×
14.03.2020
220.018.0c07

Результат интеллектуальной деятельности: Способ получения деформированных полуфабрикатов из алюминиево-кальциевого композиционного сплава

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии легких сплавов, в частности сплавов на основе алюминия, и может быть использовано при получении деформированных полуфабрикатов, в том числе проволоки, диаметром менее 0,3 мм из алюминиево-кальциевого композиционного сплава из слитков промышленных размеров. Способ получения деформированных полуфабрикатов из алюминиево-кальциевого композиционного сплава, обладающего структурой, состоящей из алюминиевой матрицы, содержащей наночастицы фазы Al(Zr,Sc)-L1 размером не более 20 нм в количестве не менее 0,4 об. %, и равномерно распределенных в алюминиевой матрице эвтектических интерметаллидных фаз, содержащих кальций, кремний и железо, имеющих средний размер не более 1 мкм в количестве не менее 16 об. %. Полученные таким способом материалы обладают высоким уровнем физико-механических свойств: предел прочности не менее 250 МПа, удлинение не менее 3,5% и удельная электропроводность не менее 46,0 IACS. 4 з.п. ф-лы, 6 ил., 5 табл., 4 пр.

Предлагаемое изобретение относится к области металлургии легких сплавов, в частности сплавов на основе алюминия, и может быть использовано при получении деформированных полуфабрикатов из алюминиево-кальциевого композиционного сплава из слитков промышленных размеров, в том числе проволоки, диаметром менее 0,3 мм.

В настоящее время существует множество изобретений, описывающих способы получения композиционных материалов на основе алюминия путем замешивания высокопрочных армирующих частиц: различных боридов, карбидов, оксидов и т.д. Так, известен патент РФ №2616315 С1 (опубликован 14.04.2017), в котором описан способ получения алюмоматричного композитного материала путем механическое смешивание порошка матричного материала с порошками наполнителя (смеси карбидов и вольфрама) в количестве 5-20 мас. % от состава исходной композиционной смеси со средним размером частиц 0,1-1 мкм. Последующее холодное прессование полученной исходной композиционной смеси на ультразвуковом гидравлическом прессе, с приложением к пресс-форме ультразвуковых механических колебаний частотой 18-24 кГц и амплитудой колебательного смещения формообразующих поверхностей пресс-формы 1-10 мкм.

Основным недостатком данного изобретения является использование специального оборудования для перемешивания или механолегирования, которое не является серийным и как следствие существенно удорожает себестоимость продукции.

В патенте РФ №2448178 С2 (опубликован 20.04.2012) описан способ получения литейного композиционного сплава алюминий-карбид титана, включающий плавление алюминия, введение в расплав алюминия порциями экзотермической смеси из порошков титана, углерода и флюса криолита в стехиометрическом соотношении с осуществлением после введения каждой порции СВС-реакции и кристаллизации множества керамических включений карбида титана с размером ≤1-2 мкм и перемешивание расплава перед введением следующей порции экзотермической смеси, при этом получают сплав, содержащий не более 10% карбида титана.

Основным недостатком является получение неравномерной структуры сплава и неконтролируемость СВС-реакции, что не гарантирует стабильный результат в производственных условиях.

Известен способ получения алюмокальциевого композиционного сплава, описанный в (Materials Science & Engineering А 690 (2017) 348-354), согласно которому смесь высокочистых порошков алюминия и кальция, запрессованную в цилиндрическую пресс-форму под давлением 40,6 МПа, подвергают последующей экструзии.

Основным недостатком данного способа является необходимость предварительного получения высокочистых порошков, а также использования специального оборудования для смешения и компактирования полученной смеси.

Альтернативным является принцип производства, так называемых естественных алюмо-матричных композиционных материалов, который строится на получении тонких интерметаллических фаз эвтектического происхождения в алюминиевой матрице. Причем прочность и пластичность таких материалов связаны с объемной долей, морфологией и размерами эвтектических фазовых составляющих. Известен способ получения алюмокальциевого сплава, раскрытый в патенте RU №2660492 (опубл. 06.07.2018, бюл. №19). В данном способе алюминиевый расплав, содержащий 5,4-6,4% кальция, 0,3-0,6% кремния и 0,8-1,2% железа, заливают в металлические формы. В частных исполнения данного способа литье выполняют методами литья в кокиль и под давлением. Полученные данным способом сплав имеет высокую долю кальций-содержащих частиц эвтектического происхождения (более 20 об. %) и обладает хорошей технологичностью при литье. Техническим результатом является создание нового экономнолегированного коррозионностойкого алюминиевого сплава, предназначенного для получения фасонных отливок сложной формы и обладающего относительно высокими и стабильными механическими свойствами. Его недостатком является невысокая пластичность: относительное удлинение при испытании на растяжение не превышает 2,6%. Его другим недостатком является то, что он не предназначен для получения деформированных полуфабрикатов, в частности, методами холодной деформации. Это обусловлено тем, что в литом состоянии кальцийсодержащие фазы, входящие в состав эвтектики, имеют разветвленную (а не глобулярную) форму.

Наиболее близким к предлагаемому является способ получения деформированных полуфабрикатов из алюминиево-кальциевого сплава, раскрытый в патенте RU 2478132 (опубликован 27.03.2013, бюл. №9). Описан способ получения прутков и листов из сплава, содержащего содержит (мас. %) 3,5% кальция, 9,5% цинка, 3% магния и 0,15% циркония, остальное - алюминий. Данный способ включает следующие операции

- получение плоского (толщиной 15 мм) или круглого (диаметром 44 мм) слитка;

- гомогенизационный отжиг при максимальной температуре нагрева на 10°С ниже температуры равновесного солидуса сплава;

- горячая деформация (прокатка со степенью обжатия около 86 или прессование со степенью обжатия около 90%);

- нагрев под закалку;

- закалка в холодной воде;

- старение.

Недостатком данного способа является то, что он не позволяет получать полуфабрикаты методами холодной деформации. Другим недостатком данного способа является то, что расплав не содержит железо и кремний (в описании патента расплав готовили на основе алюминия высокой чистоты А99), что не позволяет использовать для его реализации более дешевые марки технического алюминия.

Техническим результатом изобретения является создание нового способа получения деформированных полуфабрикатов результатом из алюминиево-кальциевого композиционного сплава, обладающего структурой, состоящей из алюминиевой матрицы, содержащей наночастицы фазы Al3(Zr,Sc)-L12 размером не более 20 нм в количестве не менее 0,4 об. %, и равномерно распределенных в алюминиевой матрице кальций, кремний и железо содержащих эвтектических интерметаллидных частиц размером не более 1 мкм в количестве не менее 16 об. % фаз, обеспечивая достижение следующего комплекса физико-механических свойств: временное сопротивление при растяжении (σв) не менее 250 МПа, относительное удлинение при растяжении (δ) - не менее 5%, электропроводность - не менее 40 IACS.

Технический результат достигается тем, что предлагается способ получения деформированных полуфабрикатов из алюминиево-кальциевого сплава, включающий получение расплава, содержащего кальций в количестве более 3 масс. % и малую добавку циркония, получение слитка путем кристаллизации расплава и получение полуфабриката путем горячей деформации слитка, отличающийся тем, что в расплав дополнительно вводят железо, кремний и скандий, горячую деформацию слитка проводят при температуре в пределах от 300 до 450°С, а после нее проводят холодную деформацию и стабилизирующий отжиг при температуре в пределах от 300 до 400°С в течение времени от 1 до 10 часов, обеспечивая формирование композиционной структуры, состоящей из алюминиевой матрицы, содержащей наночастицы фазы Al3(Zr,Sc)-L12 размером не более 20 нм в количестве не менее 0,4 об. %, и равномерно распределенных в алюминиевой матрице кальций-содержащих частиц размером не более 1 мкм в количестве не менее 16 об. %.

В частных исполнениях предлагаемый способ может включать проведение холодной деформации методами прокатки и волочения, получая листы, фольгу и проволоку.

Изобретение поясняется чертежами, где:

На фиг. 1 представлен холоднокатаный лист из алюминиево-кальциевого композиционного сплава;

На фиг. 2 кальций-содержащие частицы в структуре холоднокатаного листа из алюминиево-кальциевого композиционного сплава, СЭМ.

На фиг. 3 (а, б) наночастицы фазы Al3(Zr,Sc)-L12 в структуре холоднокатаного листа из алюминиево-кальциевого композиционного сплава, ПЭМ.

На фиг. 4 фольга из алюминиево-кальциевого композиционного сплава.

На фиг. 5 катаная проволока из алюминиево-кальциевого композиционного сплава.

На фиг. 6 волоченная проволока из алюминиево-кальциевого композиционного сплава.

Температура деформации ниже 300°С не обеспечивает достаточной деформационной пластичности, а при высокой температуре горячей деформации (более 450°С) прочность сплава оказывается заниженной. После горячей прокатки проводят холодную деформацию и стабилизирующий отжиг при температуре в пределах от 300 до 400°С в течение времени от 1 до 10 часов. Высокая температура отжига (свыше 400°С) и его высокая продолжительность (свыше 10 ч) также приводят к более низкой прочности полученных холодно деформированных изделий. Низкая температура отжига (ниже 300°С) приводит к заниженной удельной электропроводимости (УЭП), пластичности и прочности, обеспечиваемой распадом алюминиевого твердого раствора и формированием упрочняющих когерентных наночастиц фазы типа L12 (Al3(Zr,Sc)), которые имеют средний размер порядка 20 нм. При температурах отжига свыше 450°С наблюдается резкое падение прочности, что связано с деградацией субмикро- и наностуркутры сплава. В частности, в процессе длительного высокотемпературного отжига происходит снижение плотности распределения частиц Al3(Zr,Sc), увеличение их размера, и, как следствие, частичная или полная потеря когерентности с матрицей. Данные процессы, в совокупности с огрублением эвтектических частиц путем их коагуляции приводят к снижению механических свойств.

Выбор кальция в качестве основного эвтектико-образующего компонента обусловлен тем, что по объемной доле второй фазы алюминиево-кальциевая эвтектика почти в 3 раза превосходит алюминиево-кремниевую эвтектику. Большое количество кальциевой фазы эвтектического происхождения позволяет получить алюмоматричные композиционные сплавы, в которых доля второй фазы составляет не менее 15 об. %.

Алюминий и кальций в области алюминиевого угла образуют эвтектику Al+Al4Ca, которой соответствует концентрация кальция 7,6 масс. % и 617°С (Л.Ф. Мондельфо, Структура и свойства алюминиевых сплавов. М. «Металлургия», 1979. 640 с.). Добавление кальция в количестве порядка 4 мас. % обеспечивает высокие литейные свойства сплава, что позволяет получать крупногабаритные слитки традиционными методами плавки и литья. Кроме того, высокая объемная доля эвтектической фазы позволяет создавать слитки со структурой композиционных материалов, содержащих значительное количество армирующих частиц эвтектического происхождения.

Сочетание кальция, железа и кремния обеспечивает кристаллизацию многокомпонентных эвтектических структур, обладающих тонким строением сразу после литья, без необходимости в дополнительной операции модифицировании структуры слитка. Такое строение эвтектики предполагает возможность последующего проведения деформационной обработки слитка с высокими степенями обжатия.

Эвтектические сплавы с кальцием в отличие от сплавов с высоким содержанием кремния позволяют добиться упрочнения путем дополнительного легирования малыми добавками циркония и скандия. Благодаря относительно высоким скоростям охлаждения в температурном интервале затвердевания слитка цирконий и скандий полностью переходят в алюминиевый твердый раствор, который при последующих высокотемпературных обработках распадается с образованием интерметаллидной фазы Al3(Zr,Sc). Сохраняя высокую дисперсность в широком интервале температур и при длительных выдержках, интерметаллидные частицы действуют как эффективные антирекристаллизаторы, что может дополнительно обеспечить прирост прочности деформированного полуфабриката.

ПРИМЕР 1

В лабораторных условиях было опробовано 8 вариантов способа получения деформированных полуфабрикатов из алюминиево-кальциевого композиционного сплава в виде холоднокатаных листов. Расплав готовили на основе алюминия марки А5Е. Плавка велась в следующей последовательности. После расплавления алюминия вводили лигатуры, содержащие железо, кремний, цирконий и скандий. После растворения лигатур и выхода печи на заданную температуру вводился кальций под зеркало расплава и активно перемешивался. Расплав заливали в графитовую форму, получая плоские слитки размером 15×60×200 мм. Температура литья была заведомо выше температуры ликвидус.

Слитки подвергали горячей прокатке до толщины 2 мм, а затем холодной прокатке до толщины 1 мм. После этого листы отжигали. Алюминиевый расплав во всех вариантах содержал l,0% Fe и 0,6 Si. Концентрации кальция, циркония и скандия, температура горячей деформации, температура отжига и его продолжительность варьировались согласно значения, указанным в табл. 1. На отожженных листах (Фиг. 1) определяли параметры структуры, механические свойства на растяжение (временное сопротивление - σв и относительное удлинение - δ) и удельную электропроводность (УЭП). Средний размер кальций-содержащих эвтектических частиц и наночастиц фазы Al3(Zr,Sc)-L12 в структуре холоднокатаного листа из алюминиево-кальциевого композиционного сплава оценивали при анализе фотографий микроструктур, полученных с использованием сканирующей (Фиг. 2) и просвечивающей электронной (Фиг. 3) микроскопии.

Как видно из табл. 1, при низком содержании кальция, циркония и скандия (вариант 1) объемная доля кальций-содержащих фаз и наночастиц находится ниже заданного уровня. Следствие этого является пониженная прочность (табл. 2). При высоком содержании кальция, циркония и скандия (вариант 3) объемная доля кальций-содержащих фаз (в слитке) слишком высока, что не обеспечивает достаточной пластичности при горячей прокатке. Низкая температура горячей прокатки (вариант 4) также не обеспечивает достаточной деформационной пластичности. В остальных случаях удалось получить горячекатаные листы, а из них холоднокатаные.

При низкой температуре отжига холоднокатаных листов и его малой продолжительности (вариант 7) их пластичность ниже заданной (табл. 2). А при высокой температуре горячей деформации, высокой температуре отжига холоднокатаных листов и его высокой продолжительности (вариант 8) значения σв и УЭП ниже заданных (табл. 2).

Таким образом, можно заключить, что только варианты 2, 5 и 6, в которых температура горячей деформации слитка, температура и время отжига холоднокатаных листов, а также параметры структуры находятся в заявленных пределах, позволяют реализовать заявленный способ получения деформированных полуфабрикатов из алюминиево-кальциевого композиционного сплава.

ПРИМЕР 2

В лабораторных условиях из холоднокатаного и отожженного листа, полученного по варианту 2 (см. пример 1) была получена фольга толщиной 100 мкм (Фиг. 4). Фольгу подвергали отжигу при 350°С в течение 3 часов. Свойства приведенные в табл. 3 показывают, что они соответствуют заданным значениям.

ПРИМЕР 3

В лабораторных условиях из алюминиевого расплава, соответствующего варианту 2 (см. пример 1) был получен круглый слиток диаметром 60 мм. Из этого слитка на стане радиально-сдвиговой прокатки при температуре 420°С был получен пруток диаметром 9 мм. Из этого прутка на вальцах была получена холоднокатаная проволока с квадратным сечением 1×1 мм. Эту проволоку подвергали отжигу при 350°С в течение 3 часов. Свойства и параметры структуры, приведенные в табл. 4 показывают, что они соответствуют заданным значениям.

ПРИМЕР 4

В лабораторных условиях из холоднокатаной проволоки (см. пример 3) методом волочения в ручных фильерах была получена проволока диаметром 0,5 мм. Эту проволоку подвергали отжигу при 350°С в течение 3 часов. Свойства и параметры структуры, приведенные в табл.4 показывают, что они соответствуют заданным значениям.


Способ получения деформированных полуфабрикатов из алюминиево-кальциевого композиционного сплава
Способ получения деформированных полуфабрикатов из алюминиево-кальциевого композиционного сплава
Источник поступления информации: Роспатент

Показаны записи 21-30 из 322.
10.06.2016
№216.015.481e

Интегральная схема силового биполярно-полевого транзистора

Изобретение относится к силовым полупроводниковым приборам и биполярным интегральным схемам. Изобретение обеспечивает повышение быстродействия, уменьшение энергетических потерь при переключении, упрощение технологии изготовления. Интегральная схема силового биполярно-полевого транзистора...
Тип: Изобретение
Номер охранного документа: 0002585880
Дата охранного документа: 10.06.2016
20.08.2016
№216.015.4aa1

Способ дефосфорации марганцевых руд и концентратов

Изобретение относится к дефосфорации расплавов марганцевых руд и концентратов. Селективное восстановление фосфора из расплава ведут газообразным монооксидом углерода (СО), который продувают через расплав. Может быть использован газообразный монооксид углерода, полученный в газогенераторе и...
Тип: Изобретение
Номер охранного документа: 0002594997
Дата охранного документа: 20.08.2016
20.08.2016
№216.015.4e67

Композиция для изготовления режущего инструмента для стали и чугуна

Изобретение относится к порошковой металлургии и может быть использовано для изготовления режущего инструмента. Композиция содержит сверхтвердый материал, включающий смесь порошков кубического нитрида бора и алмаза, при следующем соотношении компонентов, мас. %: кубический нитрид бора 20-60,...
Тип: Изобретение
Номер охранного документа: 0002595000
Дата охранного документа: 20.08.2016
10.08.2016
№216.015.54e5

Способ определения термостойкости углей

Изобретение относится к метрологии, в частности к средствам измерения термостойкости углей. Способ предполагает воздействие на образец угля двух последовательных термоударов, второй из которых имеет большую по сравнению с первым интенсивность, и регистрацию параметров акустической эмиссии....
Тип: Изобретение
Номер охранного документа: 0002593441
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.55b2

Способ определения пористости металлоизделий

Изобретение относится к области обработки металлов давлением, а именно к определению пористости металлоизделия, полученного обработкой давлением литого изделия, и может быть использовано для определения влияния обработки давлением на пористость получаемого металлоизделия. Способ заключается в...
Тип: Изобретение
Номер охранного документа: 0002593525
Дата охранного документа: 10.08.2016
10.07.2016
№216.015.56a6

Способ сорбционного извлечения селена, теллура и мышьяка из водных растворов.

Изобретение относится к области гидрометаллургии, а именно к способу сорбционного извлечения селена, теллура и мышьяка из растворов. Сущность способа заключается во введении растворимых соединений индия в раствор извлекаемых элементов перед сорбцией. Количество соединений индия должно превышать...
Тип: Изобретение
Номер охранного документа: 0002590806
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5d1e

Способ измерения величины и пространственного распределения локальных магнитных полей, возникающих вследствие протекания коррозионных процессов на металлической поверхности в проводящем растворе

Использование: для проведения коррозионных in-situ исследований материалов в различных проводящих средах. Сущность изобретения заключается в том, что исследуемый образец помещают в кювету с проводящим раствором, в котором требуется исследовать коррозионное поведение материала образца, после...
Тип: Изобретение
Номер охранного документа: 0002591027
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5dcc

Способ получения порошка титаната диспрозия для поглощающих элементов ядерного реактора

Изобретение относится к способу получения высокодисперсных порошков титаната диспрозия для поглощения нейтронов и может быть использовано в стержнях регулирования ядерных реакторов. Способ включает получение порошка титаната диспрозия путем механической активации смеси компонентов - диоксида...
Тип: Изобретение
Номер охранного документа: 0002590887
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.62ef

Способ переработки сульфидных никелевых концентратов

Изобретение относится к металлургии цветных металлов. Способ переработки сульфидного никелевого сырья включает обжиг шихты, содержащей сульфидное никелевое сырье и хлорид натрия, при температуре 350-400°С с доступом кислорода в течение 1,5-2 ч и выщелачивание полученного огарка водой при...
Тип: Изобретение
Номер охранного документа: 0002588904
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.6ad8

Способ получения нанокомпозита feni/c в промышленных масштабах

Изобретение относится к нанотехнологии изготовления нанокомпозита FeNi/C. Техническим результатом является получение нанокомпозита FeNi/C, содержащего наночастицы FeNi с размером от 12 до 85 нм. Способ синтеза нанокомпозита FeNi/C включает приготовление совместного раствора порошка графита,...
Тип: Изобретение
Номер охранного документа: 0002593145
Дата охранного документа: 27.07.2016
Показаны записи 21-30 из 38.
19.01.2018
№218.016.0276

Способ получения тонколистового проката из бор-содержащего алюминиевого сплава

Изобретение относится к области металлургии, в частности к борсодержащим алюминиевым сплавам, к которым предъявляют требования по поглощению нейтронного излучения в сочетании с низким удельным весом и высокой прочностью. Способ получения тонколистового проката из борсодержащего алюминиевого...
Тип: Изобретение
Номер охранного документа: 0002630186
Дата охранного документа: 05.09.2017
19.01.2018
№218.016.02e5

Способ получения слитков и тонколистового проката из бор-содержащего алюминиевого сплава

Изобретение относится к области металлургии, в частности к борсодержащим алюминиевым сплавам, к которым предъявляют требования по поглощению нейтронного излучения в сочетании с низким удельным весом и высокой прочностью. Способ получения тонколистового проката из слитков борсодержащего...
Тип: Изобретение
Номер охранного документа: 0002630185
Дата охранного документа: 05.09.2017
10.05.2018
№218.016.3938

Алюминиевый сплав

Изобретение относится к области металлургии, в частности к алюминиевым сплавам, и может быть использовано для изготовления высоконагруженных паяных конструкций. Алюминиевый сплав содержит, мас. %: кремний 0,5-0,8, магний 0,5-0,9, медь 0,05-0,3, хром 0,05-0,2, железо 0,15-0,25, титан 0,005-0,02,...
Тип: Изобретение
Номер охранного документа: 0002647070
Дата охранного документа: 13.03.2018
04.07.2018
№218.016.6a81

Литейный алюминиево-кремниевый сплав

Изобретение относится к области металлургии, конкретно к сплавам на основе алюминия, и может быть использовано при получении фасонных отливок различными методами литья, в частности дисков автомобильных колес методом литья под низким давлением. Литейный алюминиево-кремниевый сплав содержит, мас....
Тип: Изобретение
Номер охранного документа: 0002659514
Дата охранного документа: 02.07.2018
08.07.2018
№218.016.6ead

Литейный алюминиево-кальциевый сплав

Изобретение относится к области металлургии. Алюминиевый сплав содержит 5.4-6,4% кальция, 0,3-0,6% кремния и 0,8-1,2% железа. В виде отливок, не требующих термической обработки, сплав обладает следующими механическими свойствами на растяжение: временное сопротивление (σ) не менее 180 МПа,...
Тип: Изобретение
Номер охранного документа: 0002660492
Дата охранного документа: 06.07.2018
17.11.2018
№218.016.9e5f

Коррозионностойкий литейный алюминиевый сплав

Изобретение относится к области металлургии материалов на основе алюминия и может быть использовано для изготовления отливок, предназначенных для получения деталей ответственного назначения, работающих в коррозионной среде при температурах до 300-350°С. Литейный сплав на основе алюминия...
Тип: Изобретение
Номер охранного документа: 0002672653
Дата охранного документа: 16.11.2018
06.06.2019
№219.017.746f

Мембрана для разделения метансодержащей смеси газов и способ её получения

Изобретение относится к области синтеза перфторированного полимера полиперфтор (2-метил-2-этил-1,3-диоксола) для создания газоразделительной мембраны на его основе. Мембрана для разделения метансодержащей смеси газов содержит в качестве полимера полиперфтор (2-метил-2-этил-1,3-диоксол). Способ...
Тип: Изобретение
Номер охранного документа: 0002690460
Дата охранного документа: 03.06.2019
15.06.2019
№219.017.8340

Литейный алюминиевый сплав с добавкой церия

Изобретение относится к области металлургии материалов на основе алюминия и может быть использовано при получении изделий, работающих под действием высоких нагрузок при температурах до 150-200°С, в частности деталей летательных аппаратов, автомобилей и других транспортных средств. Литейный...
Тип: Изобретение
Номер охранного документа: 0002691475
Дата охранного документа: 14.06.2019
15.06.2019
№219.017.8374

Высокопрочный литейный алюминиевый сплав с добавкой кальция

Изобретение относится к области металлургии материалов на основе алюминия и может быть использовано при получении изделий, работающих под действием высоких нагрузок при температурах до 150-200°С, в частности деталей летательных аппаратов, автомобилей и других транспортных средств. Литейный...
Тип: Изобретение
Номер охранного документа: 0002691476
Дата охранного документа: 14.06.2019
20.08.2019
№219.017.c17f

Способ получения слитков из алюмоматричного композиционного сплава

Изобретение относится к области металлургии легких сплавов, в частности сплавов на основе алюминия, и может быть использовано при получении слитков различными методами литья, в частности методом полунепрерывного вертикального литья. Способ получения слитков из алюминиевых сплавов, содержащих...
Тип: Изобретение
Номер охранного документа: 0002697683
Дата охранного документа: 16.08.2019
+ добавить свой РИД