×
02.03.2020
220.018.07d5

Результат интеллектуальной деятельности: Способ ремонта обсадной колонны в скважине (варианты)

Вид РИД

Изобретение

№ охранного документа
0002715481
Дата охранного документа
28.02.2020
Аннотация: Группа изобретений относится к капитальному ремонту скважин, в частности к технологиям восстановления герметичности при возникновении нарушений целостности обсадных колонн. Способ включает выявление места дефектного интервала обсадной колонны геофизическими исследованиями, спуск и установку дополнительной обсадной колонны с фиксацией в дефектном участке обсадной колонны. По первому варианту дополнительно определяют сцепление цементного кольца с обсадной колонной по всей длине обсадной колонны скважины, если нижний участок дефектного интервала в обсадной колонне находится в интервале кондуктора и сцепление цементного кольца с обсадной колонной отсутствует, то отворачивают обсадную колонну от устья до муфты ниже нижнего участка дефектного интервала и извлекают обсадную колонну из скважины. В скважину спускают дополнительную колонну аналогичной конструкции и длины взамен извлечённой из скважины обсадной колонны с дефектным интервалом. За 5 м до достижения верхнего конца оставшейся обсадной колонны в скважине спуск дополнительной обсадной колонны прекращают и спускают в неё на конце колонны труб центратор-карандаш наружным диаметром D с конической поверхностью, сужающейся сверху вниз диаметром d на нижнем конце центратора-карандаша. Устанавливают в скважине центратор-карандаш так, чтобы центратор-карандаш снизу наружным диаметром D размещался в оставшейся обсадной колонне в скважине, а сверху наружным диаметром D размещался в дополнительной колонне, далее доспускают дополнительную колонну в скважину и наворачивают дополнительную колонну на верхний конец оставшейся обсадной колонны в скважине, после чего извлекают колонну труб с центратором-карандашом из скважины. По второму варианту центратор с наружным диаметром D размещают в составе колонны труб так, чтобы после спуска центратора в оставшуюся обсадную колонну половина длины центратора размещалась в оставшейся обсадной колонне скважины, затем спускают дополнительную обсадную колонну аналогичной конструкции и длины в скважину до верхнего конца оставшейся обсадной колонны в скважине, устанавливают её через центратор с наружным диаметром D, наворачивают дополнительную колонну на верхний конец оставшейся обсадной колонны в скважине. Повышается качество и надежность герметизации обсадной колонны с нарушениями на большой протяженности, сохраняется внутреннее проходное сечение отремонтированной обсадной колонны без ограничения функциональной возможности использования технологий при последующей эксплуатации отремонтированной скважины. 2 н.п. ф-лы, 12 ил.

Изобретение относится к капитальному ремонту скважин, в частности к технологиям восстановления герметичности при возникновении нарушений целостности обсадной колонны.

Известен способ ремонта обсадных колонн в скважинах профильными перекрывателями с цилиндрическими участками (авт. св. SU № 976020, МПК Е21В 29/10, опубл. 23.11.82), включающий спуск перекрывателя в зону нарушения герметичности колонны с использованием установочной головки, расширение профильных участков перекрывателя созданием в нем гидравлического давления, раздачу цилиндрических и калибровку профильных участков с помощью дорна.

Основными недостатками этого способа являются низкие качество и надежность ремонта обсадных колонн, особенно, когда интервал нарушения герметичности достигает нескольких сотен метров. Это является следствием того, что при расширении профильных труб гидравлическим давлением происходит заякоривание перекрывателя в колонне обсадных труб выше и ниже интервала нарушения, и при дальнейшей раздаче профильных и цилиндрических участков, в том числе резьбовых соединений, происходит укорачивание средней части перекрывателя от 5 до 10 процентов (в зависимости от степени раздачи), поскольку профильные, резьбовые и цилиндрические участки при гидравлическом расширении профильных труб остаются неприжатыми к стенкам обсадной колонны из-за коррозионного разрушения ее стенок. Вследствие этого создаются значительные растягивающие усилия, нарушающие герметичность резьбовых соединений.

Известен способ ремонта обсадных колонн в скважинах (патент RU № 2010945, МПК Е21В 29/00, опубл. 15.04.94), включающий установку в зонах нарушения герметичности металлических пластырей, расширяемых дорном, перемещаемым гидродомкратом.

Недостатками известного способа являются:

- сборка и спуск в скважину гофрированной трубы длиной несколько сот метров совместно с центральным штоком практически невозможны из-за сложности соединения на сварке гофрированных труб с одновременной сборкой центрального штока;

- ненадежное крепление нижнего якоря, который образуется при первом шаге дорнирования всего на длину хода поршней гидродомкрата, т.к. гофрированная труба в этом месте не может прижаться к обсадной колонне с достаточным натягом из-за остаточной упругой деформации.

Также известны способы восстановления герметичности дефектных интервалов обсадных колонн большой протяженности методами глубинной подвески спускаемых дополнительных обсадных колонн (летучей колонны) на опорных поверхностях в обсаженном стволе скважины с последующим их цементированием (А.И. Булатов «Теория и практика заканчивания скважин» М., ДАО «Недра», 1998 г., 3-й том, стр. 332-333). Упорами, на которых устанавливают спускаемую летучую колонну, могут быть внутренние проточки в толстостенных трубах, устанавливаемых на нижнем участке предыдущей колонны перед ее спуском в скважину, верхняя часть ранее спущенного хвостовика, зона перехода от большего диаметра к меньшему при двухразмерной промежуточной колонне. Каждому виду опорной поверхности соответствует подвесное устройство, которым оборудуют спускаемую летучую колонну.

Недостатками данных способов являются:

- во-первых, обсадная колонна не защищена от последующего смятия, так как не снимается напряжение со стороны сминающих обсадную колонну пород (кыновских глин);

- во-вторых, невозможно использовать скважинное оборудование при значительных сужениях внутреннего диаметра.

Наиболее близким по технической сущности является способ ремонта обсадной колонны в скважине с большой протяженностью дефектного участка колонны (патент RU № 2273718, МПК Е21В 29/10, опубл. 10.04.06), включающий определение геофизическими исследованиями информации по дефектному участку обсадной колонны, спуск и установку дополнительной колонны с фиксацией в дефектном участке. После определения места дефектного участка ниже его спускают и распрессовывают наружный продольно-гофрированный пластырь, после этого спускают внутренний продольно-гофрированный пластырь и распрессовывают его внахлест с наружным. В качестве дополнительной колонны спускают летучую колонну, фиксируют упором ее башмака на верхние торцы двойного продольно-гофрированного пластыря.

Недостатками известного способа являются:

- во-первых, низкая надежность герметизации обсадной колонны с нарушениями её герметичности на большой протяженности путём установки на концах продольно-гофрированного пластыря. Это связано с тем, что продольно-гофрированный пластырь распрессовывают внахлест внутри ремонтируемой обсадной колонны, при этом внутри ремонтируемой обсадной колонны отсутствует центровка осей ремонтируемой обсадной колонны и размещенного внутри него протяжённого продольно-гофрированного пластыря (длиной от 200 до 800 м). Поэтому как в процессе распрессовки концов пластыря в ремонтируемой обсадной колонне, так и в процессе дальнейшей эксплуатации при восприятии механических нагрузок пластырем из-за неотцентрованного пластыря относительно ремонтируемой обсадной колонны высока вероятность негерметичной посадки пластыря в ремонтируемой обсадной колонне или потеря герметичности отремонтированной обсадной колонны в процессе последующей эксплуатации;

- во-вторых, сужается проходного сечение отремонтированной обсадной колонны (внутреннее проходное сечение отремонтированной обсадной колонны получается ступенчатым). Это усложняет последующие ремонтные работы в скважине: шаблонирование, скребкование, спуск оборудования различного диаметра, также это вынуждает сокращать скорость спуско-подъемных операций в отремонтированной обсадной колонне в интервале установки внутреннего продольно-гофрированного пластыря. Всё это увеличивает продолжительность последующих ремонтных работ в скважине;

- в-третьих, ограниченные функциональные возможности использования технологий при последующей эксплуатации отремонтированной обсадной колонны. Это обусловлено суженным проходным сечением отремонтированной обсадной колонны ограничивают её эксплуатационные возможности, например: одновременно-раздельную эксплуатацию скважины и/или одновременно раздельную закачку жидкости в скважину, т.е. технологии эксплуатации скважины, связанные со спуском двухрядной колонны труб с оборудованием в отремонтированную обсадную колонну скважины.

Техническими задачами являются повышение качества и надежности ремонта обсадных колонн с нарушениями герметичности большой протяженности, а также выполнение ремонта без сужения проходного сечения отремонтированной обсадной колонны и без ограничения функциональных возможностей использования технологий при последующей эксплуатации отремонтированной обсадной колонны.

Поставленные технические задачи решаются способом ремонта обсадной колонны в скважине, включающим выявление места дефектного интервала обсадной колонны геофизическими исследованиями, спуск и установку дополнительной обсадной колонны с фиксацией в дефектном участке обсадной колонны.

По первому варианту новым является то, что дополнительно определяют сцепление цементного кольца с обсадной колонной по всей длине обсадной колонны скважины, если нижний участок дефектного интервала в обсадной колонне находится в интервале кондуктора и сцепление цементного кольца с обсадной колонной отсутствует, то отворачивают обсадную колонну от устья до муфты ниже нижнего участка дефектного интервала и извлекают обсадную колонну из скважины, затем в скважину спускают дополнительную колонну аналогичной конструкции и длины взамен извлечённой из скважины обсадной колонны с дефектным интервалом, причём за 5 м до достижения верхнего конца оставшейся в обсадной колонне скважины спуск дополнительной обсадной колонны прекращают и спускают в неё на конце колонны труб центратор-карандаш наружным диаметром D с конической поверхностью, сужающейся сверху вниз диаметром d на нижнем конце центратора-карандаша, устанавливают в скважине центратор-карандаш так, чтобы центратор-карандаш снизу наружным диаметром d размещался в оставшейся обсадной колонне в скважине, а сверху наружным диаметром D размещался в дополнительной колонне, далее доспускают дополнительную колонну в скважину и наворачивают дополнительную колонну на верхний конец оставшейся обсадной колонны в скважине, после чего извлекают колонну труб с центратором-карандашом из скважины.

По второму варианту новым является то, что дополнительно определяют сцепление цементного кольца с обсадной колонной по всей длине обсадной колонны скважины, если нижний участок дефектного интервала в обсадной колонне находится ниже кондуктора и сцепление цементного кольца с обсадной колонной отсутствует, то отворачивают обсадную колонну от устья до муфты ниже нижнего нарушения дефектного интервала, извлекают обсадную колонну из скважины, затем в скважину на колонне труб спускают центратор, причём центратор с наружным диаметром D1 размещают в составе колонны труб так, чтобы после спуска центратора в оставшуюся обсадную колонну половина длины центратора размещалась в оставшейся обсадной колонне скважины, затем спускают дополнительную обсадную колонну аналогичной конструкции и длины в скважину до верхнего конца оставшейся обсадной колонны в скважине, устанавливают её через центратор с наружным диаметром D1, наворачивают дополнительную колонну на верхний конец оставшейся обсадной колонны в скважине, после чего извлекают колонну труб с центратором из скважины, затем в нижнем конце дополнительной колонны выполняют перфорацию через которую цементируют затрубное пространство скважины до нижнего конца кондуктора.

На фиг. 1-5 показан процесс реализации способа по первому варианту.

На фиг. 6-12 показан процесс реализации способа по второму варианту.

Способ ремонта обсадной колонны 1' (фиг. 1) в скважине включает выявление участков нарушений по дефектному интервалу 1'' обсадной колонны 1' геофизическими исследованиями с целью замены на дополнительную обсадную колонну 1"'. Например, скважина имеет обсадную колонну 1' диаметром 146 мм с толщиной стенки 7 мм по ГОСТ 632-80.

Таким образом её внутренний диаметр Dвн = 146 мм - (7 мм·2) = 132 мм. В обсадную колонну 1' по всему стволу скважины спускают геофизический прибор, например, термометр, то есть методом термометрии выявляют нарушения (потерю герметичности) по все длине обсадной колонны 1' скважины. Термометрия основана на регистрации температуры в стволе скважины и применяется для исследования герметичности обсадных колонн скважин.

В качестве термометра, например используют скважинный термометр ЭТС-10У, выпускаемый ООО «Геофизприбор» Россия, Республика Башкортостан, г. Уфа.

Способ реализуется в следующей последовательности.

По первому варианту по результатам геофизических исследований дефектный интервал с нарушениями в обсадной колонне 1' находится в интервале 100-215 м, при этом нижний участок дефектного интервала 2 находится на глубине 215 м, при этом интервал кондуктора диаметром 245 мм с толщиной стенки 9 мм находится в интервале скважины от 0 до 250 м. Таким образом, нижнее нарушение 2' находится в интервале кондуктора 3 (0 < 215 м < 250 м).

Далее определяют наличие сцепления цементного кольца (на фиг. 1-5 не показано) с обсадной колонной 1' по всей длине обсадной колонны скважины. С этой целью выполняют акустическую цементометрию (АКЦ) и определяют наличие или отсутствие сцепления цементного кольца с обсадной колонной 1' по всей длине обсадной колонны от устья до нижнего конца дефектного интервала и до муфты 4, находящейся в составе дефектного интервала обсадной колонны 1' ниже нарушения 2. Например, муфта 4 находится в интервале (220 м), т.е. ниже нарушения 2, находящего как указано выше в интервале 215 м обсадной колонны 1' (215 м < 220 м).

По результатам АКЦ выявляют, что отсутствует сцепление цементного кольца (на фиг. 1-5 не показано) с обсадной колонной 1' в интервале от 0 до 216 м, а ниже 216 м сцепление цементного кольца с обсадной колонной 1' присутствует. (220 м > 216 м). Это не позволит отвернуть обсадную колонну с дефектным участком 1'' от обсадной колонны 1', поэтому необходимо освободить обсадную колонну 1' в интервале муфты 4 от сцепления с цементным кольцом.

Для этого с помощью подъёмного агрегата, установленного на устье скважины, производят ступенчатое натяжение обсадной колонны 1' за колонную арматуру (на фиг. 1-5 не показано) с увеличением нагрузки, начиная с 10 т с выдержкой по времени, и далее прибавляют на 10 т до максимально допустимой нагрузки на подъёмный агрегат.

Например, при реализации способа используют УПА 60 - подъемный агрегат для бурения и ремонта скважин производства ООО «КЗНПО» (Российская Федерация, Республика Башкортостан, г. Кумертау), имеющий допускаемую нагрузку на крюке без установки оттяжек на грунт – 60 т.

Например, натягивают обсадную колонну 1' с нагрузкой 10 т и выдерживают в таком положении 30 сек, затем прибавляют нагрузку натяжения обсадную колонну 1'на 10 т и того с нагрузкой 20 т выдерживают в таком положении 30 сек и так далее, до достижения максимальной нагрузки, например 60 т и выдерживают в таком положении 30 сек.

После чего нагрузку с обсадной колонны 1' снимают, проводят повторный АКЦ по результатам которого выявляют, что сцепление цементного кольца с обсадной колонной 1' отсутствует в интервале от 0 до 230 м, т.е. обсадная колонна 1' в интервале муфты 4 (220 м) не имеет сцепление цементного кольца с обсадной колонной 1' (220 м < 240 м).

Разрушить сцепление обсадной колонны 1' с цементным камнем удается из-за растяжения обсадной колонны 1' при её натяжке.

Далее на колонне технологических труб, например колонне насосно-компрессорных труб (НКТ) диаметром 73 мм с толщиной стенки 7 мм по ГОСТ 633-80 спускают устройство для отворота эксплуатационной колонны (УОЭК) (на фиг. 1-6 не показано) в обсадную колонну 1' в интервал муфты 4. После чего отворачивают обсадную колонну с дефектным участком 1'' (фиг. 1). В качестве УОЭК применяют УОЭК-146, выпускаемый группой компаний «Инновации в бурении» Россия, Республика Башкортостан, г. Октябрьский.

Сначала извлекают из скважины колонну технологических труб с УОЭК и затем извлекают обсадную колонну с дефектным участком 1'' (фиг. 2) диаметром 146 мм с толщиной стенки 7 мм длиной 220 м.

Далее в скважину спускают дополнительную обсадную колонну 1"' аналогичной конструкции и длины взамен извлечённой из скважины обсадной колонны с дефектным участком 1" (диаметром 146 мм с толщиной стенки 7 мм длиной 220 м).

С целью исключения повреждения стыкуемых резьб дополнительной колонны 1"' и обсадной колонны 1' в скважине на расстоянии за H = 5 м (фиг. 3) до достижения верхнего конца (муфты) 4 оставшейся в обсадной колонне 1' скважины спуск дополнительной обсадной колонны 1"' прекращают, при этом оси 5 и 6, соответственно, дополнительной обсадной колонны 1"' и обсадной колонны 1' имеют значительный перекос, что не позволяет сразу навернуть дополнительную колонну 1"' в муфту 4, оставшуюся в обсадной колонне 1' скважины.

Далее в дополнительную колонну 1"' на конце колонны труб 7, например колонне НКТ диаметром 73 мм с толщиной стенки 7 мм по ГОСТ 633-80 c соблюдением ниже приведённых выражений спускают центратор-карандаш 8 наружным диаметром D с конической поверхностью 9 на нижнем конце диаметром d, сужающейся сверху вниз.

С целью эффективной центровки осей 5 и 6 соответственно, дополнительной колонны 1"' (диаметром 146 мм с толщиной стенки 7 мм) и оставшейся обсадной колонны 1' (диаметром 146 мм с толщиной стенки 7 мм) в скважине должны выполняться соотношения, полученные экспериментальным путём:

D = 0,91 · Dвн, (1)

где Dвн - внутренний диаметр обсадной колонны 1', мм,

D - наружный диаметр центратора-карандаша 8, мм.

d = 0,3 · D, (2)

где D - наружный диаметр центратора-карандаша 8, мм,

d - диаметр нижнего конца центратора-карандаша 8, мм.

Учитывая, что, как указано выше Dвн = 132 мм и подставляя числовые значения в выражения 1 и 2 получаем:

D = 0,91 · Dвн = 0,91 · 132 мм = 120 мм

d = 0,3 · D = 0,3 · 120 мм = 36 мм.

Устанавливают в скважине центратор-карандаш 8 так, чтобы центратор-карандаш 8 снизу диаметром d размещался в оставшейся обсадной колонне 1' в скважине, а сверху диаметром D размещался в дополнительной колонне 1"'.

В результате центратор-карандаш 8 (фиг. 4) центрирует оси 5 и 6, соответственно, дополнительной колонны 1"' (диаметром 146 мм с толщиной стенки 7 мм) и оставшейся обсадной колонны 1' (диаметром 146 мм с толщиной стенки 7 мм) в скважине.

Далее доспускают дополнительную колонну 1"' (фиг. 5) до муфты 4 оставшейся в обсадной колонне 1' скважины и наворачивают дополнительную колонну 1"' на муфту 4 оставшейся обсадной колонны 1' в скважине.

После чего извлекают колонну труб 7 с центратором-карандашом 8 из скважины. Обсадная колонна скважины отремонтирована.

По второму варианту по результатам геофизических исследований нижний участок дефектного интервала 2 в обсадной колонне 1' находится ниже кондуктора 3 (300 м < 350 м) (фиг. 6-12). Нарушения находятся в дефектном интервале 75-350 м, при этом нижним интервалом нарушения 2 является 350 м, при этом интервал кондуктора 3 диаметром 245 мм с толщиной стенки 9 мм находится в интервале скважины от 0 до 300 м.

Далее определяют наличие сцепления цементного кольца (на фиг. 6-12 не показано) с обсадной колонной 1' по всей длине обсадной колонны скважины. С этой целью выполняют АКЦ и определяют наличие или отсутствие сцепления цементного кольца за обсадной колонной 1' по всей длине обсадной колонны и в интервале муфты 4, находящейся в составе обсадной колонны 1' ниже нарушения 2. Например, муфта 4 находится в интервале 354 м обсадной колонны 1' (350 м < 354 м).

По результатам АКЦ выявляют, что отсутствует сцепление цементного кольца (на фиг. 6-12 не показано) с обсадной колонной 1' в интервале от 0 до 370 м, а ниже 370 м сцепление цементного кольца с обсадной колонной 1' присутствует. Поскольку муфта 4 в интервале (354 м) не находится в сцеплении с цементным камнем (354 м < 370 м), то далее на колонне технологических труб, например колонне НКТ диаметром 73 мм с толщиной стенки 7 мм по ГОСТ 633-80 спускают УОЭК (на фиг. 6-12 не показано) в обсадную колонну 1' ниже нарушения 2 т.е. в интервал муфты 4 (фиг. 6 и 7) после чего отворачивают обсадную колонну с дефектным участком 1'' в интервале муфты 4.

Сначала извлекают из скважины колонну технологических труб с УОЭК, а затем извлекают обсадную колонну с дефектным участком 1'' (фиг. 6, 7) диаметром 146 мм с толщиной стенки 7 мм длиной 354 м.

В скважину на колонне труб 7 (фиг. 8), например на колонне НКТ диаметром 73 мм с толщиной стенки 7 мм по ГОСТ 633-80 c соблюдением ниже приведённых выражений спускают центратор 10 наружный диаметром D1 и длиной L, например 12 м, причём центратор размещают в составе колонны труб 7 так, чтобы после спуска центратора 10 в оставшуюся в скважине обсадную колонну 1' половина длины – L/2 12/2 = 6 м центратора 10 размещалась в оставшейся обсадной колонне 1' скважины.

С целью эффективной центровки осей 5 и 6, соответственно, дополнительной колонны 1"' (диаметром 146 мм с толщиной стенки 7 мм) и оставшейся обсадной колонны 1' (диаметром 146 мм с толщиной стенки 7 мм) в скважине наружный диаметр D1 центратора 10 должен подбираться согласно соотношению, полученному экспериментальным путём:

D1= 0,865 · Dвн, (3)

где Dвн - внутренний диаметр обсадной колонны 1', мм,

D1 - наружный диаметр центратора, мм.

Учитывая, что, как указано выше Dвн = 132 мм и подставляя числовые значения в выражение 3 получаем:

D1 = 0,865 · Dвн = 0,86 · 132 мм = 114 мм

Затем в скважину до верхнего конца (муфты) 4 (фиг. 9), оставшейся в обсадной колонне 1' скважины, спускают дополнительную колонну 1"' аналогичной конструкции и длины - диаметром 146 мм с толщиной стенки 7 мм длиной 354 м взамен извлечённой из скважины обсадной колонны с дефектным участком 1"(диаметром 146 мм с толщиной стенки 7 мм длиной 354 м).

В процессе спуска дополнительной колонны 1"' она проходит через центратор 10 диаметром D1 на оставшуюся длину L/2 = 12/2 = 6 м, благодаря чему центрируются оси 5 и 6, соответственно, дополнительной колонны 1"' (диаметром 146 мм с толщиной стенки 7 мм длиной 354 м) и оставшейся обсадной колонны 1' (диаметром 146 мм с толщиной стенки 7 мм) в скважине.

Далее наворачивают дополнительную колонну 1"' на верхний конец оставшейся обсадной колонны 1' в скважине. После чего извлекают колонну труб 7 с центратором 10 (фиг. 10) из скважины.

Затем в нижнем конце дополнительной колонны 1"' выполняют перфорацию (перфорационные отверстия) 11 (фиг. 11) спуском на колонне труб перфоратора (на фиг. 6-12 не показано). Для перфорации 11 применяют любой известный перфоратор, например, двухсторонний гидравлический прокалывающий перфоратор (ГПП2) производства «ПодземНИПИнефть», Россия, Республика Башкортостан, г. Нефтекамск.

Далее через перфорационные отверстия 11 (фиг. 11) дополнительной колонны 1"' цементируют затрубное пространство 12 скважины в интервале от перфорации 11 до нижнего конца кондуктора 3 по любой известной технологии, например, закачкой и продавкой, 12 м3 цементного раствора по технологической колонне труб 13 с разбуриваемым пакером 14. Например, при цементировании нефтяных и газовых скважин для приготовления цементного раствора применяют цемент марки (ПЦТ-I-G-CC-1) портландцемент тампонажный, бездобавочный типа I-G высокой сульфатостойкости по ГОСТ 1581-96.

В качестве технологической колонны труб 13 применяют, например, колонну НКТ диаметром 73 мм с толщиной стенки 7 мм по ГОСТ 633-80. В качестве разбуриваемого пакера применяют, например, разбуриваемый пакер ПР-146, выпускаемый научно-производственной фирмой «Пакер», Россия, Республика Башкортостан, г. Октябрьский.

После цементажа затрубного пространства 12 извлекают технологическую колонну труб 13 из скважины, а разбуриваемый пакер 14 удаляют из обсадной колонны разбуриванием, т.е. спуском долота на колонне труб (на фиг. 6-12 не показано) после ожидания затвердевания цемента (24 ч). Обсадная колонна скважины отремонтирована (фиг. 12).

При реализации способа по двум вариантам:

- повышается надежность герметизации обсадной колонны с нарушениями на большой протяженности за счёт того, что происходит замена всей дефектной части обсадной колонны на новую дополнительную колонну от устья скважины до интервала ниже нарушений благодаря центровке осей колонн в скважине, поэтому резьбы колонн между собой легко стыкуются наворачиванием, что полностью исключает потерю герметичности отремонтированной обсадной колонны в процессе последующей эксплуатации;

- не сужается проходное сечение отремонтированной обсадной колонны (сохраняется внутренний проходной диаметр по всей длине скважины), что упрощает последующие ремонтные работы в скважине: шаблонирование, скребкование, спуск оборудования различного диаметра, при этом сохраняется скорость проведения СПО и, как следствие, продолжительность последующих ремонтных работ в скважине;

- не ограничиваются функциональные возможности использования технологий при последующей эксплуатации отремонтированной скважины, так как сохраняется проходное сечение (внутренний диаметр) отремонтированной обсадной колонны скважины, а это не ограничивает её эксплуатационные возможности, например связанные с одновременно-раздельной эксплуатацией скважины и/или одновременно раздельной закачкой жидкости в скважину.

Способ ремонта обсадной колонны в скважине позволяет повысить надежность герметизации обсадной колонны с нарушениями на большой протяженности, сохранить внутреннее проходное сечение отремонтированной обсадной колонны, не ограничивать функциональные возможности использования технологий при последующей эксплуатации отремонтированной скважины.


Способ ремонта обсадной колонны в скважине (варианты)
Способ ремонта обсадной колонны в скважине (варианты)
Способ ремонта обсадной колонны в скважине (варианты)
Источник поступления информации: Роспатент

Показаны записи 161-170 из 432.
09.06.2018
№218.016.5de5

Способ перфорации скважины и обработки призабойной зоны карбонатного пласта

Изобретение относится к нефтегазодобывающей промышленности, к области эксплуатации скважин, а именно к способам вторичного вскрытия и обработки призабойной зоны карбонатных пластов. Способ включает спуск колонны НКТ с гидромеханическим прокалывающим перфоратором на нижнем конце в...
Тип: Изобретение
Номер охранного документа: 0002656255
Дата охранного документа: 04.06.2018
14.06.2018
№218.016.61ac

Способ разработки залежи высоковязкой нефти или битума

Изобретение относится к нефтяной промышленности. Технический результат – вовлечение в разработку зоны повышенной продуктивности, повышение охвата залежи за счет бурения дополнительных стволов с учетом плотности закачиваемого теплоносителя, увеличение коэффициента извлечения нефти. Способ...
Тип: Изобретение
Номер охранного документа: 0002657307
Дата охранного документа: 13.06.2018
16.06.2018
№218.016.62c2

Станок для распиловки керна

Изобретение относится к области геологоразведочных работ и может быть использовано для распиловки керна горных пород. Техническим результатом являются упрощение и усовершенствование конструкции подающего устройства рабочего органа, повышение точности выполнения распилов керна, снижение износа...
Тип: Изобретение
Номер охранного документа: 0002657582
Дата охранного документа: 14.06.2018
16.06.2018
№218.016.62f4

Способ разработки нефтяной залежи с трещиноватым коллектором

Изобретение относится к нефтяной промышленности и может найти применение при разработке нефтяной залежи с трещиноватым коллектором. Технический результат – повышение эффективности разработки за счет учета направления действительной миграции продукции в пласте, а также упрощения разработки и ее...
Тип: Изобретение
Номер охранного документа: 0002657584
Дата охранного документа: 14.06.2018
16.06.2018
№218.016.6304

Направляющее устройство бурового инструмента для селективного входа в боковой ствол

Изобретение относится к области бурения и капитального ремонта нефтяных и газовых скважин, а именно используется для селективного входа бурового инструмента в боковой ствол (БС) после извлечения клина-отклонителя из основного ствола. Направляющее устройство включает соединенный с колонной труб...
Тип: Изобретение
Номер охранного документа: 0002657583
Дата охранного документа: 14.06.2018
16.06.2018
№218.016.63b7

Способ разработки нефтяной залежи

Изобретение относится к нефтегазодобывающей промышленности, в частности к способам усиленной добычи для получения углеводородов вытеснением водой. Способ разработки нефтяной залежи включает строительство по любой из известных сеток добывающих и нагнетательных скважин, циклическую закачку...
Тип: Изобретение
Номер охранного документа: 0002657589
Дата охранного документа: 14.06.2018
01.07.2018
№218.016.6970

Способ разработки нефтяной малоразведанной залежи

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано при разработке нефтяной малоразведанной залежи. Технический результат – повышение эффективности разработки залежи. По способу осуществляют разбуривание залежи редкой сеткой скважин. Отбирают продукцию через...
Тип: Изобретение
Номер охранного документа: 0002659295
Дата охранного документа: 29.06.2018
12.07.2018
№218.016.6fd2

Способ обработки неоднородного по проницаемости нефтяного пласта закачкой инвертной эмульсии

Изобретение относится к разработке нефтяных месторождений и может найти применение при разработке нефтяной залежи с неоднородными по проницаемости заводненными пластами для регулирования профиля приемистости нагнетательной скважины и ограничения водопритоков в добывающей скважине путем...
Тип: Изобретение
Номер охранного документа: 0002660967
Дата охранного документа: 11.07.2018
12.07.2018
№218.016.7043

Способ разработки нефтяной залежи с трещиноватым коллектором

Изобретение относится к нефтяной промышленности и может найти применение при разработке нефтяной залежи с трещиноватым коллектором. Способ разработки нефтяной залежи с трещиноватым коллектором включает бурение пилотной скважины, определение по данным геофизических исследований в продуктивном...
Тип: Изобретение
Номер охранного документа: 0002660973
Дата охранного документа: 11.07.2018
13.07.2018
№218.016.70ea

Гидравлический вибратор

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для интенсификации отбора нефти или закачки воды. Гидравлический вибратор содержит золотник и ствол с донным отверстием. Ствол и золотник выполнены с щелевыми прорезями, расположенными под углом к их...
Тип: Изобретение
Номер охранного документа: 0002661170
Дата охранного документа: 12.07.2018
Показаны записи 161-170 из 290.
29.12.2017
№217.015.feb4

Устройство для поинтервального гидроразрыва пласта

Изобретение относится к нефтегазодобывающей промышленности и может быть применено для проведения поинтервального кислотного гидроразрыва пласта. Устройство для проведения поинтервального гидроразрыва пласта содержит колонну насосно-компрессорных труб с полым цилиндрическим корпусом, снизу...
Тип: Изобретение
Номер охранного документа: 0002638673
Дата охранного документа: 15.12.2017
19.01.2018
№218.016.0478

Способ эксплуатации продуктивного и водоносного пластов, разделённых непроницаемым пропластком, скважиной с горизонтальными стволами и с трещинами гидравлического разрыва пласта

Изобретение относится к нефтедобывающей промышленности и может найти применение при совместной эксплуатации продуктивного и водоносного пластов с применением гидравлического разрыва пласта. Технический результат - повышение эффективности способа за счет исключения дополнительных энергетических...
Тип: Изобретение
Номер охранного документа: 0002630514
Дата охранного документа: 11.09.2017
19.01.2018
№218.016.0597

Способ освоения скважины после проведения гидроразрыва пласта

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для освоения скважин после проведения гидроразрыва пласта. Способ освоения скважины включает спуск колонны насосно-компрессорных труб (НКТ) в скважину, обвязку азотного компрессора нагнетательной линией с...
Тип: Изобретение
Номер охранного документа: 0002630930
Дата охранного документа: 14.09.2017
19.01.2018
№218.016.05b7

Способ очистки и обработки призабойной зоны горизонтальной скважины в залежи битума

Изобретение относится к нефтяной промышленности и может найти применение при обработке призабойной зоны в горизонтальных стволах скважин, пробуренных в залежи битумов. Способ очистки и обработки призабойной зоны горизонтальной скважины в залежи битума включает спуск в скважину колонны гибких...
Тип: Изобретение
Номер охранного документа: 0002630938
Дата охранного документа: 14.09.2017
20.01.2018
№218.016.1103

Способ разработки залежи высоковязкой нефти или битума с применением трещин гидроразрыва пласта

Изобретение относится к разработке залежей высоковязкой нефти или битума, содержащих непроницаемые пропластки трещинами гидроразрыва пласта. Способ включает бурение вертикальной нагнетательной и горизонтальной добывающей скважин в залежи, представленной верхней и нижней частями продуктивного...
Тип: Изобретение
Номер охранного документа: 0002633887
Дата охранного документа: 19.10.2017
20.01.2018
№218.016.111f

Секционный гидропескоструйный перфоратор

Изобретение относится к нефтегазодобывающей промышленности, в частности к устройствам для направленного вскрытия продуктивного пласта в горизонтальной скважине с обсадной колонной и проведения гидравлического разрыва пласта. Секционный гидропескоструйный перфоратор содержит полый корпус,...
Тип: Изобретение
Номер охранного документа: 0002633904
Дата охранного документа: 19.10.2017
20.01.2018
№218.016.1135

Способ разработки залежи высоковязкой нефти пароциклическим воздействием

Изобретение относится к разработке залежей высоковязкой нефти с пароциклическим воздействием, содержащих непроницаемые пропластки с применением трещин гидроразрыва пласта (ГРП). Способ включает бурение вертикальной скважины в залежи высоковязкой нефти, крепление вертикальной скважины обсадной...
Тип: Изобретение
Номер охранного документа: 0002633930
Дата охранного документа: 19.10.2017
13.02.2018
№218.016.271a

Способ гидравлического разрыва пласта в скважине

Изобретение относится к нефтяной промышленности и может быть применено для гидроразрыва пласта. В способе гидравлического разрыва пласта ГРП в скважине, включающем перфорацию стенок обсадной колонны скважины в интервале пласта каналами, спуск колонны труб с пакером, посадку пакера над кровлей...
Тип: Изобретение
Номер охранного документа: 0002644361
Дата охранного документа: 09.02.2018
13.02.2018
№218.016.2738

Способ установки цементного моста в скважине

Изобретение относится к нефтегазодобывающей промышленности, а именно к установке цементных мостов в эксплуатационных колоннах скважин при временном отключении продуктивной части отдельных пластов или части пласта и ликвидации скважин. Технический результат – повышение эффективности установки...
Тип: Изобретение
Номер охранного документа: 0002644360
Дата охранного документа: 09.02.2018
04.04.2018
№218.016.3117

Способ гидравлического разрыва пласта

Изобретение относится к области нефтегазодобывающей промышленности, в частности к способам гидравлического разрыва пласта в добывающей скважине при наличии попутной и/или подошвенной воды. В способе гидравлического разрыва пласта - ГРП, включающем спуск колонны труб с пакером в скважину,...
Тип: Изобретение
Номер охранного документа: 0002644807
Дата охранного документа: 14.02.2018
+ добавить свой РИД