками контура основного потока воздуха и тракта пограничного слоя фюзеляжа, а радиальные валы гидравлических двигателей связаны с центральным валом вентиляторов, турбокомпрессора и турбины при помощи планетарного и конического редукторов.

Кольцевые обечайки - контура основного, потока воздуха и тракта пограничного слоя фюзеляжа, имеют центральную и обтекаемые пластины для крепления к торцевой поверхности фюзеляжа.

Валы вентиляторов соединены при помощи планетарного мультипликатора.

Предлагаемая авиационная силовая установка приведена на чертеже. Авиационная силовая установка состоит из осесимметричного корпуса 1, прикрепленного к торцевой поверхности фюзеляжа 2 центральной и обтекаемыми пластинами 3, 4 соответственно, включающим в себя две кольцевые обечайки 5, 6 контура основного потока воздуха 7 и тракта пограничного слоя фюзеляжа 8. В тракте пограничного слоя фюзеляжа 2 установлены кольцевой воздухозаборник 9, вентилятор 10 и сопло 11. В контуре основного потока воздуха установлены друг за другом кольцевой воздухозаборник 12, вентилятор основного потока воздуха 13 и сопло 14. Газогенераторный контур 15 расположен за корневыми частями лопаток вентилятора контура основного потока воздуха 13 и включает в себя турбокомпрессор 16, четырехтактные поршневые газогенераторы 17, каждый снабжен двумя оппозитными рабочими поршнями. Каждые несколько пар четырехтактных поршневых газогенераторов 17 взаимодействуют с гидравлическими двигателями 18 и радиальными валами 19, четырехтактные поршневые газогенераторы 17 и гидравлические двигатели 18 осесимметрично расположены на наружной поверхности контура основного потока воздуха 7. За вентилятором основного потока воздуха 13 расположены полые лопатки 20, через которые воздух от турбокомпрессора 16 и горячий газ от поршневых газогенераторов 17 поступает туда и обратно к турбине 21 и далее к соплу 22. Центральный вал 23 вентиляторов 10, 13 тракта пограничного слоя фюзеляжа 8 и контура основного потока 7 воздуха соответственно и турбины 20 связан планетарным редуктором 24 и коническим редуктором 25 с радиальными валами 19 гидравлических двигателей 18. Жесткая связь обоих контуров 7 и 8 обеспечивается переходником 26, развитая сеть каналов которого способна защитить основной вентилятор от попадания птиц и предметов на взлетной полосе.

Авиационная силовая установка работает следующим образом. Пограничный слой фюзеляжа 2 входит воздухозаборник 9, где вначале расширяется, а затем проходит два поворота разного радиуса перед поступлением в вентилятор 10. В результате эпюра скоростей несколько выравнивается, при этом нижние слои воздуха около втулки вентилятора 10 разгоняются, а верхние тормозятся. В соответствии с этим выбирается закон закрутки лопаток вентилятора 10. После спрямляющего аппарата вентилятора 10 поток следует в тракте контура пограничного слоя фюзеляжа и выбрасывается в сопло 11. Основной поток наружного воздуха входит в воздухозаборник 12, расширяется в диффузоре и после двух поворотов поступает в вентилятор 13. После спрямляющего аппарата вентилятора 13 поток следует в тракте основного вентиляторного контура 7 и выходит через сопло 14, создавая в сумме с соплом 11 основную тягу двигателя. Скорости потоков воздуха в данных трактах выбираются из условия приемлемых скоростей в переходнике 26, не достигающих скоростей звука. Небольшая нижняя часть основного воздушного потока после вентилятора 13 поступает в газогенераторный контур 15, где последовательно проходит турбокомпрессор 16, поршневые камеры поршневых газогенераторов 17 и в виде подогретого газа подается на турбину 21 и выхлопное сопло 22, образуя тягу газогенераторого контура двигателя. Крутящий момент радиальных валов 19 гидравлических двигателей 18, гидравлически соединенных с известными поршневыми газогенераторами 17, передается при помощи конического 25 и планетарного 24 редукторов центральному валу 23 вентиляторов 10, 13, турбокомпрессора 16 компрессора и турбины 21.

Таким образом, трехконтурная компановка двигателя позволяет сократить длину и уменьшить аэродинамическое сопротивление фюзеляжа с двигателями на пилонах. Струи воздуха и газа с торца фюзеляжа убирают зоны пониженного донного давления, а гидравлическое сопротивление всего фюзеляжа эффективно используется в сопле тракта пограничного слоя фюзеляжа для увеличения КПД двигателя. Увеличение термодинамического КПД силовой установки за счет применения поршневых газогенераторов с высокой температурой сжигания топлива при упрощении конструкции газотурбинной части двигателя достигается за счет снижении доли повышения давления турбокомпрессора низкого давления в общей высокой степени повышения давления силовой установки. При этом сниженные обороты турбокомпрессора низкого давления, как и четырехтактные поршневые газогенераторы, повысят ресурс силовой установки, а давление за турбиной двигателя достаточно для оптимальной тяги сопла в режиме крейсерского полета. Вентиляторы, установленные в отдельных каналах, могут быть спроектированы в соответствии со своими эпюрами входящих потоков воздуха, а скорости на периферийных сечениях лопаток вентилятора могут быть выбраны меньше установленных для воздухозаборников ТРДД, что снимет ограничения по снижению КПД вентилятора при больших скоростях полета самолета. Вентилятор, установленный в тракте пограничного слоя фюзеляжа повысит КПД всей силовой установки за счет снижения средней скорости на входе в его воздухозаборник, при этом профиль подводного канала может несколько спрямить эпюру скоростей пограничного слоя всего фюзеляжа непосредственно перед рабочими лопатками вентилятора.

Предложенная конструкция силовой установки позволяет уменьшить массу и гидравлическое сопротивление, убрав все отдельно расположенные двигатели самолета с их узлами крепления, как на крыльях, так и на конце фюзеляжа самолета. Авиационная силовая установка представляет собой трехконтурный авиационный двигатель с отдельным вентилятором на пограничном слое фюзеляжа самолета с высокой скоростью полета. Высокие параметры термодинамического цикла достигаются без использования специальных технологий изготовления турбинных лопаток. Устройство позволит не уменьшать кормовые сечения фюзеляжа из-за эффекта донного давления, а также может работать при попадании птиц с силовую установку.


Авиационная силовая установка
Авиационная силовая установка
Источник поступления информации: Роспатент

Показаны записи 101-110 из 127.
24.10.2019
№219.017.da0d

Мотор-колесо для самолета

Изобретение относится к шасси самолета. Мотор-колесо для самолета содержит шину, обод и диски колеса, электродвигатель, состоящий из ротора и статора. Ротор и статор состоят из ферромагнитных и немагнитных элементов в виде секторов. Дополнительно введены две пневматические емкости и два диска...
Тип: Изобретение
Номер охранного документа: 0002703704
Дата охранного документа: 21.10.2019
01.11.2019
№219.017.dd15

Синхронный электродвигатель с магнитной редукцией

Изобретение относится к электротехнике, а конкретно к синхронным двигателям с возбуждением от постоянных магнитов. Технический результат заключается в улучшении энергетических показателей синхронного электродвигателя. Синхронный электродвигатель с магнитной редукцией содержит корпус 1 и...
Тип: Изобретение
Номер охранного документа: 0002704491
Дата охранного документа: 29.10.2019
02.11.2019
№219.017.dd95

Устройство для увлажнения воздуха

Изобретение относится к технике вентиляции и кондиционирования воздуха и может быть использовано для увлажнения воздуха в помещениях различного назначения. Устройство для увлажнения воздуха, содержит корпус (1), поддон (3), наполненный водой и увлажнительный элемент (2), выполненный в виде...
Тип: Изобретение
Номер охранного документа: 0002704932
Дата охранного документа: 31.10.2019
04.11.2019
№219.017.de36

Поворотный электромагнит

Изобретение относится к области электротехники, к поворотным электромагнитам, и может быть использовано в электромеханизмах, в пневматических и гидравлических системах, где требуются малые перемещения и большие усилия, а также стабильность усилия по перемещению якоря. Технической результат...
Тип: Изобретение
Номер охранного документа: 0002704962
Дата охранного документа: 01.11.2019
08.11.2019
№219.017.df41

Магнитный редуктор

Изобретение относится к электротехнике, к бесконтактным магнитным редукторам, и может быть использовано в качестве передаточного устройства в механических системах с большим ресурсом работы при ударных нагрузках. Технический результат заключается в увеличении выходного момента. На корпусе 1...
Тип: Изобретение
Номер охранного документа: 0002705219
Дата охранного документа: 06.11.2019
15.11.2019
№219.017.e2b6

Злаковый батончик для питания работающих с соединениями свинца

Изобретение относится к пищевой промышленности. Состав злакового батончика включает следующие исходные ингредиенты: отруби овсяные, клетчатку пшеничную мелкую, муку из семян расторопши, ячменную муку, семена белого льна, плоды фенхеля, мякоть авокадо, порошок хлореллы, батат, плоды терна,...
Тип: Изобретение
Номер охранного документа: 0002706192
Дата охранного документа: 14.11.2019
15.11.2019
№219.017.e2c2

Злаковый батончик для питания работающих с вредными соединениями мышьяка и фосфора

Изобретение относится к пищевой промышленности. Предложен злаковый батончик, включающий следующие ингредиенты: клетчатку пшеничную мелкую, амарантовую и нутовую муку, семена черного тмина, плоды кардамона, измельченный корень лопуха, порошок спирулины, бразильский орех, корень пастернака,...
Тип: Изобретение
Номер охранного документа: 0002706159
Дата охранного документа: 14.11.2019
15.11.2019
№219.017.e2c8

Гаситель крутильных колебаний

Изобретение относится к машиностроению. Гаситель крутильных колебаний состоит из корпуса, крышки, маховика, расположенного внутри корпуса в среде жидкости с высокой вязкостью, и фланца с отверстиями для крепления гасителя. Маховик выполнен составным и расположен на основании с пазами,...
Тип: Изобретение
Номер охранного документа: 0002706131
Дата охранного документа: 14.11.2019
21.11.2019
№219.017.e477

Вентильный электропривод

Изобретение относится к области электротехники и может быть использовано в электромеханических системах на производстве, на транспорте и строительстве. Технический результат заключается в повышении точности регулирования частоты вращения. Вентильный электропривод имеет синхронный двигатель с...
Тип: Изобретение
Номер охранного документа: 0002706416
Дата охранного документа: 19.11.2019
26.11.2019
№219.017.e6b7

Турбореактивный двухконтурный двигатель

Турбореактивный двухконтурный двигатель содержит промежуточный теплообменник, первичный контур которого связан на выходе с последним каскадом компрессора. Последний каскад, включающий центробежный компрессор, камеру сгорания двигателя и центростремительную турбину, расположен вдоль оси...
Тип: Изобретение
Номер охранного документа: 0002707105
Дата охранного документа: 22.11.2019
Показаны записи 101-110 из 291.
20.10.2015
№216.013.82e1

Рабочее колесо ротора компрессора низкого давления турбореактивного двигателя (варианты)

Рабочее колесо второй ступени вала ротора компрессора низкого давления турбореактивного двигателя содержит диск со ступицей, центральным отверстием, полотно и обод, а также рабочие лопатки, выполненные выпукло-вогнутыми в поперечном сечении. Каждая лопатка комплекта включает перо и хвостовик....
Тип: Изобретение
Номер охранного документа: 0002565108
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.82e3

Диск последней ступени ротора компрессора низкого давления турбореактивного двигателя

Изобретение относится к области авиадвигателестроения, а именно к компрессорам низкого давления авиационных турбореактивных двигателей. Диск последней ступени ротора компрессора низкого давления ТРД выполнен в виде моноэлемента, включает обод, переходящий в кольцевое полотно, усиленное...
Тип: Изобретение
Номер охранного документа: 0002565110
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.82e6

Вал ротора компрессора низкого давления турбореактивного двигателя

Изобретение относится к области авиадвигателестроения, а именно к компрессорам низкого давления авиационных ТРД. Вал компрессора низкого давления выполнен ступенчатой барабанно-дисковой конструкции, включающей не более четырех дисков. Каждый диск включает обод, переходящий в кольцевое полотно,...
Тип: Изобретение
Номер охранного документа: 0002565113
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.82e7

Рабочее колесо ротора компрессора низкого давления турбореактивного двигателя (варианты)

Группа изобретений, связанных единым творческим замыслом, относится к области авиадвигателестроения, а именно к рабочим колесам компрессоров низкого давления авиационных ТРД. Рабочее колесо четвертой ступени вала ротора компрессора низкого давления турбореактивного двигателя содержит диск со...
Тип: Изобретение
Номер охранного документа: 0002565114
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.82f0

Лопатка рабочего колеса ротора компрессора низкого давления турбореактивного двигателя

Изобретение относится к области авиадвигателестроения. Лопатка снабженного пазами диска рабочего колеса ротора компрессора низкого давления (КНД) турбореактивного двигателя (ТРД), включающего проточную часть, ограниченную по периферийному контуру корпусом двигателя, содержит перо и хвостовик....
Тип: Изобретение
Номер охранного документа: 0002565123
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.82fd

Диск первой ступени ротора компрессора низкого давления турбореактивного двигателя

Изобретение относится к области авиадвигателестроения, а именно к компрессорам низкого давления авиационных турбореактивных двигателей. Диск первой ступени ротора компрессора низкого давления ТРД выполнен в виде моноэлемента, включает обод, переходящий в кольцевое полотно, усиленное ступицей,...
Тип: Изобретение
Номер охранного документа: 0002565136
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.82fe

Рабочее колесо ротора компрессора низкого давления турбореактивного двигателя (варианты)

Группа изобретений, связанных единым творческим замыслом, относится к области авиадвигателестроения, а именно к рабочим колесам компрессоров низкого давления авиационных ТРД. Рабочее колесо третьей ступени вала ротора компрессора низкого давления турбореактивного двигателя содержит диск со...
Тип: Изобретение
Номер охранного документа: 0002565137
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.82ff

Лопатка рабочего колеса ротора компрессора низкого давления турбореактивного двигателя

Изобретение относится к области авиадвигателестроения. Лопатка снабженного пазами диска рабочего колеса ротора компрессора низкого давления (КНД) турбореактивного двигателя (ТРД), включающего проточную часть, ограниченную по периферийному контуру корпусом двигателя, содержит перо и хвостовик....
Тип: Изобретение
Номер охранного документа: 0002565138
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.8301

Диск третьей ступени ротора компрессора низкого давления турбореактивного двигателя

Изобретение относится к области авиадвигателестроения, а именно к компрессорам низкого давления авиационных турбореактивных двигателей. Диск третьей ступени ротора компрессора низкого давления ТРД выполнен в виде моноэлемента, включает обод, переходящий в кольцевое полотно, усиленное ступицей,...
Тип: Изобретение
Номер охранного документа: 0002565140
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.8302

Вал ротора компрессора низкого давления турбореактивного двигателя, узел соединения дисков вала ротора компрессора низкого давления турбореактивного двигателя, проставка узла соединения дисков вала ротора компрессора низкого давления турбореактивного двигателя

Изобретение относится к области авиадвигателестроения. Вал компрессора низкого давления выполнен ступенчатой барабанно-дисковой конструкции, включающей не более четырех дисков. Каждый диск включает обод, переходящий в кольцевое полотно, усиленное массивной ступицей. Толщина полотнам диска не...
Тип: Изобретение
Номер охранного документа: 0002565141
Дата охранного документа: 20.10.2015
+ добавить свой РИД