×
02.03.2020
220.018.0829

Результат интеллектуальной деятельности: Компоновка низа бурильной колонны для бурения боковых стволов из горизонтальной части необсаженной скважины

Вид РИД

Изобретение

№ охранного документа
0002715482
Дата охранного документа
28.02.2020
Аннотация: Изобретение относится к техническим средствам для бурения боковых стволов из горизонтальной части необсаженной скважины, в частности к устройствам для бурения с применением длинномерных гибких труб (колтюбинга). Технический результат - контроль внутрискважинных параметров и определение положения компоновки низа бурильной колонны (КНБК) в режиме реального времени, регулирование интенсивности искривления ствола скважины в зависимости от угла перекоса двигателя и диаметра скважины, увеличение скорости проходки долота при бурении бокового ствола, что сокращает время проведения работ и снижает затраты. Компоновка низа бурильной колонны − КНБК для бурения боковых стволов включает последовательно размещённые снизу вверх долото, винтовой забойный двигатель – ВЗД, длинномерные гибкие трубы – ДГТ, после долота размещен осциллятор-турбулизатор, после ВЗД размещены узел изменения перекоса долота на заданный диапазон углов α от 0 до 3°, телесистема с соединительным узлом. Узел изменения перекоса долота состоит из верхнего и нижнего переводников, сердечника и зубчатой муфты, которая армирована твердосплавными зубками. Телесистема состоит из корпуса, выполненного из легкосплавной бурильной трубы, в корпусе последовательно снизу вверх размещены узлы: отклонитель, модуль нагрузки, инклинометр, блок питания и связи. При этом между узлами в корпусе телесистемы установлены три гибких центратора, выполненные в виде кольца, на наружной поверхности которого приварены три подпружиненных фонаря из листовой стали. Корпус телесистемы снаружи с обоих концов оснащён жёсткими центраторами, выполненными в виде колец, на наружной поверхности которых сделаны соответствующие переточные каналы в виде продольных цилиндрических проточек с возможностью перетока рабочей жидкости. Телесистема соединена геофизическим кабелем, запассованным внутрь колонны ДГТ через геофизический наконечник с наземным оборудованием. При этом выше геофизического наконечника на внутренней поверхности корпуса телесистемы выполнены насечки, обеспечивающие возможность захвата корпуса телесистемы. Соединительный узел выполнен в виде механического разъединителя, представляющего собой срезной штифт, разрушающийся при расчётной нагрузке. 3 ил.

Изобретение относится к техническим средствам для бурения боковых стволов из горизонтальной части необсаженной скважины, в частности к устройствам для бурения с применением длинномерных гибких труб (колтюбинга).

Известна компоновка низа бурильной колонны (КНБК) для бурения наклонно-направленных и горизонтальных скважин винтовым забойным двигателем (патент RU №2280748, МПК Е21В 7/04, опубл. 27.07.2006 г., в бюл. №21), состоящая из бурильной колонны, долота, винтового забойного двигателя и установленной между нижней трубой бурильной колонны и винтовым забойным двигателем телескопической системы, включающей цилиндр, выполненный в нижней части с отверстиями и соединенный с бурильной колонной, и расположенный внутри него полый поршень, соединенный с корпусом двигателя, при этом компоновка снабжена неподвижным золотником, выполненным в виде втулки с эластичным хвостовиком и установленным в цилиндре выше его отверстий, причем эластичный хвостовик для входа в него поршня выполнен с конической поверхностью и с кольцевыми канавками, в которых размещены кольцевые уплотнения из эластомерного материала.

Недостатками компоновки являются:

- во-первых, невозможность управлять траекторией бурения бокового ствола из горизонтальной части необсаженной скважины из-за отсутствия в составе устройства геофизической навигации с контролем траектории бурения бокового ствола в режиме реального времени;

- во-вторых, не обеспечивается контроль внутрискважинных параметров и определение положения КНБК в режиме реального времени, что приводит к отклонению бокового ствола от заданной траектории и высокой вероятности вскрытия водоносного пласта и обводнения основного горизонтального ствола;

- в-третьих, низкая скорость бурения бокового ствола скважины, обусловленная увеличением нагрузки на долото вследствие роста глубины скважины и твердости пород;

- в-четвертых, низкая надежность работы КНБК, связанная с высокой вероятностью прихвата КНБК из-за образования шламовых подушек в процессе бурения из бокового ствола горизонтальной части необсаженной скважины, чему способствуют жесткие центраторы без переточных каналов и утяжеленная бурильная труба;

- в-пятых, невозможность отсоединения КНБК от колонны труб при образовании прихвата КНБК и, как следствие, возникновение аварийной ситуации.

Наиболее близким по технической сущности и достигаемому результату является компоновка низа бурильной колонны (патент RU №2236538, МПК Е21В 7/06; Е21В 17/00, опубл. 20.09.2004 г., в бюл. №26), включающая последовательно размещенные снизу-вверх долото, винтовой забойный двигатель - ВЗД, длинномерные гибкие трубы (ДГТ). Дополнительно КНБК оснащена центраторами, размещенными после долота, утяжеленной бурильной трубой, размещенной после забойного двигателя. При этом КНБК снабжена двигательной эксцентричной рабочей парой, состоящей из корпуса, в котором установлен винтовой элемент, жестко соединенный с ДГТ, причем на обоих концах корпуса установлены переводники с сальниковыми уплотнениями, а на наружной поверхности корпуса и переводников размещены ребра, установленные под углом к оси компоновки.

Недостатками компоновки являются:

- во-первых, невозможность управлять траекторией бурения бокового ствола из горизонтальной части необсаженной скважины из-за отсутствия в составе устройства геофизической навигации с контролем траектории бурения бокового ствола в режиме реального времени;

- во-вторых, не обеспечивается контроль внутрискважинных параметров и определение положения КНБК в режиме реального времени, что приводит к отклонению бокового ствола от заданной траектории и высокой вероятности вскрытия водоносного пласта и обводнения основного горизонтального ствола;

- в-третьих, невозможно отрегулировать интенсивность искривления бокового ствола скважины в зависимости от угла перекоса двигателя и диаметра скважины ввиду отсутствия в составе забойного двигателя узла изменения перекоса долота;

- в-четвертых, низкая скорость бурения бокового ствола скважины, обусловленная увеличением нагрузки на долото вследствие роста глубины скважины и твердости пород;

- в-пятых, низкая надежность работы КНБК, связанная с высокой вероятностью прихвата КНБК из-за образования шламовых подушек в процессе бурения из бокового ствола из горизонтальной части необсаженной скважины, чему способствуют жесткие центраторы без переточных каналов и утяжеленная бурильная труба;

- в-шестых, невозможность отсоединения КНБК от колонны ДГТ при образовании прихвата КНБК и, как следствие, возникновение аварийной ситуации.

Техническими задачами изобретения являются разработка конструкции КНБК, позволяющей управлять траекторией бурения бокового ствола из горизонтальной части необсаженной скважины и обеспечивать контроль внутрискважинных параметров и определение положения КНБК в режиме реального времени с возможностью регулирования интенсивности искривления бокового ствола скважины в зависимости от угла перекоса двигателя и диаметра скважины, а также увеличение скорости бурения (проводки) бокового ствола, снижение возникновения аварийных ситуаций в скважине вследствие возможности отсоединения КНБК от колонны ДГТ при образовании прихвата КНБК.

Технические задачи решаются компоновкой низа бурильной колонны для бурения боковых стволов из горизонтальной части необсаженной скважины, включающей последовательно размещенные снизу-вверх долото, винтовой забойный двигатель - ВЗД, длинномерные гибкие трубы - ДГТ.

Новым является то, что дополнительно после долота размещен осциллятор-турбулизатор, после ВЗД размещены узел изменения перекоса долота на заданный диапазон углов а от 0 до 3°, телесистема с соединительным узлом, узел изменения перекоса долота состоит из верхнего и нижнего переводников, сердечника и зубчатой муфты, которая армирована твердосплавными зубками, телесистема состоит из корпуса, выполненного из легкосплавной бурильной трубы, в корпусе последовательно снизу-вверх размещены узлы: отклонитель, модуль нагрузки, инклинометр, блоком питания и связи, при этом между узлами в корпусе телесистемы установлены три гибких центратора, выполненные в виде кольца, на наружной поверхности которого приварены три подпружиненных фонаря из листовой стали, корпус телесистемы снаружи с обоих концов оснащен жесткими центраторами, выполненными в виде колец, на наружной поверхности которых сделаны соответствующие переточные каналы в виде продольных цилиндрических проточек с возможностью перетока рабочей жидкости, причем наружный диаметр жестких центраторов равен диаметру долота, телесистема соединена геофизическим кабелем, запассованным внутрь колонны ДГТ через геофизический наконечник с наземным оборудованием, при этом выше геофизического наконечника на внутренней поверхности корпуса телесистемы выполнены насечки, обеспечивающие возможность захвата корпуса телесистемы, соединительный узел выполнен в виде механического разъединителя, представляющего собой срезной штифт, разрушающийся при расчетной нагрузке.

На фиг. 1 схематично изображена предлагаемая КНБК.

На фиг. 2 схематично изображена предлагаемая КНБК с углом перекоса.

На фиг. 3 в увеличенном виде схематично изображены кольцевые насечки, выполненные внутри в верхней части корпуса телесистемы противоположного направления насечкам ловильного инструмента с внутренним захватом.

КНБК для бурения бокового ствола 1 (фиг. 1-3) из горизонтальной части необсаженной скважины состоит из колонны ДГТ 2, например диаметром 44,55 мм, которая последовательно снизу-вверх оснащена долотом 3, например диаметром 68 мм, осциллятором-турбулизатором 4, ВЗД 5 с узлом изменения перекоса 6 долота 3 и телесистемой 7. Например, применяют ВЗД 5 диаметром 54 мм с узлом изменения перекоса 6 на величину угла а от 0 до 3° марки Д-54РС производства ОАО «Радиус-Сервис» (Российская Федерация, г. Пермь), работы с которым осуществляют согласно руководства по эксплуатации.

Осциллятор-турбулизатор 4 соединен с долотом 3 и ВЗД 5 с помощью резьбового соединения. Осциллятор-турбулизатор 4 любой известной конструкции, например производства «РосПромБур».

Конструктивно узел изменения перекоса 6 долота 3 состоит из верхнего и нижнего переводников (на фиг. 1-3 не показано), сердечника и зубчатой муфты, которая в целях повышения износоустойчивости армирована твердосплавными зубками. Узел изменения перекоса 6 представляет собой механизм искривления (изменения) оси перекоса ВЗД 5 относительно оси КНБК в пробуриваемом боковом стволе 1 на заданный диапазон углов а от 0 до 3° (фиг. 2). Благодаря наличию в конструкции КНБК узла изменения перекоса 6 обеспечивается стабильность искривления и отсутствие резких перегибов бокового ствола 1.

Телесистема 7 состоит из корпуса 8, выполненного в виде легкосплавной бурильной трубы по ГОСТ 23786-79 из алюминиевого сплава ДТ 16 с химическим составом по ГОСТ 4748-74. В корпусе 8 последовательно размещены снизу-вверх узлы: модуль нагрузки 10, инклинометр 11, блок питания и связи 12.

Все узлы телесистемы 7 выполнены цилиндрической формы.

Отклонитель 9 регулирует направление бурения бокового ствола с изменением параметров азимутального и зенитного углов положения КНБК. Используют отклонитель 9 любого известного производителя, например гидравлический отклонитель марки «ОГГТ», конструкции института «ТатНИПИнефть» (Российская Федерация, Республика Татарстан, г. Бугульма).

Модуль осевой нагрузки и затрубного давления 10 обеспечивает измерения осевой нагрузки на долото 3 и давления в затрубном пространстве, например, осевую нагрузку в диапазоне от 0 до 100 кН и давление в диапазоне от 0 до 40 МПа. Используют модуль осевой нагрузки и затрубного давления 11. Используют модуль осевой нагрузки и затрубного давления 11 любого известного производителя, например марки "МОИ" производства ОАО НПФ "Геофизика" (РФ, Республика Башкортостан, г. Уфа).

Инклинометр 11 обеспечивает измерение инклинометрических параметров: азимутального и зенитного углов положения КНБК. Используют инклинометр 11 любого известного производителя, например марки "ИММН 36-100/40" производства ОАО НПФ "Геофизика" (Российская Федерация, Республика Башкортостан, г. Уфа).

Блок питания и связи 12 обеспечивает электрическим питанием отклонитель 9, модуль нагрузки 10, инклинометр 11, а также обеспечивает связь телесистемы 7 с наземным оборудованием через геофизический кабель 13, например трехжильный марки КГ 3×1,5-70-150 производства ЗАО «Кател» (Российская Федерация, г. Тверь).

Все узлы телесистемы 7 соединены между собой патрубками с резьбовыми соединениями на концах, а на патрубках жестко установлены гибкие центраторы 13, например с помощью резьбового соединения.

Все узлы в корпусе 8 телесистемы 7 разделены между собой соответственно тремя гибкими центраторами 13 (на фиг. 1 и 2 показаны условно), обеспечивающими соосность отклонителя 9, модуля нагрузки 10, инклинометра 11 относительно оси корпуса 8 телесистемы 7. Гибкие центраторы 13 (на фиг.1 показаны условно), выполненные в виде кольца, на наружной поверхности которого приварены три подпружиненных фонаря из листовой стали. Гибкие центраторы 13 жестко закреплены, например, с помощью сварного соединения на наружной поверхности патрубков (на фиг. 1 показаны условно).

Гибкие центраторы 13 являются гасителями радиальных и осевых нагрузок, возникающих в телесистеме 7 в процессе бурения бокового ствола 1.

Компоновка оснащена соединительным узлом 14 (фиг. 1), выполненным в виде механического разъединителя, представляющего собой срезной штифт, разрушающийся при расчетной нагрузке, например 60 кН.

Телесистема 7 соединена с геофизическим кабелем 15, запассованным внутрь колонны ДГТ 2 через телескопический наконечник 16. Управление телесистемой 7 осуществляется с наземного оборудования (на фиг. 1-3 не показано) через геофизический кабель 15 (фиг. 1, 2). Корпус 8 телесистемы 7 с обоих концов снаружи оснащен жесткими центраторами 17' и 17''. Жесткие центраторы 17' и 17'' изготовлены в виде колец, на наружной поверхности которых выполнены соответствующие переточные каналы 18' и 18''. Переточные каналы 18' и 18'' представляют собой продольные цилиндрические проточки с возможностью перетока рабочей жидкости в процессе работы устройства. Жесткие центраторы 17' и 17'' жестко закреплены на корпусе 8 телесистемы 7, например с помощью сварного соединения.

Наружные диаметры центраторов 17' и 17'' - dц (фиг. 1) равны диаметру долота 3 - Dд, т.е. (dц=Dд). Как указано выше, применяют долото 3 диаметром: Dд=68 мм. Тогда диаметр центраторов 17' и 17'' : dц=Dд=68 мм.

Внутри в верхней части корпуса 8 телесистемы 7 выполнены кольцевые насечки 19 (фиг. 2 и 3) противоположного направления насечкам 20 ловильного инструмента 21 (на фиг. 3 показано условно) с внутренним захватом.

Уплотнительное кольцо 22 обеспечивает герметичность при работе механического разъединителя 14.

КНБК для бурения бокового ствола из горизонтальной части необсаженной скважины работает следующим образом.

Перед спуском предлагаемой компоновки в горизонтальную часть необсаженной скважины спускают в требуемый интервал клин-отклонитель (на фиг. 1-3 не показано) любой известной конструкции, позволяющий сориентировать и отклонить предлагаемую КНБК для бурения бокового ствола в требуемом направлении.

На устье скважины собирают предлагаемую КНБК так, как показано на фиг. 1, при этом на узле изменения перекоса 6 долота 3 угол α равен нулю (на фиг. 1-3 не показано), т.е. ось узла изменения перекоса 6 (фиг. 1, 2) совпадает с осью ВЗД 5.

В процессе спуска КНБК в интервал забуривания для выполнения бокового ствола 1 из горизонтальной части необсаженной скважины КНБК проходит через клин отклонитель (на фиг. 1-3 не показано) и отклоняется от оси горизонтальной части необсаженной скважины, например на угол 4,0°. С помощью насосного агрегата в колонну ДГТ 2 (фиг. 1) производят закачку рабочей жидкости, например сточную воду плотностью 1050 кг/м3. Под действием рабочей жидкости начинает работать ВЗД 5. ВЗД 5 через осциллятор-турбулизатор 4 передает вращение на долото 3, которое забуривается в породу и начинается процесс бурения бокового ствола 1 из горизонтальной части необсаженной скважины. Например, производят зарезку бокового ствола 1 через клин - отклонитель, установленный на 976 м (нагрузка на долото 3 составляет 0,8 т, давление рабочей жидкости 12 МПа, расход рабочей жидкости 3,5 л/с, скорость проходки долота 3 в процессе бурения составляет 2,5 м3/час, затрубное давление 8 МПа). В процессе бурения бокового ствола 1 КНБК углубляется в породу, и бурят боковой ствол 1. Сначала зарезки и в процессе бурения бокового ствола 1 с телесистемы 7 по геофизическому кабелю 15 на наземное оборудование с комплектом программного обеспечения (на фиг. 1-3 не показано) передаются такие данные, как зенитный и азимутальный углы положения КНБК, затрубное давление и осевая нагрузки на долото в режиме реального времени.

Наземное оборудование состоит из блоков: приема-передачи, питания, измерения глубины, компьютера (на фиг. 1-3 не показано) и позволяет производить сбор данных, хранение и визуализацию, построение проектной и фактической траектории в процессе бурения бокового ствола 1 (фиг. 1), а также управление траекторией бурения.

В процессе бурения бокового ствола, например на глубине 998 м, возникает необходимость согласно проектной траектории бурения бокового ствола 1 искривить интенсивнее боковой ствол 1 и изменить траекторию бурения бокового ствола 1 (нисходящий, горизонтальный или восходящий с отклонением относительно азимута). Для этого изменяют угол узла изменения перекоса 6 долота 3, а также азимутальный и зенитный углы положения КНБК.

Для этого в режиме реального времени с помощью насосного агрегата (на фиг. 1-3 не показано), расположенного на устье скважины изменяют параметры расхода и давления закачки рабочей жидкости до требуемой величины. При достижении требуемых параметров происходит также изменение угла α узла изменения перекоса 6 долота 3 например, с величины α=0° на α=2° с целью увеличения интенсивности искривления ствола и диаметра бокового ствола 1. Поэтому чем больше угол α в диапазоне от 0° до 3°, тем интенсивнее происходит искривление бокового ствола 1 в процессе его бурения.

С помощью отклонителя 9 в телесистеме 7 регулируют направление бурения бокового ствола с изменением параметров азимутального и зенитного углов положения КНБК. Например, при увеличении с помощью насосного агрегата внутри ДГТ 2, и соответственно, внутри КНБК расхода рабочей жидкости с 3,5 л/с на 4,0 л/с и давления рабочей жидкости с 12 МПа на 15 МПа изменяют значение азимутального угла, например, со 110° до 130° (на фиг. 1-3 не показано), и зенитного угла с 80° до 70°. Таким образом меняют траекторию бурения бокового ствола 1 (фиг. 1 и 2) направо и вниз. В режиме реального времени контролируют траекторию бурения бокового ствола 1 и по мере необходимости вводят корректировки в значения азимутального и зенитного углов положения КНБК в зависимости от того, какую траекторию необходимо получить.

Также в режиме реального времени в процессе бурения бокового ствола 1 с помощью модуля нагрузки 10 проводят измерение затрубного давления (в боковом стволе за КНБК) и измерение осевой нагрузки на долото 3. В случае превышения допустимого затрубного давления в затрубном пространстве 23 и/или модуля нагрузки от проектных бурение бокового ствола прекращают до восстановления прежних значений (см. выше). Для чего приподнимают КНБК с помощью ДГТ 2 на 10-20 м и производят промывку пробуренного бокового ствола 1, после чего бурение бокового ствола 1 продолжают с соблюдением проектной и фактической траектории бокового ствола 1, что визуально контролируется с помощью наземного оборудования.

По окончанию бурения бокового ствола 1 КНБК извлекают из бокового ствола 1, клина-отклонителя и скважины. Для бурения бокового ствола в другом интервале перемещают клин-отклонитель в горизонтальной части необсаженной скважины и производят бурение следующего бокового ствола с применением вышеописанной компоновки.

В процессе бурения бокового ствола 1 осциллятор-турбулизатор 4 приводит к осцилляции низкочастотных колебаний закачиваемой по колонне ДГТ 2 рабочей жидкости и создает малоамплитудные продольные колебания, способствующие созданию динамической нагрузки на долото 3, приводящей к более эффективному разрушению горной породы. Опытным путем установлено, что применение осциллятора-турбулизатора увеличивает механическую скорость бурения (проводки) бокового ствола на 40-50% в твердых породах независимо от нагрузки на долото 3, связанной с ростом глубины скважины.

Благодаря наличию телесистемы 7 в конструкции КНБК соблюдают точность бурения бокового ствола из горизонтальной части необсаженной скважины по заранее запланированной траектории, реализуют непрерывный дистанционный контроль и изменение направления траектории на всем интервале бурения бокового ствола 1, контролируют внутрискважинные параметры и определяют положение КНБК в режиме реального времени.

В предлагаемой КНБК предложена система отклонения направления бурения бокового ствола 1 отклонителем 9, позволяющим изменять угол перекоса а долота 3. Данная система позволяет автоматически поддерживать угол перекоса а долота 3 в пространстве в процессе бурения бокового ствола. Это регулирует интенсивность искривления бокового ствола скважины до 0,1-0,3 град/м в зависимости от угла перекоса ВЗД 5 и диаметра скважины.

Контроль внутрискважинных параметров достигается использованием в конструкции КНБК модуля нагрузки 10. Контролируют измерение затрубного давления в пространстве пробуриваемого бокового ствола 1 и осевой нагрузки на долото 3 в процессе бурения бокового ствола 1.

А благодаря наличию инклинометра 11 определяют параметры зенитного и азимутального положения КНБК.

Для исключения аварийных ситуаций, а именно прихвата КНБК, например, в результате осыпания слабосцементированных разбуриваемых пород, в конструкции КНБК присутствует соединительный узел 14. С целью исключения повреждения (обрыва, растяжения) колонны ДГТ 2 и обрыва геофизического кабеля 15 при прихвате КНБК приводят в действие соединительный узел 14. Натяжением вверх создают в колонне ДГТ 2 нагрузку, достаточную для разрушения штифтов. Например, натягивают колонну ДГТ вверх с усилием 7,0 кН, при котором происходит разрушение штифтов и обрыв геофизического кабеля 15 в заделке телескопического наконечника 16. Затем колонну ДГТ 2 с геофизическим кабелем 15 извлекают из скважины, после чего на аварийном инструменте (на фиг. 1-3 не показано) спускают в скважину ловильный инструмент (на фиг. 3 не показано) с внутренним захватом, имеющим насечки 22 (на фиг. 2 показано условно) противоположного направления кольцевым насечкам 19 (фиг. 2 и 3) корпуса 8 телесистемы 7. Производят захват КНБК ловильным инструментом 21 за кольцевые насечки 19 (фиг. 2 и 3) корпуса 8 телесистемы 7, после чего извлекают прихваченную КНБК из бокового ствола 1 и скважины.

В 1,5-2 раза снижается вероятность прихвата КНБК в боковом стволе 1 из-за отсутствия образования шламовых подушек в боковом стволе 1 в процессе его бурения благодаря наличию переточных каналов 18', 18'' у жестких центраторов 17' и 17'' на наружной поверхности корпуса 8 телесистемы 7.

Предлагаемая компоновка КНБК позволяет:

- управлять траекторией бурения бокового ствола из горизонтальной части необсаженной скважины;

- обеспечить контроль внутрискважинных параметров и определение положения компоновки низа бурильной колонны (КНБК) в режиме реального времени;

- регулировать интенсивности искривления ствола скважины в зависимости от угла перекоса двигателя и диаметра скважины;

- увеличивать скорость проходки долота при бурении бокового ствола, что позволяет сократить время проведения работ и снизить затраты;

- снижать вероятность прихвата КНБК;

- отсоединять колонну ДГТ от КНБК при возникновении прихвата КНБК в боковом стволе, а затем извлекать КНБК из бокового ствола.

Компоновка низа бурильной колонны - КНБК для бурения боковых стволов, включающая последовательно размещённые снизу вверх долото, винтовой забойный двигатель - ВЗД, длинномерные гибкие трубы - ДГТ, , что дополнительно после долота размещен осциллятор-турбулизатор, после ВЗД размещены узел изменения перекоса долота на заданный диапазон углов α от 0 до 3°, телесистема с соединительным узлом, узел изменения перекоса долота состоит из верхнего и нижнего переводников, сердечника и зубчатой муфты, которая армирована твердосплавными зубками, телесистема состоит из корпуса, выполненного из легкосплавной бурильной трубы, в корпусе последовательно снизу вверх размещены узлы: отклонитель, модуль нагрузки, инклинометр, блок питания и связи, при этом между узлами в корпусе телесистемы установлены три гибких центратора, выполненные в виде кольца, на наружной поверхности которого приварены три подпружиненных фонаря из листовой стали, корпус телесистемы снаружи с обоих концов оснащён жёсткими центраторами, выполненными в виде колец, на наружной поверхности которых сделаны соответствующие переточные каналы в виде продольных цилиндрических проточек с возможностью перетока рабочей жидкости, причем наружный диаметр жестких центраторов равен диаметру долота, телесистема соединена геофизическим кабелем, запассованным внутрь колонны ДГТ через геофизический наконечник с наземным оборудованием, при этом выше геофизического наконечника на внутренней поверхности корпуса телесистемы выполнены насечки, обеспечивающие возможность захвата корпуса телесистемы, соединительный узел выполнен в виде механического разъединителя, представляющего собой срезной штифт, разрушающийся при расчётной нагрузке.
Компоновка низа бурильной колонны для бурения боковых стволов из горизонтальной части необсаженной скважины
Компоновка низа бурильной колонны для бурения боковых стволов из горизонтальной части необсаженной скважины
Компоновка низа бурильной колонны для бурения боковых стволов из горизонтальной части необсаженной скважины
Источник поступления информации: Роспатент

Показаны записи 31-40 из 170.
05.02.2020
№220.017.fea5

Термический способ очистки добывающей скважины и скважинного оборудования от плавких отложений

Изобретение относится к нефтегазодобывающей промышленности, а именно к термическим способам очистки скважины и скважинных устройств от плавких отложений. Способ включает использование для нагрева колонны труб с обратными клапанами, нагнетание теплоносителя в виде пара в скважину и вызывание...
Тип: Изобретение
Номер охранного документа: 0002713060
Дата охранного документа: 03.02.2020
06.02.2020
№220.017.ff50

Способ эксплуатации пары скважин, добывающих высоковязкую нефть

Изобретение относится к нефтедобывающей промышленности и может найти применение при разработке залежи высоковязкой и битумной нефти. Техническим результатом является повышение дебита добывающей скважины, обеспечение стабильности работы пары скважин с постоянным расходом закачки пара через...
Тип: Изобретение
Номер охранного документа: 0002713277
Дата охранного документа: 04.02.2020
06.02.2020
№220.017.ff5c

Способ изоляции заколонных перетоков в скважине

Изобретение относится к способу изоляции заколонных перетоков в скважине. Техническим результатом является снижение трудоемкости. Способ изоляции заколонных перетоков в скважине включает разбуривание месторождения скважинами, пересекающими пласт, состоящий из водонасыщенных и нефтенасыщенной...
Тип: Изобретение
Номер охранного документа: 0002713279
Дата охранного документа: 04.02.2020
06.02.2020
№220.017.ff85

Устройство для углубления забоя скважины

Изобретение относится к нефтедобывающей промышленности и может найти применение при углублении забоя скважины в процессе её эксплуатации с возможностью отбора керна. Устройство включает полый корпус, плунжер, размещённый внутри полого корпуса, пружину, кольцевой буртик и клапан. Плунжер сверху...
Тип: Изобретение
Номер охранного документа: 0002713284
Дата охранного документа: 04.02.2020
06.02.2020
№220.017.ff9d

Устройство для извлечения клина-отклонителя из скважины

Изобретение относится к области бурения и капитального ремонта нефтяных и газовых скважин и может быть использованопри строительстве многозабойных скважин и переводе существующих скважин в разряд многоствольных. Устройство включает ствол c ловильным крюком под ответную выборку клина-отклонителя...
Тип: Изобретение
Номер охранного документа: 0002713276
Дата охранного документа: 04.02.2020
06.02.2020
№220.017.ffa6

Способ эксплуатации добывающей скважины

Изобретение относится к нефтяной промышленности и может найти применение при эксплуатации нефтедобывающей скважины. Технический результат – повышение эффективности способа за счет его упрощения. Способ включает спуск и герметичную посадку в эксплуатационной колонне выше продуктивного пласта...
Тип: Изобретение
Номер охранного документа: 0002713287
Дата охранного документа: 04.02.2020
06.02.2020
№220.017.ffa9

Способ измерения длины колонны труб при спускоподъёмных операциях

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для определения длины колонны труб оптическими методами. Технической задачей предлагаемого изобретение является создание способа измерения длины труб при спускоподъёмных операциях, упрощающего использование за...
Тип: Изобретение
Номер охранного документа: 0002713280
Дата охранного документа: 04.02.2020
06.02.2020
№220.017.ffbe

Устройство для магнитной дефектоскопии насосных штанг

Изобретение относится к нефтегазодобывающей промышленности, а именно к дефектоскопии штанг при помощи магнитных исследований во время спускоподъемных операций. Техническим результатом является создание конструкции устройства для магнитной дефектоскопии насосных штанг при их спуске или подъеме...
Тип: Изобретение
Номер охранного документа: 0002713282
Дата охранного документа: 04.02.2020
06.02.2020
№220.018.000b

Способ исследования высоты и направления трещины разрыва пласта

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для определения азимутального направления и высоты трещины после проведения гидравлического разрыва пласта (ГРП) в породах со слабосцементированной призабойной зоной пласта. Техническим результатом является...
Тип: Изобретение
Номер охранного документа: 0002713285
Дата охранного документа: 04.02.2020
06.02.2020
№220.018.0010

Башмак-клапан для установки расширяемой системы в скважине

Изобретение относится к нефтегазодобывающей промышленности, а именно к области бурения скважин, в частности к устройствам для установки расширяемых систем при изоляции зон осложнений при бурении. Устройство включает корпус с центральным проходным каналом, выполненным с внешней резьбой с...
Тип: Изобретение
Номер охранного документа: 0002713281
Дата охранного документа: 04.02.2020
Показаны записи 31-40 из 290.
20.12.2013
№216.012.8d9c

Способ ремонта обсадной колонны в скважине с дефектным участком

Изобретение относится к нефтегазодобывающей промышленности, а именно к восстановлению герметичности обсадных колонн. На устье скважины производят сборку инструмента в следующей последовательности снизу вверх: универсальное вырезающее устройство, снабженное раздвижными резцами, винтовой...
Тип: Изобретение
Номер охранного документа: 0002501935
Дата охранного документа: 20.12.2013
20.01.2014
№216.012.981e

Способ изоляции зоны поглощения в скважине

Предложение относится к нефтедобывающей промышленности, в частности к способам ремонтно-изоляционных работ в скважинах в условиях больших поглощений. Техническим результатом является повышение эффективности изоляции зоны поглощения в скважине за счет более интенсивного перемешивания двух...
Тип: Изобретение
Номер охранного документа: 0002504641
Дата охранного документа: 20.01.2014
20.01.2014
№216.012.9827

Способ разработки обводненного нефтяного месторождения

Изобретение относится к нефтегазовой промышленности, а именно к способам изоляции заколонных перетоков в скважинах между нефте- и водонасыщенной зонами пласта. Спускают в скважину обсадную колонну с последующей перфорацией пласта. Исследуют интервалы нефтеводонасыщенности и интервалы их...
Тип: Изобретение
Номер охранного документа: 0002504650
Дата охранного документа: 20.01.2014
10.02.2014
№216.012.9efd

Способ изоляции поглощающих пластов

Предложение относится к ремонтно-изоляционным работам на скважинах нефтяных месторождений, в частности изоляции поглощающих пластов, способам восстановления крепи скважин. Способ изоляции поглощающих пластов включает спуск заливочных труб в интервал изоляции. Последовательно закачивают по...
Тип: Изобретение
Номер охранного документа: 0002506409
Дата охранного документа: 10.02.2014
10.02.2014
№216.012.9f08

Способ обработки пласта

Изобретение относится к нефтяной промышленности и может найти применение при обработке призабойной зоны скважины. Способ обработки пласта включает спуск колонны труб с пакером в интервал перфорации пласта. Промывают скважину, оснащенную центральной и затрубной задвижками. Сажают пакер выше...
Тип: Изобретение
Номер охранного документа: 0002506420
Дата охранного документа: 10.02.2014
10.02.2014
№216.012.9f09

Способ обработки призабойной зоны скважины

Изобретение относится к нефтяной промышленности. Технический результат - повышение эффективности обработки призабойной зоны пласта за счет повышения проницаемости призабойной зоны пласта с одновременным упрощением технологического процесса и снижением стоимости и продолжительности обработки...
Тип: Изобретение
Номер охранного документа: 0002506421
Дата охранного документа: 10.02.2014
10.02.2014
№216.012.9f0a

Способ обработки призабойной зоны скважины

Изобретение относится к нефтяной промышленности. Технический результат - повышение эффективности обработки призабойной зоны пласта за счет повышения проницаемости призабойной зоны пласта с одновременным упрощением технологического процесса, снижением стоимости и продолжительности обработки...
Тип: Изобретение
Номер охранного документа: 0002506422
Дата охранного документа: 10.02.2014
20.02.2014
№216.012.a2b4

Устройство для фиксации колонны труб с забойным двигателем

Изобретение относится к нефтегазовой промышленности и может быть использовано в качестве компенсатора реактивного момента при работе забойного двигателя. Устройство для фиксации колонны труб с забойным двигателем включает спущенную через опорный фланец в обсадную колонну скважины колонну труб....
Тип: Изобретение
Номер охранного документа: 0002507367
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a2bd

Способ герметизации эксплуатационной колонны

Изобретение относится к способам герметизации эксплуатационной колонны. Перед герметизацией эксплуатационной колонны временно блокируют пласт самораспадающимся после проверки герметичности нижнего пакера гелем, затем на устье скважины снизу вверх собирают следующую компоновку: нижний пакер,...
Тип: Изобретение
Номер охранного документа: 0002507376
Дата охранного документа: 20.02.2014
20.03.2014
№216.012.ac7e

Способ герметизации эксплуатационной колонны

Изобретение относится к нефтедобывающей промышленности, в частности к способам герметизации эксплуатационной колонны. Способ герметизации эксплуатационной колонны включает спуск в эксплуатационную колонну скважины двух пакеров, соединенных между собой трубой, на посадочном инструменте, в...
Тип: Изобретение
Номер охранного документа: 0002509873
Дата охранного документа: 20.03.2014
+ добавить свой РИД