×
02.03.2020
220.018.07d5

Результат интеллектуальной деятельности: Способ ремонта обсадной колонны в скважине (варианты)

Вид РИД

Изобретение

№ охранного документа
0002715481
Дата охранного документа
28.02.2020
Аннотация: Группа изобретений относится к капитальному ремонту скважин, в частности к технологиям восстановления герметичности при возникновении нарушений целостности обсадных колонн. Способ включает выявление места дефектного интервала обсадной колонны геофизическими исследованиями, спуск и установку дополнительной обсадной колонны с фиксацией в дефектном участке обсадной колонны. По первому варианту дополнительно определяют сцепление цементного кольца с обсадной колонной по всей длине обсадной колонны скважины, если нижний участок дефектного интервала в обсадной колонне находится в интервале кондуктора и сцепление цементного кольца с обсадной колонной отсутствует, то отворачивают обсадную колонну от устья до муфты ниже нижнего участка дефектного интервала и извлекают обсадную колонну из скважины. В скважину спускают дополнительную колонну аналогичной конструкции и длины взамен извлечённой из скважины обсадной колонны с дефектным интервалом. За 5 м до достижения верхнего конца оставшейся обсадной колонны в скважине спуск дополнительной обсадной колонны прекращают и спускают в неё на конце колонны труб центратор-карандаш наружным диаметром D с конической поверхностью, сужающейся сверху вниз диаметром d на нижнем конце центратора-карандаша. Устанавливают в скважине центратор-карандаш так, чтобы центратор-карандаш снизу наружным диаметром D размещался в оставшейся обсадной колонне в скважине, а сверху наружным диаметром D размещался в дополнительной колонне, далее доспускают дополнительную колонну в скважину и наворачивают дополнительную колонну на верхний конец оставшейся обсадной колонны в скважине, после чего извлекают колонну труб с центратором-карандашом из скважины. По второму варианту центратор с наружным диаметром D размещают в составе колонны труб так, чтобы после спуска центратора в оставшуюся обсадную колонну половина длины центратора размещалась в оставшейся обсадной колонне скважины, затем спускают дополнительную обсадную колонну аналогичной конструкции и длины в скважину до верхнего конца оставшейся обсадной колонны в скважине, устанавливают её через центратор с наружным диаметром D, наворачивают дополнительную колонну на верхний конец оставшейся обсадной колонны в скважине. Повышается качество и надежность герметизации обсадной колонны с нарушениями на большой протяженности, сохраняется внутреннее проходное сечение отремонтированной обсадной колонны без ограничения функциональной возможности использования технологий при последующей эксплуатации отремонтированной скважины. 2 н.п. ф-лы, 12 ил.

Изобретение относится к капитальному ремонту скважин, в частности к технологиям восстановления герметичности при возникновении нарушений целостности обсадной колонны.

Известен способ ремонта обсадных колонн в скважинах профильными перекрывателями с цилиндрическими участками (авт. св. SU № 976020, МПК Е21В 29/10, опубл. 23.11.82), включающий спуск перекрывателя в зону нарушения герметичности колонны с использованием установочной головки, расширение профильных участков перекрывателя созданием в нем гидравлического давления, раздачу цилиндрических и калибровку профильных участков с помощью дорна.

Основными недостатками этого способа являются низкие качество и надежность ремонта обсадных колонн, особенно, когда интервал нарушения герметичности достигает нескольких сотен метров. Это является следствием того, что при расширении профильных труб гидравлическим давлением происходит заякоривание перекрывателя в колонне обсадных труб выше и ниже интервала нарушения, и при дальнейшей раздаче профильных и цилиндрических участков, в том числе резьбовых соединений, происходит укорачивание средней части перекрывателя от 5 до 10 процентов (в зависимости от степени раздачи), поскольку профильные, резьбовые и цилиндрические участки при гидравлическом расширении профильных труб остаются неприжатыми к стенкам обсадной колонны из-за коррозионного разрушения ее стенок. Вследствие этого создаются значительные растягивающие усилия, нарушающие герметичность резьбовых соединений.

Известен способ ремонта обсадных колонн в скважинах (патент RU № 2010945, МПК Е21В 29/00, опубл. 15.04.94), включающий установку в зонах нарушения герметичности металлических пластырей, расширяемых дорном, перемещаемым гидродомкратом.

Недостатками известного способа являются:

- сборка и спуск в скважину гофрированной трубы длиной несколько сот метров совместно с центральным штоком практически невозможны из-за сложности соединения на сварке гофрированных труб с одновременной сборкой центрального штока;

- ненадежное крепление нижнего якоря, который образуется при первом шаге дорнирования всего на длину хода поршней гидродомкрата, т.к. гофрированная труба в этом месте не может прижаться к обсадной колонне с достаточным натягом из-за остаточной упругой деформации.

Также известны способы восстановления герметичности дефектных интервалов обсадных колонн большой протяженности методами глубинной подвески спускаемых дополнительных обсадных колонн (летучей колонны) на опорных поверхностях в обсаженном стволе скважины с последующим их цементированием (А.И. Булатов «Теория и практика заканчивания скважин» М., ДАО «Недра», 1998 г., 3-й том, стр. 332-333). Упорами, на которых устанавливают спускаемую летучую колонну, могут быть внутренние проточки в толстостенных трубах, устанавливаемых на нижнем участке предыдущей колонны перед ее спуском в скважину, верхняя часть ранее спущенного хвостовика, зона перехода от большего диаметра к меньшему при двухразмерной промежуточной колонне. Каждому виду опорной поверхности соответствует подвесное устройство, которым оборудуют спускаемую летучую колонну.

Недостатками данных способов являются:

- во-первых, обсадная колонна не защищена от последующего смятия, так как не снимается напряжение со стороны сминающих обсадную колонну пород (кыновских глин);

- во-вторых, невозможно использовать скважинное оборудование при значительных сужениях внутреннего диаметра.

Наиболее близким по технической сущности является способ ремонта обсадной колонны в скважине с большой протяженностью дефектного участка колонны (патент RU № 2273718, МПК Е21В 29/10, опубл. 10.04.06), включающий определение геофизическими исследованиями информации по дефектному участку обсадной колонны, спуск и установку дополнительной колонны с фиксацией в дефектном участке. После определения места дефектного участка ниже его спускают и распрессовывают наружный продольно-гофрированный пластырь, после этого спускают внутренний продольно-гофрированный пластырь и распрессовывают его внахлест с наружным. В качестве дополнительной колонны спускают летучую колонну, фиксируют упором ее башмака на верхние торцы двойного продольно-гофрированного пластыря.

Недостатками известного способа являются:

- во-первых, низкая надежность герметизации обсадной колонны с нарушениями её герметичности на большой протяженности путём установки на концах продольно-гофрированного пластыря. Это связано с тем, что продольно-гофрированный пластырь распрессовывают внахлест внутри ремонтируемой обсадной колонны, при этом внутри ремонтируемой обсадной колонны отсутствует центровка осей ремонтируемой обсадной колонны и размещенного внутри него протяжённого продольно-гофрированного пластыря (длиной от 200 до 800 м). Поэтому как в процессе распрессовки концов пластыря в ремонтируемой обсадной колонне, так и в процессе дальнейшей эксплуатации при восприятии механических нагрузок пластырем из-за неотцентрованного пластыря относительно ремонтируемой обсадной колонны высока вероятность негерметичной посадки пластыря в ремонтируемой обсадной колонне или потеря герметичности отремонтированной обсадной колонны в процессе последующей эксплуатации;

- во-вторых, сужается проходного сечение отремонтированной обсадной колонны (внутреннее проходное сечение отремонтированной обсадной колонны получается ступенчатым). Это усложняет последующие ремонтные работы в скважине: шаблонирование, скребкование, спуск оборудования различного диаметра, также это вынуждает сокращать скорость спуско-подъемных операций в отремонтированной обсадной колонне в интервале установки внутреннего продольно-гофрированного пластыря. Всё это увеличивает продолжительность последующих ремонтных работ в скважине;

- в-третьих, ограниченные функциональные возможности использования технологий при последующей эксплуатации отремонтированной обсадной колонны. Это обусловлено суженным проходным сечением отремонтированной обсадной колонны ограничивают её эксплуатационные возможности, например: одновременно-раздельную эксплуатацию скважины и/или одновременно раздельную закачку жидкости в скважину, т.е. технологии эксплуатации скважины, связанные со спуском двухрядной колонны труб с оборудованием в отремонтированную обсадную колонну скважины.

Техническими задачами являются повышение качества и надежности ремонта обсадных колонн с нарушениями герметичности большой протяженности, а также выполнение ремонта без сужения проходного сечения отремонтированной обсадной колонны и без ограничения функциональных возможностей использования технологий при последующей эксплуатации отремонтированной обсадной колонны.

Поставленные технические задачи решаются способом ремонта обсадной колонны в скважине, включающим выявление места дефектного интервала обсадной колонны геофизическими исследованиями, спуск и установку дополнительной обсадной колонны с фиксацией в дефектном участке обсадной колонны.

По первому варианту новым является то, что дополнительно определяют сцепление цементного кольца с обсадной колонной по всей длине обсадной колонны скважины, если нижний участок дефектного интервала в обсадной колонне находится в интервале кондуктора и сцепление цементного кольца с обсадной колонной отсутствует, то отворачивают обсадную колонну от устья до муфты ниже нижнего участка дефектного интервала и извлекают обсадную колонну из скважины, затем в скважину спускают дополнительную колонну аналогичной конструкции и длины взамен извлечённой из скважины обсадной колонны с дефектным интервалом, причём за 5 м до достижения верхнего конца оставшейся в обсадной колонне скважины спуск дополнительной обсадной колонны прекращают и спускают в неё на конце колонны труб центратор-карандаш наружным диаметром D с конической поверхностью, сужающейся сверху вниз диаметром d на нижнем конце центратора-карандаша, устанавливают в скважине центратор-карандаш так, чтобы центратор-карандаш снизу наружным диаметром d размещался в оставшейся обсадной колонне в скважине, а сверху наружным диаметром D размещался в дополнительной колонне, далее доспускают дополнительную колонну в скважину и наворачивают дополнительную колонну на верхний конец оставшейся обсадной колонны в скважине, после чего извлекают колонну труб с центратором-карандашом из скважины.

По второму варианту новым является то, что дополнительно определяют сцепление цементного кольца с обсадной колонной по всей длине обсадной колонны скважины, если нижний участок дефектного интервала в обсадной колонне находится ниже кондуктора и сцепление цементного кольца с обсадной колонной отсутствует, то отворачивают обсадную колонну от устья до муфты ниже нижнего нарушения дефектного интервала, извлекают обсадную колонну из скважины, затем в скважину на колонне труб спускают центратор, причём центратор с наружным диаметром D1 размещают в составе колонны труб так, чтобы после спуска центратора в оставшуюся обсадную колонну половина длины центратора размещалась в оставшейся обсадной колонне скважины, затем спускают дополнительную обсадную колонну аналогичной конструкции и длины в скважину до верхнего конца оставшейся обсадной колонны в скважине, устанавливают её через центратор с наружным диаметром D1, наворачивают дополнительную колонну на верхний конец оставшейся обсадной колонны в скважине, после чего извлекают колонну труб с центратором из скважины, затем в нижнем конце дополнительной колонны выполняют перфорацию через которую цементируют затрубное пространство скважины до нижнего конца кондуктора.

На фиг. 1-5 показан процесс реализации способа по первому варианту.

На фиг. 6-12 показан процесс реализации способа по второму варианту.

Способ ремонта обсадной колонны 1' (фиг. 1) в скважине включает выявление участков нарушений по дефектному интервалу 1'' обсадной колонны 1' геофизическими исследованиями с целью замены на дополнительную обсадную колонну 1"'. Например, скважина имеет обсадную колонну 1' диаметром 146 мм с толщиной стенки 7 мм по ГОСТ 632-80.

Таким образом её внутренний диаметр Dвн = 146 мм - (7 мм·2) = 132 мм. В обсадную колонну 1' по всему стволу скважины спускают геофизический прибор, например, термометр, то есть методом термометрии выявляют нарушения (потерю герметичности) по все длине обсадной колонны 1' скважины. Термометрия основана на регистрации температуры в стволе скважины и применяется для исследования герметичности обсадных колонн скважин.

В качестве термометра, например используют скважинный термометр ЭТС-10У, выпускаемый ООО «Геофизприбор» Россия, Республика Башкортостан, г. Уфа.

Способ реализуется в следующей последовательности.

По первому варианту по результатам геофизических исследований дефектный интервал с нарушениями в обсадной колонне 1' находится в интервале 100-215 м, при этом нижний участок дефектного интервала 2 находится на глубине 215 м, при этом интервал кондуктора диаметром 245 мм с толщиной стенки 9 мм находится в интервале скважины от 0 до 250 м. Таким образом, нижнее нарушение 2' находится в интервале кондуктора 3 (0 < 215 м < 250 м).

Далее определяют наличие сцепления цементного кольца (на фиг. 1-5 не показано) с обсадной колонной 1' по всей длине обсадной колонны скважины. С этой целью выполняют акустическую цементометрию (АКЦ) и определяют наличие или отсутствие сцепления цементного кольца с обсадной колонной 1' по всей длине обсадной колонны от устья до нижнего конца дефектного интервала и до муфты 4, находящейся в составе дефектного интервала обсадной колонны 1' ниже нарушения 2. Например, муфта 4 находится в интервале (220 м), т.е. ниже нарушения 2, находящего как указано выше в интервале 215 м обсадной колонны 1' (215 м < 220 м).

По результатам АКЦ выявляют, что отсутствует сцепление цементного кольца (на фиг. 1-5 не показано) с обсадной колонной 1' в интервале от 0 до 216 м, а ниже 216 м сцепление цементного кольца с обсадной колонной 1' присутствует. (220 м > 216 м). Это не позволит отвернуть обсадную колонну с дефектным участком 1'' от обсадной колонны 1', поэтому необходимо освободить обсадную колонну 1' в интервале муфты 4 от сцепления с цементным кольцом.

Для этого с помощью подъёмного агрегата, установленного на устье скважины, производят ступенчатое натяжение обсадной колонны 1' за колонную арматуру (на фиг. 1-5 не показано) с увеличением нагрузки, начиная с 10 т с выдержкой по времени, и далее прибавляют на 10 т до максимально допустимой нагрузки на подъёмный агрегат.

Например, при реализации способа используют УПА 60 - подъемный агрегат для бурения и ремонта скважин производства ООО «КЗНПО» (Российская Федерация, Республика Башкортостан, г. Кумертау), имеющий допускаемую нагрузку на крюке без установки оттяжек на грунт – 60 т.

Например, натягивают обсадную колонну 1' с нагрузкой 10 т и выдерживают в таком положении 30 сек, затем прибавляют нагрузку натяжения обсадную колонну 1'на 10 т и того с нагрузкой 20 т выдерживают в таком положении 30 сек и так далее, до достижения максимальной нагрузки, например 60 т и выдерживают в таком положении 30 сек.

После чего нагрузку с обсадной колонны 1' снимают, проводят повторный АКЦ по результатам которого выявляют, что сцепление цементного кольца с обсадной колонной 1' отсутствует в интервале от 0 до 230 м, т.е. обсадная колонна 1' в интервале муфты 4 (220 м) не имеет сцепление цементного кольца с обсадной колонной 1' (220 м < 240 м).

Разрушить сцепление обсадной колонны 1' с цементным камнем удается из-за растяжения обсадной колонны 1' при её натяжке.

Далее на колонне технологических труб, например колонне насосно-компрессорных труб (НКТ) диаметром 73 мм с толщиной стенки 7 мм по ГОСТ 633-80 спускают устройство для отворота эксплуатационной колонны (УОЭК) (на фиг. 1-6 не показано) в обсадную колонну 1' в интервал муфты 4. После чего отворачивают обсадную колонну с дефектным участком 1'' (фиг. 1). В качестве УОЭК применяют УОЭК-146, выпускаемый группой компаний «Инновации в бурении» Россия, Республика Башкортостан, г. Октябрьский.

Сначала извлекают из скважины колонну технологических труб с УОЭК и затем извлекают обсадную колонну с дефектным участком 1'' (фиг. 2) диаметром 146 мм с толщиной стенки 7 мм длиной 220 м.

Далее в скважину спускают дополнительную обсадную колонну 1"' аналогичной конструкции и длины взамен извлечённой из скважины обсадной колонны с дефектным участком 1" (диаметром 146 мм с толщиной стенки 7 мм длиной 220 м).

С целью исключения повреждения стыкуемых резьб дополнительной колонны 1"' и обсадной колонны 1' в скважине на расстоянии за H = 5 м (фиг. 3) до достижения верхнего конца (муфты) 4 оставшейся в обсадной колонне 1' скважины спуск дополнительной обсадной колонны 1"' прекращают, при этом оси 5 и 6, соответственно, дополнительной обсадной колонны 1"' и обсадной колонны 1' имеют значительный перекос, что не позволяет сразу навернуть дополнительную колонну 1"' в муфту 4, оставшуюся в обсадной колонне 1' скважины.

Далее в дополнительную колонну 1"' на конце колонны труб 7, например колонне НКТ диаметром 73 мм с толщиной стенки 7 мм по ГОСТ 633-80 c соблюдением ниже приведённых выражений спускают центратор-карандаш 8 наружным диаметром D с конической поверхностью 9 на нижнем конце диаметром d, сужающейся сверху вниз.

С целью эффективной центровки осей 5 и 6 соответственно, дополнительной колонны 1"' (диаметром 146 мм с толщиной стенки 7 мм) и оставшейся обсадной колонны 1' (диаметром 146 мм с толщиной стенки 7 мм) в скважине должны выполняться соотношения, полученные экспериментальным путём:

D = 0,91 · Dвн, (1)

где Dвн - внутренний диаметр обсадной колонны 1', мм,

D - наружный диаметр центратора-карандаша 8, мм.

d = 0,3 · D, (2)

где D - наружный диаметр центратора-карандаша 8, мм,

d - диаметр нижнего конца центратора-карандаша 8, мм.

Учитывая, что, как указано выше Dвн = 132 мм и подставляя числовые значения в выражения 1 и 2 получаем:

D = 0,91 · Dвн = 0,91 · 132 мм = 120 мм

d = 0,3 · D = 0,3 · 120 мм = 36 мм.

Устанавливают в скважине центратор-карандаш 8 так, чтобы центратор-карандаш 8 снизу диаметром d размещался в оставшейся обсадной колонне 1' в скважине, а сверху диаметром D размещался в дополнительной колонне 1"'.

В результате центратор-карандаш 8 (фиг. 4) центрирует оси 5 и 6, соответственно, дополнительной колонны 1"' (диаметром 146 мм с толщиной стенки 7 мм) и оставшейся обсадной колонны 1' (диаметром 146 мм с толщиной стенки 7 мм) в скважине.

Далее доспускают дополнительную колонну 1"' (фиг. 5) до муфты 4 оставшейся в обсадной колонне 1' скважины и наворачивают дополнительную колонну 1"' на муфту 4 оставшейся обсадной колонны 1' в скважине.

После чего извлекают колонну труб 7 с центратором-карандашом 8 из скважины. Обсадная колонна скважины отремонтирована.

По второму варианту по результатам геофизических исследований нижний участок дефектного интервала 2 в обсадной колонне 1' находится ниже кондуктора 3 (300 м < 350 м) (фиг. 6-12). Нарушения находятся в дефектном интервале 75-350 м, при этом нижним интервалом нарушения 2 является 350 м, при этом интервал кондуктора 3 диаметром 245 мм с толщиной стенки 9 мм находится в интервале скважины от 0 до 300 м.

Далее определяют наличие сцепления цементного кольца (на фиг. 6-12 не показано) с обсадной колонной 1' по всей длине обсадной колонны скважины. С этой целью выполняют АКЦ и определяют наличие или отсутствие сцепления цементного кольца за обсадной колонной 1' по всей длине обсадной колонны и в интервале муфты 4, находящейся в составе обсадной колонны 1' ниже нарушения 2. Например, муфта 4 находится в интервале 354 м обсадной колонны 1' (350 м < 354 м).

По результатам АКЦ выявляют, что отсутствует сцепление цементного кольца (на фиг. 6-12 не показано) с обсадной колонной 1' в интервале от 0 до 370 м, а ниже 370 м сцепление цементного кольца с обсадной колонной 1' присутствует. Поскольку муфта 4 в интервале (354 м) не находится в сцеплении с цементным камнем (354 м < 370 м), то далее на колонне технологических труб, например колонне НКТ диаметром 73 мм с толщиной стенки 7 мм по ГОСТ 633-80 спускают УОЭК (на фиг. 6-12 не показано) в обсадную колонну 1' ниже нарушения 2 т.е. в интервал муфты 4 (фиг. 6 и 7) после чего отворачивают обсадную колонну с дефектным участком 1'' в интервале муфты 4.

Сначала извлекают из скважины колонну технологических труб с УОЭК, а затем извлекают обсадную колонну с дефектным участком 1'' (фиг. 6, 7) диаметром 146 мм с толщиной стенки 7 мм длиной 354 м.

В скважину на колонне труб 7 (фиг. 8), например на колонне НКТ диаметром 73 мм с толщиной стенки 7 мм по ГОСТ 633-80 c соблюдением ниже приведённых выражений спускают центратор 10 наружный диаметром D1 и длиной L, например 12 м, причём центратор размещают в составе колонны труб 7 так, чтобы после спуска центратора 10 в оставшуюся в скважине обсадную колонну 1' половина длины – L/2 12/2 = 6 м центратора 10 размещалась в оставшейся обсадной колонне 1' скважины.

С целью эффективной центровки осей 5 и 6, соответственно, дополнительной колонны 1"' (диаметром 146 мм с толщиной стенки 7 мм) и оставшейся обсадной колонны 1' (диаметром 146 мм с толщиной стенки 7 мм) в скважине наружный диаметр D1 центратора 10 должен подбираться согласно соотношению, полученному экспериментальным путём:

D1= 0,865 · Dвн, (3)

где Dвн - внутренний диаметр обсадной колонны 1', мм,

D1 - наружный диаметр центратора, мм.

Учитывая, что, как указано выше Dвн = 132 мм и подставляя числовые значения в выражение 3 получаем:

D1 = 0,865 · Dвн = 0,86 · 132 мм = 114 мм

Затем в скважину до верхнего конца (муфты) 4 (фиг. 9), оставшейся в обсадной колонне 1' скважины, спускают дополнительную колонну 1"' аналогичной конструкции и длины - диаметром 146 мм с толщиной стенки 7 мм длиной 354 м взамен извлечённой из скважины обсадной колонны с дефектным участком 1"(диаметром 146 мм с толщиной стенки 7 мм длиной 354 м).

В процессе спуска дополнительной колонны 1"' она проходит через центратор 10 диаметром D1 на оставшуюся длину L/2 = 12/2 = 6 м, благодаря чему центрируются оси 5 и 6, соответственно, дополнительной колонны 1"' (диаметром 146 мм с толщиной стенки 7 мм длиной 354 м) и оставшейся обсадной колонны 1' (диаметром 146 мм с толщиной стенки 7 мм) в скважине.

Далее наворачивают дополнительную колонну 1"' на верхний конец оставшейся обсадной колонны 1' в скважине. После чего извлекают колонну труб 7 с центратором 10 (фиг. 10) из скважины.

Затем в нижнем конце дополнительной колонны 1"' выполняют перфорацию (перфорационные отверстия) 11 (фиг. 11) спуском на колонне труб перфоратора (на фиг. 6-12 не показано). Для перфорации 11 применяют любой известный перфоратор, например, двухсторонний гидравлический прокалывающий перфоратор (ГПП2) производства «ПодземНИПИнефть», Россия, Республика Башкортостан, г. Нефтекамск.

Далее через перфорационные отверстия 11 (фиг. 11) дополнительной колонны 1"' цементируют затрубное пространство 12 скважины в интервале от перфорации 11 до нижнего конца кондуктора 3 по любой известной технологии, например, закачкой и продавкой, 12 м3 цементного раствора по технологической колонне труб 13 с разбуриваемым пакером 14. Например, при цементировании нефтяных и газовых скважин для приготовления цементного раствора применяют цемент марки (ПЦТ-I-G-CC-1) портландцемент тампонажный, бездобавочный типа I-G высокой сульфатостойкости по ГОСТ 1581-96.

В качестве технологической колонны труб 13 применяют, например, колонну НКТ диаметром 73 мм с толщиной стенки 7 мм по ГОСТ 633-80. В качестве разбуриваемого пакера применяют, например, разбуриваемый пакер ПР-146, выпускаемый научно-производственной фирмой «Пакер», Россия, Республика Башкортостан, г. Октябрьский.

После цементажа затрубного пространства 12 извлекают технологическую колонну труб 13 из скважины, а разбуриваемый пакер 14 удаляют из обсадной колонны разбуриванием, т.е. спуском долота на колонне труб (на фиг. 6-12 не показано) после ожидания затвердевания цемента (24 ч). Обсадная колонна скважины отремонтирована (фиг. 12).

При реализации способа по двум вариантам:

- повышается надежность герметизации обсадной колонны с нарушениями на большой протяженности за счёт того, что происходит замена всей дефектной части обсадной колонны на новую дополнительную колонну от устья скважины до интервала ниже нарушений благодаря центровке осей колонн в скважине, поэтому резьбы колонн между собой легко стыкуются наворачиванием, что полностью исключает потерю герметичности отремонтированной обсадной колонны в процессе последующей эксплуатации;

- не сужается проходное сечение отремонтированной обсадной колонны (сохраняется внутренний проходной диаметр по всей длине скважины), что упрощает последующие ремонтные работы в скважине: шаблонирование, скребкование, спуск оборудования различного диаметра, при этом сохраняется скорость проведения СПО и, как следствие, продолжительность последующих ремонтных работ в скважине;

- не ограничиваются функциональные возможности использования технологий при последующей эксплуатации отремонтированной скважины, так как сохраняется проходное сечение (внутренний диаметр) отремонтированной обсадной колонны скважины, а это не ограничивает её эксплуатационные возможности, например связанные с одновременно-раздельной эксплуатацией скважины и/или одновременно раздельной закачкой жидкости в скважину.

Способ ремонта обсадной колонны в скважине позволяет повысить надежность герметизации обсадной колонны с нарушениями на большой протяженности, сохранить внутреннее проходное сечение отремонтированной обсадной колонны, не ограничивать функциональные возможности использования технологий при последующей эксплуатации отремонтированной скважины.


Способ ремонта обсадной колонны в скважине (варианты)
Способ ремонта обсадной колонны в скважине (варианты)
Способ ремонта обсадной колонны в скважине (варианты)
Источник поступления информации: Роспатент

Показаны записи 121-130 из 432.
04.04.2018
№218.016.310a

Устройство, стабилизирующее давление в напорном нефтепроводе

Изобретение относится к устройствам предварительного разделения нефти и газа и обеспечивает устойчивую стабилизацию давления в напорном нефтепроводе. Устройство, стабилизирующее давление в напорном нефтепроводе, включает цилиндрические горизонтальный и восходящий участки напорного нефтепровода...
Тип: Изобретение
Номер охранного документа: 0002644879
Дата охранного документа: 14.02.2018
04.04.2018
№218.016.3117

Способ гидравлического разрыва пласта

Изобретение относится к области нефтегазодобывающей промышленности, в частности к способам гидравлического разрыва пласта в добывающей скважине при наличии попутной и/или подошвенной воды. В способе гидравлического разрыва пласта - ГРП, включающем спуск колонны труб с пакером в скважину,...
Тип: Изобретение
Номер охранного документа: 0002644807
Дата охранного документа: 14.02.2018
04.04.2018
№218.016.314b

Способ разработки залежи высоковязкой нефти пароциклическим воздействием

Изобретение относится к области разработки нефтяных месторождений. Технический результат - увеличение охвата залежи, повышение эффективности паротеплового воздействия на продуктивный пласт, увеличение отбора разогретой высоковязкой нефти после пароциклического воздействия, исключение перегрева...
Тип: Изобретение
Номер охранного документа: 0002645058
Дата охранного документа: 15.02.2018
04.04.2018
№218.016.3393

Способ цементирования дополнительной колонны труб в нагнетательной скважине

Изобретение относится к области нефтегазодобывающей промышленности, в частности к ремонту нагнетательной скважины путем спуска дополнительной колонны труб и ее последующего цементирования. Способ цементирования дополнительной колонны труб в нагнетательной скважине включает в себя этапы, на...
Тип: Изобретение
Номер охранного документа: 0002645695
Дата охранного документа: 27.02.2018
04.04.2018
№218.016.33b1

Способ гидравлического разрыва карбонатного пласта

Изобретение относится к нефтяной промышленности и может быть применено при гидравлическом разрыве карбонатного пласта (ГРП). Способ включает перфорацию стенок скважины в необходимом интервале скважины каналами глубиной не менее протяженности зоны концентрации напряжений в породах от ствола...
Тип: Изобретение
Номер охранного документа: 0002645688
Дата охранного документа: 27.02.2018
04.04.2018
№218.016.3469

Способ ограничения водопритока в нефтедобывающую скважину, оборудованную глубинным вставным штанговым насосом

Изобретение относится к нефтедобывающей промышленности и может быть использовано для снижения интенсивности притока воды в скважину. Технический результат - упрощение способа и повышение его экономической эффективности. По способу осуществляют закачивание изоляционной композиции без подъема...
Тип: Изобретение
Номер охранного документа: 0002646153
Дата охранного документа: 01.03.2018
10.05.2018
№218.016.38d3

Способ разработки месторождения высоковязкой нефти или битума

Изобретение относится к нефтедобывающей промышленности. Технический результат - предотвращение снижения забойного давления в добывающих горизонтальных скважинах, снижение затрат тепловой энергии, увеличение темпов отбора извлекаемых запасов, повышение коэффициента извлечения нефти. Способ...
Тип: Изобретение
Номер охранного документа: 0002646904
Дата охранного документа: 12.03.2018
10.05.2018
№218.016.3e92

Устройство для подъёма клина-отклонителя из скважины

Изобретение относится к области бурения и капитального ремонта нефтяных и газовых скважин и может быть использовано при строительстве боковых стволов многоствольных скважин из ранее пробуренных и обсаженных скважин с сохранением для эксплуатации основного ствола скважины. Устройство включает...
Тип: Изобретение
Номер охранного документа: 0002648407
Дата охранного документа: 26.03.2018
10.05.2018
№218.016.3e94

Устройство для локального разрыва пласта

Изобретение относится к прострелочно-взрывным работам в наклонных и горизонтальных скважинах и реализуется перед проведением гидроразрыва пласта с целью снижения начального давления закачки проппанта и предотвращения аварийных «стопов» (резких скачков давления продавки проппанта). Устройство...
Тип: Изобретение
Номер охранного документа: 0002648406
Дата охранного документа: 26.03.2018
10.05.2018
№218.016.3ec1

Устройство для извлечения уплотнительных элементов из устьевого сальника

Изобретение относится к устройству для извлечения уплотнительных элементов из устьевого сальника. Техническим результатом является повышение удобства при пользовании. Устройство для извлечения уплотнительных элементов из устьевого сальника выполнено в виде разрезной трубы с продольным пазом под...
Тип: Изобретение
Номер охранного документа: 0002648385
Дата охранного документа: 26.03.2018
Показаны записи 121-130 из 290.
20.03.2016
№216.014.c762

Способ герметизации эксплуатационной колонны

Изобретение относится к нефтедобывающей промышленности, в частности к способам герметизации эксплуатационной колонны в вертикальном, наклонном или горизонтальном стволе добывающей скважины. Технический результат заключается в повышении надежности и эффективности герметизации эксплуатационной...
Тип: Изобретение
Номер охранного документа: 0002578136
Дата охранного документа: 20.03.2016
20.03.2016
№216.014.c95b

Способ изоляции притока вод в необсаженном горизонтальном участке ствола добывающей скважины

Изобретение относится к области нефтегазодобывающей промышленности и найдет применение при изоляции водопритоков в горизонтальном или наклонном участках стволов добывающих скважин. Способ изоляции притока вод в необсаженном горизонтальном участке ствола добывающей скважины включает извлечение...
Тип: Изобретение
Номер охранного документа: 0002578095
Дата охранного документа: 20.03.2016
27.03.2016
№216.014.db22

Способ кислотной обработки карбонатного пласта

Изобретение относится к нефтедобывающей промышленности. Технический результат - повышение эффективности обработки, увеличение нефтеотдачи, повышение надежности реализации способа. Способ кислотной обработки карбонатного пласта включает выделение интервалов обработки вскрытого скважиной с...
Тип: Изобретение
Номер охранного документа: 0002579042
Дата охранного документа: 27.03.2016
20.04.2016
№216.015.354c

Способ укрепления призабойной зоны скважины

Изобретение относится к нефтедобывающей промышленности, в частности к способам укрепления призабойной зоны скважины и предотвращения выноса породы. Способ укрепления призабойной зоны скважины включает спуск в призабойную зоны скважины колонны насосно-компрессорных труб - НКТ, последовательную...
Тип: Изобретение
Номер охранного документа: 0002581861
Дата охранного документа: 20.04.2016
27.04.2016
№216.015.391e

Способ теплового воздействия на призабойную зону пласта с высоковязкой нефтью и устройство для его осуществления

Группа изобретений относится к нефтяной промышленности. Технический результат - обеспечение возможности отбора высоковязкой нефти с большим содержанием парафиновых и асфальто-смолистых веществ в высоковязкой нефти, снижение тепловых потерь. Способ теплового воздействия на призабойную зону...
Тип: Изобретение
Номер охранного документа: 0002582363
Дата охранного документа: 27.04.2016
10.08.2016
№216.015.5365

Способ подачи реагента и обработки скважины с высоковязкой нефтью

Изобретение относится к нефтедобывающей промышленности и предназначено для ликвидации и предотвращения образования асфальтено-смолопарафиновых отложений (АСПО) в нефтегазодобывающих скважинах. Способ включает спуск в скважину колонны насосно-компрессорных труб - НКТ с винтовым насосом с...
Тип: Изобретение
Номер охранного документа: 0002593850
Дата охранного документа: 10.08.2016
12.01.2017
№217.015.5904

Способ теплового воздействия на призабойную зону пласта с высоковязкой нефтью и устройство для его осуществления

Группа изобретений относится к нефтяной промышленности и предназначена для теплового воздействия на призабойную зону пласта с высоковязкой нефтью, в том числе для снижения выпадения асфальтосмолопарафиновых веществ при отборе разогретой высоковязкой нефти и разрушения эмульсии. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002588119
Дата охранного документа: 27.06.2016
13.01.2017
№217.015.6c61

Способ гидравлического разрыва пласта

Изобретение относится к способам гидравлического разрыва пласта. Способ включает вскрытие пласта вертикальной скважиной, спуск в скважину колонны труб до интервала пласта и проведение гидравлического разрыва пласта - ГРП закачкой жидкости разрыва по колонне труб. При этом на устье скважины...
Тип: Изобретение
Номер охранного документа: 0002592582
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.6cc6

Способ эксплуатации добывающей высоковязкую нефть скважины

Изобретение относится к нефтяной промышленности. Техническим результатом изобретения является повышение эффективности эксплуатации добывающей высоковязкую нефть скважины, повышение качества очистки внутрискважинного оборудования от АСПО, снижение нагрузок на колонну штанг штангового насоса....
Тип: Изобретение
Номер охранного документа: 0002597304
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.6da3

Способ разработки залежи высоковязкой нефти и битума

Изобретение относится к нефтегазодобывающей промышленности и предназначено для разработки залежи высоковязкой нефти и битума путем нагревания. Технический результат - повышение эффективности прогревания залежи, увеличение охвата залежи прогреванием, повышение объемов отбора нефти и битума,...
Тип: Изобретение
Номер охранного документа: 0002597303
Дата охранного документа: 10.09.2016
+ добавить свой РИД