×
02.03.2020
220.018.07d1

Результат интеллектуальной деятельности: СВЧ - мостовой измеритель температуры

Вид РИД

Изобретение

№ охранного документа
0002715496
Дата охранного документа
28.02.2020
Аннотация: Изобретение относится к устройствам для измерения температуры и может применяться в различных областях техники. Заявлен СВЧ - мостовой измеритель температуры, содержащий термопреобразователь, усилитель и первый источник питания, введены первый СВЧ-генератор с варакторной перестройкой частоты, второй СВЧ-генератор с варакторной перестройкой частоты, третий СВЧ-генератор с варакторной перестройкой частоты, четвертый СВЧ-генератор с варакторной перестройкой частоты, второй источник питания, измеритель разности частот и частотомер. Причем вводы питания первого, второго, третьего и четвертого СВЧ-генераторов подключены к первому источнику питания, варактор третьего СВЧ-генератора подключен ко второму источнику питания, термопреобразователь через усилитель соединен с варактором четвертого СВЧ-генератора, вывод энергии третьего СВЧ-генератора соединен с первым входом измерителя разности частот и входом частотомера, вывод энергии четвертого СВЧ-генератора подключен ко второму входу измерителя разности частот, выход которого является выходом устройства. Технический результат - повышение точности измерения температуры. 1 ил.

Изобретение относится к устройствам для измерения температуры и может применяться в различных областях техники.

Известно устройство, реализующее способ терморезистивного измерения температуры (см. RU 2198384 С2, 10.02.2003), содержащее катушку индуктивности (индуктор), находящейся вблизи проводящей поверхности исследуемого объекта (с зазором между катушкой и поверхностью исследуемого объекта), источник питания переменным током частотой. Согласно данному техническому решению, катушка индуктивности в этом случае, с точки зрения электротехники, представляется как воздушный трансформатор первичной и вторичной обмотками, имеющими активные и индуктивные сопротивления. Подача в катушку переменного тока с частотой, обеспечивает проникновение электромагнитной волны в металлическую стенку объекта на глубину, равную или меньшую толщины стенки объекта. После этого измеряют активное сопротивление катушки при известной температуре объекта и при искомой температуре. Затем по преобразованию измеренных активных сопротивлений при известной и искомой температуре, коэффициента сопротивления материала объекта измерения, известной температуры объекта и сопротивления катушки до помещения ее рядом с объектом измерения, вычисляют искомую температуру.

Недостатком этого известного технического решения является невысокая точность измерения из-за изменений активных сопротивлений в зависимости от температуры окружающей среды.

Наиболее близким техническим решением к предлагаемому, является принятое автором за прототип устройство для измерения температуры (см. RU 2190198 С2, 09.04.2001). Данное устройство содержит термопреобразователь сопротивления с тремя линиями связи, измерительный усилитель с двумя входами, формирователь тока, включающий операционный усилитель с токозадающим резистором и источником питания, резистор установки нуля, задатчик тока, цифроаналоговый преобразователь и сумматор. Суть работы устройства заключается в том, что формирователем тока создает в линии связи ток, протекающий через термопреобразователь сопротивления и резистор установки нуля. При этом величина этого тока определяется напряжением источника питания и сопротивлением токозадающего резистора. В результате на входах измерительного усилителя формируются напряжения, связанные с сопротивлением термрпреобразователя сопротивления при начальной температуре и сопротивлением термопреобразователя, вызванном изменением (отклонением) температуры от начальной, сопротивлениями линии связи и сопротивлением резистора установки нуля. В итоге на выходе усилителя получают напряжение, которое при определенных условиях, дает возможность вычислить изменение сопротивления термопреобразователя, т.е. определить измеряемую температуру.

К недостатку этого устройства можно отнести температурную погрешность, связанную с изменением сопротивлений линии связи из-за колебания температуры окружающей среды.

Техническим результатом данного устройства является повышение точности измерения температуры.

Технический результат достигается тем, что в СВЧ - мостовой измеритель температуры, содержащий термопреобразователь, усилитель и первый источник питания, введены первый СВЧ-генератор с варакторной перестройкой частоты, второй СВЧ-генератор с варакторной перестройкой частоты, третий СВЧ-генератор с варакторной перестройкой частоты, четвертый СВЧ-генератор с варакторной перестройкой частоты, второй источник питания, измеритель разности частот и частотомер, причем вводы питания первого, второго, третьего и четвертого СВЧ-генераторов подключены к первому источнику питания, варактор третьего СВЧ-генератора подключен ко второму источнику питания, термопреобразователь через усилитель соединен с варактором четвертого СВЧ-генератора, вывод энергии третьего СВЧ-генератора соединен с первым входом измерителя разности частот и входом частотомера, вывод энергии четвертого СВЧ-генератора подключен ко второму входу измерителя разности частот, выход которого является выходом устройства.

Сущность заявляемого изобретения, характеризуемого совокупностью указанных выше признаков, состоит в том, что благодаря СВЧ-мосту, вычисление частоты перестраиваемого по частоте СВЧ-генератора в зависимости от изменения температуры контролируемого объекта, дает возможность измерить искомую температуру.

Наличие в заявляемом способе совокупности перечисленных существующих признаков, позволяет решить задачу измерения температуры, на основе вычисления частоты перестраиваемого по частоте СВЧ-генератора в зависимости от изменения температуры контролируемого объекта с желаемым техническим результатом, т.е. повышением точности измерения.

На чертеже представлена функциональная схема предлагаемого устройства. Устройство содержит первый источник питания 1, первый СВЧ-генератор с варакторной перестройкой частоты 2, второй СВЧ-генератор с варакторной перестройкой частоты 3, третий СВЧ-генератор с варакторной перестройкой частоты 4, четвертый СВЧ-генератор с варакторной перестройкой частоты 5, второй источник питания 6, термопреобразователь 7, усилитель 8, измеритель разности частот 9 и частотомер 10.

Устройство работает следующим образом. В основе работы предлагаемого устройства лежит мостовой метод измерения физических величин. Согласно предлагаемому устройству на базе четырех 2, 3, 4 и 5 СВЧ-генераторов с варакторной перестройкой частоты, строят измерительный мост. В одну из двух диагоналей моста включают первый источник питания 1 (осуществление электрического питания генераторов). Варактор третьего СВЧ-генератора 4, соединяют со вторым источником питания 6, а варактор четвертого СВЧ-генератора 5 - с выходом усилителя 8. Кроме того, выводы энергии третьего СВЧ-генератора и четвертого СВЧ-генератора, соединяют с первым и вторым входами измерителя разности частот 9 соответственно. Дополнительно вывод энергии третьего СВЧ-генератора соединяют с входом частотомера 10.

С помощью первого источника питания осуществляют питание всех четырех СВЧ-генераторов одновременно (ввод питания генераторных диодов). После этого на выводах энергии всех генераторов устанавливают электромагнитные колебания равными частотами и мощностями (вводы питания варакторов всех генераторов отключены). Далее выходной сигнал (информационный сигнал об искомом параметре) термопреобразователя 7, например, термоЭДС термопары, падают на вход усилителя 8. После усиления информационного сигнала о температуре в последнем, он поступает на варактор (ввод питания варактора) четвертого СВЧ-генератора. В силу этого четвертый СВЧ-генератор перестраивается по частоте, возрастает его частота. Другими словами частотный баланс СВЧ-моста нарушается. В данном случае для уравновешивания моста, на варактор (ввод питания варактора) третьего СВЧ-генератора, со второго источника питания, подают напряжение. Благодаря этому, третий СВЧ-генератор тоже перестраивается по частоте, т.е. его частота также становится больше, чем при отключенном состоянии его варактора. Для фиксации процесса уравновешения данного частотного моста, электромагнитные колебания третьего СВЧ-генератора и четвертого СВЧ-генератора (выводы энергии), подают на первый и второй входы измерителя разности частот соответственно. Здесь при равенстве поступивших на входы измерителя разности частот сигналов по частоте, обусловливает на его выходе нулевой сигнал. В данном случае, так как в зависимости от характера изменения температуры, сначала перестраивается по частоте (уменьшение или возрастание частоты) четвертый СВЧ-генератора, то слежение за изменением сигнала (сигнал нулевой частоты) на выходе измерителя разности частот с последующей перестройкой частоты третьего СВЧ-генератора (увеличение или уменьшение частоты благодаря изменению выходного напряжения второго источника питания), даст возможность во всех случаях, обеспечить нулевой сигнал по частоте, т.е. добиться уравновешивания СВЧ-моста.

При уравновешивании СВЧ-моста (мост сбалансирован), частотомером 10 измеряется частота третьего СВЧ-генератора (вывод энергии) и потом по формуле вычисляется искомое значение температуры

f4=f2⋅f3/f1,

где f1, f3 - частоты колебаний первого и второго СЧВ - генераторов соответственно (варакторы отключены), f2 - частота колебаний третьего СВЧ-генератора при его варакторной перестройке, f4 - частота колебаний четвертого СВЧ-генератора при его варакторной перестройке из-за изменения температуры контролируемого объекта.

Таким образом, в предлагаемом техническом решении, при равновесии СВЧ-моста, вычисление частоты перестраиваемого по частоте СВЧ-генератора в зависимости от изменения температуры контролируемого объекта, дает возможность, повысит точность измерения температуры.

В данном мостовом измерителе в качестве СВЧ-генераторов могут быть использованы лавинно-пролетные генераторы (ГЛПД - 2).

Предлагаемый мост помимо измерения температуры успешно может быть использован и для измерения других физических величин, например, тока и напряжения. Кроме того, одним из преимуществ данного СВЧ-моста по сравнению прототипа, является возможность передачи информационного сигнала (частоты) дистанционно на расстояние.

СВЧ - мостовой измеритель температуры, содержащий термопреобразователь, усилитель и первый источник питания, отличающийся тем, что в него введены первый СВЧ-генератор с варакторной перестройкой частоты, второй СВЧ-генератор с варакторной перестройкой частоты, третий СВЧ-генератор с варакторной перестройкой частоты, четвертый СВЧ-генератор с варакторной перестройкой частоты, второй источник питания, измеритель разности частот и частотомер, причем вводы питания первого, второго, третьего и четвертого СВЧ-генераторов подключены к первому источнику питания, варактор третьего СВЧ-генератора подключен ко второму источнику питания, термопреобразователь через усилитель соединен с варактором четвертого СВЧ-генератора, вывод энергии третьего СВЧ-генератора соединен с первым входом измерителя разности частот и входом частотомера, вывод энергии четвертого СВЧ-генератора подключен ко второму входу измерителя разности частот, выход которого является выходом устройства.
СВЧ - мостовой измеритель температуры
СВЧ - мостовой измеритель температуры
Источник поступления информации: Роспатент

Показаны записи 71-80 из 276.
10.06.2015
№216.013.510f

Способ определения состояния поверхности дороги

Изобретение относится к способам для определения состояния поверхности дорожного полотна, на котором возможно образование слоя воды, снега или льда. Контролируемый участок поверхности дороги зондируют электромагнитными волнами, принимают отраженные от этого участка поверхности электромагнитные...
Тип: Изобретение
Номер охранного документа: 0002552272
Дата охранного документа: 10.06.2015
10.07.2015
№216.013.6084

Способ контроля процесса плавки в вакуумной дуговой печи

Изобретение относится к области измерительной техники. Техническим результатом заявляемого решения является отслеживание длины дуги в процессе плавки в вакуумной дуговой печи. Технический результат достигается тем, что в способе контроля процесса плавки в вакуумной дуговой печи, включающем...
Тип: Изобретение
Номер охранного документа: 0002556249
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.60af

Способ измерения уровня жидкости в емкости

Изобретение может быть использовано для высокоточного измерения уровня диэлектрической жидкости, находящейся в емкости, например для измерения уровня нефтепродуктов. Техническим результатом является увеличение чувствительности и точности измерений. В предлагаемом способе измерения уровня...
Тип: Изобретение
Номер охранного документа: 0002556292
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.60d3

Устройство для определения внешнего объема цилиндрического полого изделия

Изобретение относится к области измерительной техники. Техническим результатом заявляемого решения является упрощение процедуры обработки информационных сигналов о геометрических параметрах цилиндрического изделия. Устройство для определения внешнего объема цилиндрического полого изделия...
Тип: Изобретение
Номер охранного документа: 0002556329
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.6154

Сеть с топологией расширенного обобщенного гиперкуба

Изобретение относится к области высокопроизводительных многопроцессорных вычислительных систем. Техническим результатом является обеспечение надежных высокоэффективных сетей с большим числом процессорных узлов. Системная сеть с топологией расширенного n-мерного R-ичного обобщенного гиперкуба,...
Тип: Изобретение
Номер охранного документа: 0002556458
Дата охранного документа: 10.07.2015
10.08.2015
№216.013.69c4

Способ измерения параметров сжиженного газа в трехфазном состоянии

Изобретение относится к электрическим методам контроля и может быть использовано для измерения параметров сжиженных газов, включая криогенные жидкости, в трехфазном состоянии (газовом, жидком и твердом). Оно может быть использовано также для измерения положения границ раздела и диэлектрической...
Тип: Изобретение
Номер охранного документа: 0002558629
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.69c5

Способ измерения уровня вещества в емкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения уровня вещества (жидкости, сыпучего вещества), находящегося в какой-либо емкости. В частности, оно может быть применено для измерения уровня нефтепродуктов, сжиженных газов и др. Техническим...
Тип: Изобретение
Номер охранного документа: 0002558630
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.69c6

Бесконтактное радиоволновое устройство для определения уровня жидкости в емкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости, в частности для измерения уровня воды, нефтепродуктов, сжиженных газов и других жидкостей. Предлагается устройство для измерения уровня...
Тип: Изобретение
Номер охранного документа: 0002558631
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6b94

Устройство для получения электроэнергии на основе использования морских волн

Изобретение относится к области возобновляемой энергетики, а именно к преобразованию энергии волн открытых водоемов в электроэнергию. Устройство для получения электроэнергии на основе использования морских волн содержит преобразователь энергии морских волн, выполненный в виде набора...
Тип: Изобретение
Номер охранного документа: 0002559098
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6c06

Способ использования морских волн для получения электроэнергии

Изобретение относится к области возобновляемой энергетики, а именно к преобразованию энергии волн открытых водоемов в электроэнергию. Способ использования морских волн для получения электроэнергии заключается в том, что осуществляют концентрацию фронта волны за счет пропускания воды через набор...
Тип: Изобретение
Номер охранного документа: 0002559212
Дата охранного документа: 10.08.2015
Показаны записи 11-14 из 14.
12.04.2023
№223.018.4a44

Устройство для энергоснабжения привязного беспилотного летательного аппарата

Устройство для энергоснабжения привязного беспилотного летательного аппарата содержит наземный источник питания, силовой кабель, два бортовых понижающих преобразователя, управляющий ШИМ-контроллер, два формирователя сигнала ошибки. Обеспечивается повышение эффективности энергоснабжения...
Тип: Изобретение
Номер охранного документа: 0002793830
Дата охранного документа: 06.04.2023
16.05.2023
№223.018.5dad

Устройство для определения концентрации выхлопных газов в газоходе дизельных автомобилей и очистки от газов

Изобретение относится к очистке отработавших газов дизельных двигателей внутреннего сгорания и регенерации сажевых фильтров. Предложенное устройство содержит сажевый фильтр, первый СВЧ-генератор, второй СВЧ-генератор, усилитель и компаратор. При этом в него введены первый элемент ввода...
Тип: Изобретение
Номер охранного документа: 0002757745
Дата охранного документа: 21.10.2021
03.06.2023
№223.018.76af

Способ измерения массового расхода газообразного вещества, протекающего по трубопроводу

Изобретение относится к области приборостроения, в частности к способам измерения расхода потоков веществ. Способ измерения массового расхода газообразного вещества, протекающего по трубопроводу, заключается в том, что поток контролируемой среды нагревают микроволновым излучением. Сначала...
Тип: Изобретение
Номер охранного документа: 0002748325
Дата охранного документа: 24.05.2021
05.06.2023
№223.018.7730

Устройство для молниеотвода от привязного коптера

Изобретение относится к средствам защиты объектов различного назначения при прямом или близком воздействии молниевых разрядов, электромагнитных импульсов (ЭМИ), коротких замыканий и коммутаций энергооборудования, в частности к средствам молниезащиты, беспилотных летательных аппаратов....
Тип: Изобретение
Номер охранного документа: 0002767515
Дата охранного документа: 17.03.2022
+ добавить свой РИД