×
05.03.2020
220.018.08f1

Результат интеллектуальной деятельности: Способ радиометрической калибровки, контроля характеристик и испытаний оптико-электронных и оптико-механических устройств и криогенно-вакуумная установка, реализующая этот способ

Вид РИД

Изобретение

Аннотация: Заявленная группа изобретений относится к оптико-электронной, оптико-механической и криогенно-вакуумной технике и предназначено для точной радиометрической калибровки, исследований и испытаний оптико-электронных и оптико-механических устройств, а также систем радиационного захолаживания в условиях вакуума, низких фоновых тепловых излучений и в условиях, имитирующих космическое пространство. Изобретение относится к оптико-электронной, оптико-механической и криогенно-вакуумной технике и предназначено для точной радиометрической калибровки, исследований и испытаний оптико-электронных и оптико-механических устройств в условиях вакуума, низких фоновых тепловых излучений и в условиях, имитирующих космическое пространство. Технический результат - повышение точности радиометрической калибровки и контроля характеристик аппаратуры, расширение видов измерительных режимов и испытаний, а также повышение эффективности процессов изготовления вакуумной камеры и создание условий высокого вакуума, низких фоновых тепловых излучений и условий, имитирующих космическое пространство за счет особенностей конструкции, сокращения времени рабочих процессов. 2 н.п. ф-лы, 1 ил.

Заявленная группа изобретений относится к оптико-электронной, оптико-механической и криогенно-вакуумной технике и предназначено для точной радиометрической калибровки, исследований и испытаний оптико-электронных и оптико-механических устройств, а также систем радиационного захолаживания в условиях вакуума, низких фоновых тепловых излучений и в условиях, имитирующих космическое пространство.

Из уровня техники известны способы и принципы построения вакуумных установок для калибровки, контроля характеристик и испытаний оптико-электронных и оптико-механических устройств. Существует два основных типа построения рассматриваемых установок.

Известные установки первого типа [1], включают в себя герметичный корпус, откачные системы и систему управления, однако имеют назначение только для проведения испытаний в условиях, имитирующих космическое пространство, не предполагая возможность проведения точной радиометрической калибровки, абсолютных измерений потоков спектрозонального и интегрального оптического излучения, и испытаний радиационных систем захолаживания.

В известные установки второго типа [2, 3, 4, 5] заложена возможность проведения радиометрической калибровки, измерений потоков спектрозонального и интегрального оптического излучения, однако данные технические решения существенно отличаются как по способу калибровки и обеспечения параметров рабочего пространства, так и по конструктивным особенностям от предлагаемых технических решений.

В качестве прототипа выбран принцип построения установки второго типа, описанный в работах [2, 3].

Недостатком известной криогенно-вакуумной установки [2, 3] является то, что она не обеспечивает позиционирование образцовой модели абсолютно черного тела (АЧТ) протяженного типа и других, необходимых для проведения калибровки, образцовых излучателей, в нужной конфигурации относительно входного окна крупногабаритного оптико-электронного устройства, т.к. данные модели АЧТ жестко встроены в торцевую дверь вакуумной камеры, которая при открывании перемещается вдоль горизонтальной оси цилиндрического корпуса камеры. При этом само крупногабаритное оптико-электронное устройство, как правило, невозможно перемещать и располагать внутри камеры в необходимых позициях относительно образцовой модели АЧТ, т.к. это перемещение ограничено размерами рабочего внутреннего пространства камеры. Кроме того рассматриваемый прототип не обеспечивает возможность калибровки других моделей АЧТ, т.к. это требует демонтажа образцовой модели АЧТ и установки вместо нее калибруемой модели АЧТ через вакуумный фланец.

Вторым недостатком большинства известных крупногабаритных вакуумных установок аналогичного назначения, включая описанную в работах [2, 3, 4, 5], является конструкция корпуса, имеющая вид цилиндра с круглым сечением, которая предполагает завышенные внешние габариты и необходимость оборудования внутри камеры плоского пола, уменьшающего размеры рабочего внутреннего пространства. Предлагаемое техническое решение конструкции корпуса камеры имеет вид параллелепипеда с прямоугольным сечением и ребра жесткости на стенках корпуса, обеспечивающие необходимую прочность.

Недостатком откачных систем аналогов также является отсутствие комбинации криогенных и турбомолекулярных насосов, которое позволяет значительно сократить время выхода на рабочий режим по вакууму и обеспечить как можно более раннее начало захолаживания криогенных экранов. Предлагаемое техническое решение предполагает использование комбинации турбомолекулярных (на магнитных подвесах) и криогенных насосов, а также высоковакуумных затворов, отделяющих объем камеры и входной фланец каждого насоса, и обеспечивает включение на начальном этапе процесса откачки в первую очередь турбомолекулярных насосов для обеспечения одновременной подготовительной высоковакуумной откачки и выхода на режим путем предварительного охлаждения криоконденсационных насосов до охлаждения криогенных экранов, а также первоочередное их выключение в процессе разогрева при окончании процедуры испытаний.

Техническим результатом изобретения является повышение точности радиометрической калибровки и контроля характеристик аппаратуры, расширение видов измерительных режимов и испытаний, а также повышение эффективности процессов изготовления вакуумной камеры и создания условий высокого вакуума, низких фоновых тепловых излучений и условий, имитирующих космическое пространство за счет особенностей конструкции, сокращения времени рабочих процессов, экономии жидкого азота при проведении исследований и испытаний оптико-электронных и оптико-механических устройств, а также систем радиационного захолаживания.

Технический результат достигается за счет создания способа радиометрической калибровки оптико-механических устройств в условиях вакуума, низких фоновых тепловых излучений и в условиях, имитирующих космическое пространство, включающего загрузку испытуемой аппаратуры внутрь криогенно-вакуумной камеры, откачку до высокого вакуума с помощью безмасляной системы откачки, захолаживание криогенных экранов и последующее проведение процедур радиометрической калибровки, контроля характеристик и испытаний, при этом основные образцовые излучатели, зеркальные проецирующие системы и системы их позиционирования изначально устанавливают внутри камеры, что обеспечивает создание единого измерительного комплекса и проведение радиометрической калибровки аппаратуры по одному или нескольким из режимов: режим радиометрической калибровки аппаратуры по абсолютной спектральной чувствительности, режим измерения спектральных характеристик аппаратуры, режим измерения пространственно-частотных характеристик аппаратуры, а также режим калибровки и метрологической аттестации образцовых излучателей методом компарирования; для откачки внутреннего объема криогенно-вакуумной установки до высокого вакуума используют комбинацию турбомолекулярных насосов на магнитных подвесах и криогенных насосов следующим образом: производят включение на начальном этапе процесса откачки в первую очередь турбомолекулярных насосов для обеспечения одновременной подготовительной высоковакуумной откачки объема камеры и выхода на режим путем охлаждения криогенных насосов при закрытых высоковакуумных затворах на них, после достижения рабочей температуры на криогенных насосах открывают соответствующие высоковакуумные затворы и при достижении рабочего вакуума охлаждают криогенные экраны; при окончании процедуры испытаний в процессе нагревания внутреннего объема камеры обеспечивают первоочередное выключение криогенных насосов.

Технический результат достигается также посредством создания криогенно-вакуумной установки, реализующей вышеуказанный способ и содержащей вакуумную камеру с криогенными радиационными экранами, безмасляную систему вакуумной откачки, контрольно-измерительные приборы и централизованную систему управления оборудованием, при этом образцовые излучатели, зеркальные проецирующие системы и системы их пространственного позиционирования, размещены внутри камеры; корпус вакуумной камеры выполнен в виде прямоугольного параллелепипеда с ребрами жесткости на стенках корпуса, обеспечивающими необходимую прочность; безмасляная система вакуумной откачки представляет собой высоковакуумную двухуровневую систему, снабженную турбомолекулярными насосами на магнитных подвесах и криогенными насосами, установленными непосредственно на боковой стенке вакуумной камеры, а также высоковакуумными затворами, отделяющими объем камеры и входной фланец каждого насоса.

Заявленная группа изобретений проиллюстрирована следующим чертежом:

Фиг. 1 - схема устройства предлагаемой криогенно-вакуумной установки, поясняющая ее работу.

Где:

1 - централизованная система управления оборудованием

2 - корпус вакуумной камеры в виде прямоугольного параллелепипеда с ребрами жесткости на стенках корпуса

3 - форвакуумные насосы

4 - турбомолекулярные насосы на магнитных подвесах

5 - криогенные насосы

6 - высоковакуумные затворы

7 - дверь вакуумной камеры

8 - система линейного перемещения

9 - направляющая для линейного перемещения двери

10 - внутреннее пространство вакуумной камеры

Криогенно-вакуумная установка имеет следующую конструкцию. На фиг. 1 показана схема устройства и общий вид предлагаемой криогенно-вакуумной установки, реализующей предлагаемый способ радиометрической калибровки, контроля характеристик и испытаний оптико-электронных устройств, оптико-механических устройств, а также систем радиационного захолаживания, которая содержит контрольно-измерительные приборы и централизованную систему управления оборудованием (1), корпус вакуумной камеры выполнен в виде прямоугольного параллелепипеда с ребрами жесткости на стенках корпуса (2), обеспечивающими необходимую прочность; безмасляная система вакуумной откачки представляет собой высоковакуумную двухуровневую систему, снабженную форвакуумными насосами (3), а также турбомолекулярными насосами на магнитных подвесах (4) и криогенными насосами (5), установленными непосредственно на боковой стенке вакуумной камеры. Высоковакуумные затворы (6), отделяют объем камеры и входной фланец каждого насоса и при подаче соответствующей команды открываются. Передняя и/или задняя торцевая дверь вакуумной камеры (7) снабжена системой линейного перемещения (8), которая обеспечивает линейное перемещение двери вдоль установленной на полу направляющей (9) в боковую сторону относительно входа в камеру, открытие/герметичное закрытие двери/дверей и доступ во внутреннее пространство вакуумной камеры (10).

Способ радиометрической калибровки оптико-электронных устройств, оптико-механических устройств, а также систем радиационного захолаживания, заключается в том, что осуществляют загрузку испытуемой аппаратуры внутрь криогенно-вакуумной камеры, затем осуществляют откачку до высокого вакуума с помощью безмасляной системы откачки, захолаживание криогенных экранов и затем проводят процедуры радиометрической калибровки, контроля характеристик и испытаний. Основные образцовые излучатели, зеркальные проецирующие системы и системы их позиционирования изначально устанавливают внутри камеры, что обеспечивает создание единого измерительного комплекса и проведение радиометрической калибровки аппаратуры по одному или нескольким из режимов: режим радиометрической калибровки аппаратуры по абсолютной спектральной чувствительности, режим измерения спектральных характеристик аппаратуры, режим измерения пространственно-частотных характеристик аппаратуры, а также режим калибровки и метрологической аттестации образцовых излучателей методом компарирования. Для откачки внутреннего объема криогенно-вакуумной установки до высокого вакуума используют комбинацию турбомолекулярных насосов на магнитных подвесах и криогенных насосов следующим образом: производят включение на начальном этапе процесса откачки в первую очередь турбомолекулярных насосов для обеспечения одновременной подготовительной высоковакуумной откачки объема камеры и выхода на режим путем охлаждения криогенных насосов при закрытых высоковакуумных затворах на них, после достижения рабочей температуры на криогенных насосах открывают соответствующие высоковакуумные затворы и при достижении рабочего вакуума охлаждают криогенные экраны; при окончании процедуры испытаний в процессе нагревания внутреннего объема камеры обеспечивают первоочередное выключение криогенных насосов.

Использование предлагаемого технического решения дает следующие положительные результаты:

- увеличение достоверности радиометрической калибровки, исследований и испытаний оптико-электронных и оптико-механических устройств (аппаратуры), а также систем радиационного захолаживания (например, радиационных холодильников) в условиях вакуума, низких фоновых тепловых излучений и в условиях, имитирующих космическое пространство;

- снижение погрешностей радиометрической калибровки оптико-электронной аппаратуры, особенно инфракрасного диапазона (в части единства и точности воспроизведения и передачи абсолютных величин потока спектрозонального и интегрального оптического излучения);

- расширение видов измерительных режимов и испытаний аппаратуры;

- повышение эффективности процессов изготовления вакуумной камеры и ее размещения в рабочем помещении;

- экономия хладагента (например, жидкого азота), используемого при захолаживании криогенного экрана и электроэнергии, расходуемой на питание криогенно-вакуумной установки, сокращение времени на подготовку к проведению измерений и испытаний.

Предлагаемое техническое решение целесообразно использовать и в других отраслях промышленности, где требуются радиометрическая калибровка, исследования и испытания изделий и приборов, в указанных условиях.

Источники информации, принятые во внимание при экспертизе:

1. Стенд для тепловых испытаний космических объектов стенд [Текст]: пат. №2172709 Рос. Федерация: B64G 7/00 (2000.01) / Звездов Ю.П., Зяблов В.А., Соловьев М.М. // заявитель и патентообладатель: Открытое акционерное общество «Ракетно-космическая корпорация «Энергия» им. С.П. Королева». - №99120326/28; заявл. 23.09.1999; опубл. 27.08.2001 г. Бюл. №24.

2. Morozova S.P., Katysheva A.A., Panfilov A.S., Krutikov V.N., Lisyansky В.Е., Sapritsky V.I., Parfentyev N.A., Makolkin Е.V., Mitrofanov В.D., Preflight Spectral Radiance Infrared Calibration Facility // International Journal of Thermophysics. July 2014, Vol. 35, Issue 6-7, pp 1330-1340.

3. Панфилов A.C., Гаврилов B.P., Иванов B.C., Крутиков B.H., Лисянский Б.Е., Морозова С.П. и др., Новая эталонная база России для радиометрической калибровки оптической аппаратуры наблюдения Земли и оценка возможных уровней точности получаемых радиометрических данных // «Современные проблемы дистанционного зондирования Земли из космоса», 2011 г., т. 8, №2, с. 303-309.

4. Вакуумно-криогенный стенд [Текст]: пат. №2591737 Рос. Федерация: B64G 7/00 (2006.01), G01M 11/00 (2006.01) / Боровков Д.А., Бурец Г.А., Денисов Р.Н., Захаренков В.Ф., Пуйша А.Э., Олейников Л.Ш., Фомин Г.Н. // заявитель и патентообладатель: Акционерное общество «Государственный оптический институт им. С.И. Вавилова» (АО «ГОИ им. С.И. Вавилова»). - №2014147584/28; заявл. 25.11.2014; опубл. 10.06.2016 г. Бюл. №20.

5. Беднов С.М., Головин Ю.М., Завелевич Ф.С., Мацицкий Ю.П., Огарев С.А., Панфилов А.С., Самойлов М.Л., Саприцкий В.И., Хлевной Б.Б., Вопросы создания объединенного метрологического центра коллективного пользования для калибровки ИК аппаратуры ДЗЗ // Современные проблемы дистанционного зондирования Земли из космоса, 2006 г., В. 3, Т. 1, с. 163-169.


Способ радиометрической калибровки, контроля характеристик и испытаний оптико-электронных и оптико-механических устройств и криогенно-вакуумная установка, реализующая этот способ
Способ радиометрической калибровки, контроля характеристик и испытаний оптико-электронных и оптико-механических устройств и криогенно-вакуумная установка, реализующая этот способ
Источник поступления информации: Роспатент

Показаны записи 101-110 из 120.
08.09.2019
№219.017.c93b

Способ создания беспроводной сети, содержащей множество устройств

Изобретение относится к области вычислительной техники. Технический результат заключается в повышении надежности сети. Способ содержит этапы, на которых: создают физическое беспроводное соединение каждого устройства за счет наличия в нем ретранслятора, по меньшей мере, с одним другим...
Тип: Изобретение
Номер охранного документа: 0002699575
Дата охранного документа: 06.09.2019
02.10.2019
№219.017.ce32

Фотопреобразователь с hit структурой и технология его изготовления

Изобретение относится к солнечным элементам (СЭ) с HIT структурой на основе кристаллического кремния. Фотопреобразователь с HIT структурой на основе кристаллического кремния с α-Si - c-Si гетеропереходами с тонким внутренним i-слоем из α-Si содержит эмиттер - α-Si (р), базу - c-Si (n),...
Тип: Изобретение
Номер охранного документа: 0002700046
Дата охранного документа: 12.09.2019
16.11.2019
№219.017.e32a

Гибкая прецизионная плата

Изобретение направлено на создание высокоплотной межблочной коммутации гибкими печатными платами (шлейфами) для подвижных частей микроэлектронной аппаратуры. Технический результат - повышение плотности упаковки ячеек и блоков, а также снижение массы соединительных элементов для минимизации...
Тип: Изобретение
Номер охранного документа: 0002706213
Дата охранного документа: 15.11.2019
22.11.2019
№219.017.e546

Способ ориентации космического аппарата

При управлении космическим аппаратом с использованием исправного бортового компьютера при входе в теневой участок запускают таймер, предусмотренный в блоке управления космического аппарата, с продолжительностью, равной максимальной продолжительности теневого участка; после выхода из теневого...
Тип: Изобретение
Номер охранного документа: 0002706743
Дата охранного документа: 20.11.2019
29.11.2019
№219.017.e7bf

Свето- и теплозащитное устройство космического аппарата и способ его раскрытия и стабилизации

Группа изобретений относится к области защиты конструкций космических аппаратов (КА) от внешних факторов космоса. Предлагаемое устройство содержит экран и удерживающее приспособление. Экран имеет гибкую конструкцию (ГК), выполненную из теплостойкой прокладочной стеклоткани и арамидной ткани,...
Тип: Изобретение
Номер охранного документа: 0002707489
Дата охранного документа: 26.11.2019
06.12.2019
№219.017.e9eb

Формирователь матричных команд

Изобретение относится к устройствам автоматики и может найти применение в устройствах управления ракетно-космической техники. Технический результат заключается в повышении надежности устройства путем контроля кода выданной команды и исключении возможности создания помех путем введения...
Тип: Изобретение
Номер охранного документа: 0002707913
Дата охранного документа: 02.12.2019
13.12.2019
№219.017.ed06

Способ сбора телеметрической информации о состоянии объектов ркт при транспортировании с помощью беспроводной сенсорной сети zigbee

Изобретение относится к контрольно-измерительной технике с применением беспроводных сенсорных сетей. Технический результат заключается в использовании самоорганизующейся беспроводной сенсорной сети, основанной на протоколе передачи данных стандарта ZigBee совместно с датчиками, контролирующими...
Тип: Изобретение
Номер охранного документа: 0002708796
Дата охранного документа: 11.12.2019
27.12.2019
№219.017.f3d0

Фотопреобразователь с увеличенной фотоактивной площадью

Изобретение относится к области полупроводниковых приборов. Фотопреобразователь с увеличенной фотоактивной площадью включает полупроводниковую пластину, на лицевой стороне которой имеются полосковые контакты гребенчатой формы, контактные площадки, а на тыльной стороне – сплошной контакт....
Тип: Изобретение
Номер охранного документа: 0002710390
Дата охранного документа: 26.12.2019
17.01.2020
№220.017.f6ec

Способ оценки параметрических запасов работоспособности электронных устройств

Изобретение относится к контролю параметров электронных устройств. Способ оценки параметрических запасов работоспособности электронных устройств, заключающийся в воздействии на электронные устройства совокупностью эксплуатационных факторов по методологии математического планирования...
Тип: Изобретение
Номер охранного документа: 0002711087
Дата охранного документа: 15.01.2020
09.02.2020
№220.018.0140

Способ прессования металлических слитков и пресс для его осуществления

Изобретение относится к обработке металлов давлением и может быть использовано при получении заготовок с однородной мелкокристаллической структурой. Осуществляют многократное прямое выдавливание и осадку заготовки с сохранением ее первоначальной формы и размеров после каждого цикла деформации....
Тип: Изобретение
Номер охранного документа: 0002713764
Дата охранного документа: 07.02.2020
Показаны записи 21-23 из 23.
27.12.2019
№219.017.f3b3

Способ измерения спектральных характеристик в видимом и инфракрасном спектральных диапазонах и установка, реализующая этот способ

Изобретение относится к области измерительной техники и касается способа измерения спектральных характеристик. Способ включает в себя два цикла, длина оптического пути которых одинакова. Первый цикл включает измерение спектральной характеристики схемы измерительного тракта, которая содержит...
Тип: Изобретение
Номер охранного документа: 0002710382
Дата охранного документа: 26.12.2019
19.03.2020
№220.018.0db6

Мобильная вышка для навешивания поддержек стеблей хмеля

Изобретение относится к области сельскохозяйственного машиностроения. Мобильная вышка содержит несущую раму (3), установленную на двухколесной оси, прицепное устройство (2), рабочую площадку (6) с механизмом подъема. Механизм подъема расположен на раме и выполнен в виде нюрнбергских ножниц,...
Тип: Изобретение
Номер охранного документа: 0002716980
Дата охранного документа: 17.03.2020
20.05.2023
№223.018.66ce

Устройство для испытания форсунок непосредственно на двигателе

Изобретение относится к двигателестроению, в частности к испытаниям элементов и узлов топливной аппаратуры дизеля и предназначено для испытания плунжерных пар и нагнетательных клапанов автотракторных двигателей непосредственно на насосе. Устройство укомплектовано топливопроводом высокого...
Тип: Изобретение
Номер охранного документа: 0002752788
Дата охранного документа: 05.08.2021
+ добавить свой РИД