×
05.03.2020
220.018.08f1

Результат интеллектуальной деятельности: Способ радиометрической калибровки, контроля характеристик и испытаний оптико-электронных и оптико-механических устройств и криогенно-вакуумная установка, реализующая этот способ

Вид РИД

Изобретение

Аннотация: Заявленная группа изобретений относится к оптико-электронной, оптико-механической и криогенно-вакуумной технике и предназначено для точной радиометрической калибровки, исследований и испытаний оптико-электронных и оптико-механических устройств, а также систем радиационного захолаживания в условиях вакуума, низких фоновых тепловых излучений и в условиях, имитирующих космическое пространство. Изобретение относится к оптико-электронной, оптико-механической и криогенно-вакуумной технике и предназначено для точной радиометрической калибровки, исследований и испытаний оптико-электронных и оптико-механических устройств в условиях вакуума, низких фоновых тепловых излучений и в условиях, имитирующих космическое пространство. Технический результат - повышение точности радиометрической калибровки и контроля характеристик аппаратуры, расширение видов измерительных режимов и испытаний, а также повышение эффективности процессов изготовления вакуумной камеры и создание условий высокого вакуума, низких фоновых тепловых излучений и условий, имитирующих космическое пространство за счет особенностей конструкции, сокращения времени рабочих процессов. 2 н.п. ф-лы, 1 ил.

Заявленная группа изобретений относится к оптико-электронной, оптико-механической и криогенно-вакуумной технике и предназначено для точной радиометрической калибровки, исследований и испытаний оптико-электронных и оптико-механических устройств, а также систем радиационного захолаживания в условиях вакуума, низких фоновых тепловых излучений и в условиях, имитирующих космическое пространство.

Из уровня техники известны способы и принципы построения вакуумных установок для калибровки, контроля характеристик и испытаний оптико-электронных и оптико-механических устройств. Существует два основных типа построения рассматриваемых установок.

Известные установки первого типа [1], включают в себя герметичный корпус, откачные системы и систему управления, однако имеют назначение только для проведения испытаний в условиях, имитирующих космическое пространство, не предполагая возможность проведения точной радиометрической калибровки, абсолютных измерений потоков спектрозонального и интегрального оптического излучения, и испытаний радиационных систем захолаживания.

В известные установки второго типа [2, 3, 4, 5] заложена возможность проведения радиометрической калибровки, измерений потоков спектрозонального и интегрального оптического излучения, однако данные технические решения существенно отличаются как по способу калибровки и обеспечения параметров рабочего пространства, так и по конструктивным особенностям от предлагаемых технических решений.

В качестве прототипа выбран принцип построения установки второго типа, описанный в работах [2, 3].

Недостатком известной криогенно-вакуумной установки [2, 3] является то, что она не обеспечивает позиционирование образцовой модели абсолютно черного тела (АЧТ) протяженного типа и других, необходимых для проведения калибровки, образцовых излучателей, в нужной конфигурации относительно входного окна крупногабаритного оптико-электронного устройства, т.к. данные модели АЧТ жестко встроены в торцевую дверь вакуумной камеры, которая при открывании перемещается вдоль горизонтальной оси цилиндрического корпуса камеры. При этом само крупногабаритное оптико-электронное устройство, как правило, невозможно перемещать и располагать внутри камеры в необходимых позициях относительно образцовой модели АЧТ, т.к. это перемещение ограничено размерами рабочего внутреннего пространства камеры. Кроме того рассматриваемый прототип не обеспечивает возможность калибровки других моделей АЧТ, т.к. это требует демонтажа образцовой модели АЧТ и установки вместо нее калибруемой модели АЧТ через вакуумный фланец.

Вторым недостатком большинства известных крупногабаритных вакуумных установок аналогичного назначения, включая описанную в работах [2, 3, 4, 5], является конструкция корпуса, имеющая вид цилиндра с круглым сечением, которая предполагает завышенные внешние габариты и необходимость оборудования внутри камеры плоского пола, уменьшающего размеры рабочего внутреннего пространства. Предлагаемое техническое решение конструкции корпуса камеры имеет вид параллелепипеда с прямоугольным сечением и ребра жесткости на стенках корпуса, обеспечивающие необходимую прочность.

Недостатком откачных систем аналогов также является отсутствие комбинации криогенных и турбомолекулярных насосов, которое позволяет значительно сократить время выхода на рабочий режим по вакууму и обеспечить как можно более раннее начало захолаживания криогенных экранов. Предлагаемое техническое решение предполагает использование комбинации турбомолекулярных (на магнитных подвесах) и криогенных насосов, а также высоковакуумных затворов, отделяющих объем камеры и входной фланец каждого насоса, и обеспечивает включение на начальном этапе процесса откачки в первую очередь турбомолекулярных насосов для обеспечения одновременной подготовительной высоковакуумной откачки и выхода на режим путем предварительного охлаждения криоконденсационных насосов до охлаждения криогенных экранов, а также первоочередное их выключение в процессе разогрева при окончании процедуры испытаний.

Техническим результатом изобретения является повышение точности радиометрической калибровки и контроля характеристик аппаратуры, расширение видов измерительных режимов и испытаний, а также повышение эффективности процессов изготовления вакуумной камеры и создания условий высокого вакуума, низких фоновых тепловых излучений и условий, имитирующих космическое пространство за счет особенностей конструкции, сокращения времени рабочих процессов, экономии жидкого азота при проведении исследований и испытаний оптико-электронных и оптико-механических устройств, а также систем радиационного захолаживания.

Технический результат достигается за счет создания способа радиометрической калибровки оптико-механических устройств в условиях вакуума, низких фоновых тепловых излучений и в условиях, имитирующих космическое пространство, включающего загрузку испытуемой аппаратуры внутрь криогенно-вакуумной камеры, откачку до высокого вакуума с помощью безмасляной системы откачки, захолаживание криогенных экранов и последующее проведение процедур радиометрической калибровки, контроля характеристик и испытаний, при этом основные образцовые излучатели, зеркальные проецирующие системы и системы их позиционирования изначально устанавливают внутри камеры, что обеспечивает создание единого измерительного комплекса и проведение радиометрической калибровки аппаратуры по одному или нескольким из режимов: режим радиометрической калибровки аппаратуры по абсолютной спектральной чувствительности, режим измерения спектральных характеристик аппаратуры, режим измерения пространственно-частотных характеристик аппаратуры, а также режим калибровки и метрологической аттестации образцовых излучателей методом компарирования; для откачки внутреннего объема криогенно-вакуумной установки до высокого вакуума используют комбинацию турбомолекулярных насосов на магнитных подвесах и криогенных насосов следующим образом: производят включение на начальном этапе процесса откачки в первую очередь турбомолекулярных насосов для обеспечения одновременной подготовительной высоковакуумной откачки объема камеры и выхода на режим путем охлаждения криогенных насосов при закрытых высоковакуумных затворах на них, после достижения рабочей температуры на криогенных насосах открывают соответствующие высоковакуумные затворы и при достижении рабочего вакуума охлаждают криогенные экраны; при окончании процедуры испытаний в процессе нагревания внутреннего объема камеры обеспечивают первоочередное выключение криогенных насосов.

Технический результат достигается также посредством создания криогенно-вакуумной установки, реализующей вышеуказанный способ и содержащей вакуумную камеру с криогенными радиационными экранами, безмасляную систему вакуумной откачки, контрольно-измерительные приборы и централизованную систему управления оборудованием, при этом образцовые излучатели, зеркальные проецирующие системы и системы их пространственного позиционирования, размещены внутри камеры; корпус вакуумной камеры выполнен в виде прямоугольного параллелепипеда с ребрами жесткости на стенках корпуса, обеспечивающими необходимую прочность; безмасляная система вакуумной откачки представляет собой высоковакуумную двухуровневую систему, снабженную турбомолекулярными насосами на магнитных подвесах и криогенными насосами, установленными непосредственно на боковой стенке вакуумной камеры, а также высоковакуумными затворами, отделяющими объем камеры и входной фланец каждого насоса.

Заявленная группа изобретений проиллюстрирована следующим чертежом:

Фиг. 1 - схема устройства предлагаемой криогенно-вакуумной установки, поясняющая ее работу.

Где:

1 - централизованная система управления оборудованием

2 - корпус вакуумной камеры в виде прямоугольного параллелепипеда с ребрами жесткости на стенках корпуса

3 - форвакуумные насосы

4 - турбомолекулярные насосы на магнитных подвесах

5 - криогенные насосы

6 - высоковакуумные затворы

7 - дверь вакуумной камеры

8 - система линейного перемещения

9 - направляющая для линейного перемещения двери

10 - внутреннее пространство вакуумной камеры

Криогенно-вакуумная установка имеет следующую конструкцию. На фиг. 1 показана схема устройства и общий вид предлагаемой криогенно-вакуумной установки, реализующей предлагаемый способ радиометрической калибровки, контроля характеристик и испытаний оптико-электронных устройств, оптико-механических устройств, а также систем радиационного захолаживания, которая содержит контрольно-измерительные приборы и централизованную систему управления оборудованием (1), корпус вакуумной камеры выполнен в виде прямоугольного параллелепипеда с ребрами жесткости на стенках корпуса (2), обеспечивающими необходимую прочность; безмасляная система вакуумной откачки представляет собой высоковакуумную двухуровневую систему, снабженную форвакуумными насосами (3), а также турбомолекулярными насосами на магнитных подвесах (4) и криогенными насосами (5), установленными непосредственно на боковой стенке вакуумной камеры. Высоковакуумные затворы (6), отделяют объем камеры и входной фланец каждого насоса и при подаче соответствующей команды открываются. Передняя и/или задняя торцевая дверь вакуумной камеры (7) снабжена системой линейного перемещения (8), которая обеспечивает линейное перемещение двери вдоль установленной на полу направляющей (9) в боковую сторону относительно входа в камеру, открытие/герметичное закрытие двери/дверей и доступ во внутреннее пространство вакуумной камеры (10).

Способ радиометрической калибровки оптико-электронных устройств, оптико-механических устройств, а также систем радиационного захолаживания, заключается в том, что осуществляют загрузку испытуемой аппаратуры внутрь криогенно-вакуумной камеры, затем осуществляют откачку до высокого вакуума с помощью безмасляной системы откачки, захолаживание криогенных экранов и затем проводят процедуры радиометрической калибровки, контроля характеристик и испытаний. Основные образцовые излучатели, зеркальные проецирующие системы и системы их позиционирования изначально устанавливают внутри камеры, что обеспечивает создание единого измерительного комплекса и проведение радиометрической калибровки аппаратуры по одному или нескольким из режимов: режим радиометрической калибровки аппаратуры по абсолютной спектральной чувствительности, режим измерения спектральных характеристик аппаратуры, режим измерения пространственно-частотных характеристик аппаратуры, а также режим калибровки и метрологической аттестации образцовых излучателей методом компарирования. Для откачки внутреннего объема криогенно-вакуумной установки до высокого вакуума используют комбинацию турбомолекулярных насосов на магнитных подвесах и криогенных насосов следующим образом: производят включение на начальном этапе процесса откачки в первую очередь турбомолекулярных насосов для обеспечения одновременной подготовительной высоковакуумной откачки объема камеры и выхода на режим путем охлаждения криогенных насосов при закрытых высоковакуумных затворах на них, после достижения рабочей температуры на криогенных насосах открывают соответствующие высоковакуумные затворы и при достижении рабочего вакуума охлаждают криогенные экраны; при окончании процедуры испытаний в процессе нагревания внутреннего объема камеры обеспечивают первоочередное выключение криогенных насосов.

Использование предлагаемого технического решения дает следующие положительные результаты:

- увеличение достоверности радиометрической калибровки, исследований и испытаний оптико-электронных и оптико-механических устройств (аппаратуры), а также систем радиационного захолаживания (например, радиационных холодильников) в условиях вакуума, низких фоновых тепловых излучений и в условиях, имитирующих космическое пространство;

- снижение погрешностей радиометрической калибровки оптико-электронной аппаратуры, особенно инфракрасного диапазона (в части единства и точности воспроизведения и передачи абсолютных величин потока спектрозонального и интегрального оптического излучения);

- расширение видов измерительных режимов и испытаний аппаратуры;

- повышение эффективности процессов изготовления вакуумной камеры и ее размещения в рабочем помещении;

- экономия хладагента (например, жидкого азота), используемого при захолаживании криогенного экрана и электроэнергии, расходуемой на питание криогенно-вакуумной установки, сокращение времени на подготовку к проведению измерений и испытаний.

Предлагаемое техническое решение целесообразно использовать и в других отраслях промышленности, где требуются радиометрическая калибровка, исследования и испытания изделий и приборов, в указанных условиях.

Источники информации, принятые во внимание при экспертизе:

1. Стенд для тепловых испытаний космических объектов стенд [Текст]: пат. №2172709 Рос. Федерация: B64G 7/00 (2000.01) / Звездов Ю.П., Зяблов В.А., Соловьев М.М. // заявитель и патентообладатель: Открытое акционерное общество «Ракетно-космическая корпорация «Энергия» им. С.П. Королева». - №99120326/28; заявл. 23.09.1999; опубл. 27.08.2001 г. Бюл. №24.

2. Morozova S.P., Katysheva A.A., Panfilov A.S., Krutikov V.N., Lisyansky В.Е., Sapritsky V.I., Parfentyev N.A., Makolkin Е.V., Mitrofanov В.D., Preflight Spectral Radiance Infrared Calibration Facility // International Journal of Thermophysics. July 2014, Vol. 35, Issue 6-7, pp 1330-1340.

3. Панфилов A.C., Гаврилов B.P., Иванов B.C., Крутиков B.H., Лисянский Б.Е., Морозова С.П. и др., Новая эталонная база России для радиометрической калибровки оптической аппаратуры наблюдения Земли и оценка возможных уровней точности получаемых радиометрических данных // «Современные проблемы дистанционного зондирования Земли из космоса», 2011 г., т. 8, №2, с. 303-309.

4. Вакуумно-криогенный стенд [Текст]: пат. №2591737 Рос. Федерация: B64G 7/00 (2006.01), G01M 11/00 (2006.01) / Боровков Д.А., Бурец Г.А., Денисов Р.Н., Захаренков В.Ф., Пуйша А.Э., Олейников Л.Ш., Фомин Г.Н. // заявитель и патентообладатель: Акционерное общество «Государственный оптический институт им. С.И. Вавилова» (АО «ГОИ им. С.И. Вавилова»). - №2014147584/28; заявл. 25.11.2014; опубл. 10.06.2016 г. Бюл. №20.

5. Беднов С.М., Головин Ю.М., Завелевич Ф.С., Мацицкий Ю.П., Огарев С.А., Панфилов А.С., Самойлов М.Л., Саприцкий В.И., Хлевной Б.Б., Вопросы создания объединенного метрологического центра коллективного пользования для калибровки ИК аппаратуры ДЗЗ // Современные проблемы дистанционного зондирования Земли из космоса, 2006 г., В. 3, Т. 1, с. 163-169.


Способ радиометрической калибровки, контроля характеристик и испытаний оптико-электронных и оптико-механических устройств и криогенно-вакуумная установка, реализующая этот способ
Способ радиометрической калибровки, контроля характеристик и испытаний оптико-электронных и оптико-механических устройств и криогенно-вакуумная установка, реализующая этот способ
Источник поступления информации: Роспатент

Показаны записи 31-40 из 120.
29.08.2018
№218.016.80f9

Способ динамического контроля конфликтных ситуаций в сложных технических системах со средой облачных вычислений

Изобретение относится к области кибернетики. Технический результат заключается в расширении арсенала средств того же назначения. Способ динамического контроля конфликтных ситуаций в сложной технической системе со средой облачных вычислений, заключающийся в том, что в структуре сложной...
Тип: Изобретение
Номер охранного документа: 0002665224
Дата охранного документа: 28.08.2018
01.09.2018
№218.016.8249

Испаритель для системы терморегулирования космического аппарата

Изобретение относится к теплообменным устройствам с разомкнутым циклом, при котором испарение жидкого хладагента происходит непосредственно в окружающую среду (в т.ч. в космос), благодаря чему оно может быть использовано в космической технике. Предлагается испаритель для системы...
Тип: Изобретение
Номер охранного документа: 0002665565
Дата охранного документа: 31.08.2018
01.09.2018
№218.016.8266

Двухзеркальная антенна с механическим нацеливанием

Изобретение относится к антенной технике, в частности к антеннам космических аппаратов. Двухзеркальная антенна с механическим нацеливанием содержит систему поворотных зеркал, где зеркало контррефлектора расположено под углом 45° к оси вращения в горизонтальной плоскости, а зеркало рефлектора...
Тип: Изобретение
Номер охранного документа: 0002665495
Дата охранного документа: 30.08.2018
14.09.2018
№218.016.8793

Способ сборки космической головной части

Изобретение относится к ракетно-космической технике. В способе сборки космической головной части (КГЧ), содержащей полезную нагрузку, переходной отсек, головной обтекатель (ГО), соединенные между собой в вертикальном положении, перед сборкой ГО на каждый из верхних полубандажей створок ГО...
Тип: Изобретение
Номер охранного документа: 0002667005
Дата охранного документа: 13.09.2018
22.09.2018
№218.016.88bb

Система терморегулирования на базе двухфазного теплового контура

Изобретение относится к области теплотехники, в частности к системам терморегулирования на базе двухфазного теплопередающего контура в виде замкнутой испарительно-конденсационной системы с капиллярным насосом, и может быть использовано в различных теплопередающих устройствах, применяемых в...
Тип: Изобретение
Номер охранного документа: 0002667249
Дата охранного документа: 18.09.2018
25.09.2018
№218.016.8b35

Устройство для защиты космического аппарата от столкновения с активно сближающимся объектом

Изобретение относится к космической технике. Защиту космического аппарата от столкновения с активно сближающимся объектом осуществляют по регистрации непрерывной последовательности сигналов с нарастающей амплитудой в оптическом диапазоне спектра, что позволяет определить пространственную...
Тип: Изобретение
Номер охранного документа: 0002667673
Дата охранного документа: 24.09.2018
03.10.2018
№218.016.8d91

Способ предотвращения контакта космического аппарата с активно сближающимся объектом

Изобретение относится к космической технике. В способе предотвращения контакта космического аппарата (КА) с активно сближающимся объектом с использованием приемных датчиков регистрации внешнего излучения на внутренней стороне оболочки, выполненной в виде тела вращения вокруг КА, или ее части,...
Тип: Изобретение
Номер охранного документа: 0002668378
Дата охранного документа: 28.09.2018
03.10.2018
№218.016.8def

Способ работы капельного холодильника-излучателя

Изобретение относится к способам отвода тепла от космических аппаратов и применяется для работы капельного холодильника-излучателя. В способе работы капельного холодильника-излучателя, включающем нагрев теплоносителя капельного холодильника-излучателя в энергетической системе космического...
Тип: Изобретение
Номер охранного документа: 0002668386
Дата охранного документа: 28.09.2018
04.10.2018
№218.016.8eef

Способ горячего прессования труднодеформируемых сплавов

Изобретение относится к области обработки металлов давлением и может быть использовано при горячем прессовании прутков из труднодеформируемых сплавов, в частности из порошковых алюминиевых труднодеформируемых сплавов. Способ включает прессование заготовки из труднодеформируемого сплава,...
Тип: Изобретение
Номер охранного документа: 0002668646
Дата охранного документа: 02.10.2018
11.10.2018
№218.016.904f

Устройство удержания и освобождения трансформируемых механических систем космического аппарата

Изобретение относится к ракетно-космической технике. Устройство удержания и освобождения трансформируемых механических систем КА содержит замок на основе болтового соединения, состоящий из стационарной и отделяемой частей. Стационарная часть включает в себя корпус, разрезную гайку, сепаратор,...
Тип: Изобретение
Номер охранного документа: 0002669246
Дата охранного документа: 09.10.2018
Показаны записи 21-23 из 23.
27.12.2019
№219.017.f3b3

Способ измерения спектральных характеристик в видимом и инфракрасном спектральных диапазонах и установка, реализующая этот способ

Изобретение относится к области измерительной техники и касается способа измерения спектральных характеристик. Способ включает в себя два цикла, длина оптического пути которых одинакова. Первый цикл включает измерение спектральной характеристики схемы измерительного тракта, которая содержит...
Тип: Изобретение
Номер охранного документа: 0002710382
Дата охранного документа: 26.12.2019
19.03.2020
№220.018.0db6

Мобильная вышка для навешивания поддержек стеблей хмеля

Изобретение относится к области сельскохозяйственного машиностроения. Мобильная вышка содержит несущую раму (3), установленную на двухколесной оси, прицепное устройство (2), рабочую площадку (6) с механизмом подъема. Механизм подъема расположен на раме и выполнен в виде нюрнбергских ножниц,...
Тип: Изобретение
Номер охранного документа: 0002716980
Дата охранного документа: 17.03.2020
20.05.2023
№223.018.66ce

Устройство для испытания форсунок непосредственно на двигателе

Изобретение относится к двигателестроению, в частности к испытаниям элементов и узлов топливной аппаратуры дизеля и предназначено для испытания плунжерных пар и нагнетательных клапанов автотракторных двигателей непосредственно на насосе. Устройство укомплектовано топливопроводом высокого...
Тип: Изобретение
Номер охранного документа: 0002752788
Дата охранного документа: 05.08.2021
+ добавить свой РИД