×
29.02.2020
220.018.0797

Результат интеллектуальной деятельности: СПОСОБ ЭЛЕКТРОПОЛИРОВАНИЯ ДЕТАЛИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии электрополирования поверхности деталей из железохромоникелевых, титановых и никелевых сплавов и может быть использовано для повышения эксплуатационных характеристик лопаток турбомашин. Способ включает электролитно-плазменное полирование путем погружения детали в электролит, формирование вокруг обрабатываемой поверхности детали парогазовой оболочки и зажигание разряда между обрабатываемой деталью и электролитом подачей на обрабатываемую деталь электрического потенциала. При этом после проведения электролитно-плазменного полирования осуществляют полирование электропроводящими гранулами, причем обеспечивают контакт всей полируемой поверхности обрабатываемой части детали с электропроводящими гранулами, приводят электропроводящие гранулы в вибрационное движение, обеспечивающее равномерное омывание электропроводящими гранулами обрабатываемой части детали, подают на деталь положительный, а на электропроводящие гранулы отрицательный электрический потенциал и ведут обработку до получения заданной шероховатости. Технический результат: повышение качества и производительности обработки поверхности деталей сложной формы. 4 з.п. ф-лы.

Изобретение относится к технологии электрополирования поверхности деталей из железохромоникелевых, титановых и никелевых сплавов и может быть использовано для повышения эксплуатационных характеристик лопаток турбомашин.

Для изготовления лопаток турбомашин применяются железохромоникелевые, титановые и никелевые сплавы, обладающие высокой прочностью, в том числе и при высоких температурах. Лопатки турбомашин обладают повышенной чувствительностью к концентраторам напряжения. Дефекты, образующиеся в процессе изготовления этих деталей, недопустимы, поскольку вызывают возникновение интенсивных процессов разрушения.

С повышением шероховатости пера лопатки ухудшается газодинамическая устойчивость двигателя, возрастают аэродинамические потери, приводящие к снижению КПД, к потере мощности, росту удельных расходов и к снижению экономичности двигателя или установки. Кроме того, качество обработки поверхности пера лопаток существенно влияет на их прочностные характеристики, так например, повышение класса чистоты поверхности способствует увеличению предела выносливости и статической прочности лопаток (В.Ф. Макаров, Е.Н. Бычина, А.О. Чуян. Математическое моделирование процесса полирования лопаток газотурбинных двигателей // Авиационно-космическая техника и технология. №8 (85), 2011, с. 11-14).

В то же время производство и ремонт лопаток газотурбинных двигателей (ГТД) и установок (ГТУ), в связи с высокими требованиями к качеству поверхности (Ra≤0,32…0,16 мкм), характеризуется значительной трудоемкостью их финишной обработки. Это вызывает проблемы при механической обработке поверхностей деталей турбомашин. В этой связи развитие способов получения высококачественных поверхностей деталей турбомашин является весьма актуальной задачей.

Известен способ полирования пера лопаток ГТД и ГТУ лепестковым кругом, при котором лопатке сообщают возвратно-поступательное перемещение относительно инструмента (А.С. СССР №1732604. МПК В24В 19/14. Способ полирования пера лопаток ГТД лепестковым кругом. Опубл. Бюл. №1, 2014 г.), в котором Полирование производят с деформацией лепесткового круга.

Известен также способ обработки, позволяющий полировать криволинейную кромку пера лопаток газовой турбины заправленным по радиусу полировальным кругом, движущимся вдоль пера лопатки (Патент РФ №2379170. МПК В24В 19/14. Способ обработки лопаток газотурбинных двигателей. Опубл. 2010 г.).

Однако применение в известных способах полирования поверхности пера лопаток механического воздействия на обрабатываемую деталь вызывает ухудшение параметров качества поверхностного слоя материалов, что приводит к снижению эксплуатационных характеристик лопаток, особенно имеющих небольшие толщины пера.

Наиболее перспективными методами обработки лопаток турбомашин являются электрохимические методы полирования поверхностей [Грилихес С.Я. Электрохимическое и химическое полирование: Теория и практика. Влияние на свойства металлов. Л., Машиностроение, 1987], при этом наибольший интерес для рассматриваемой области представляют методы электролитно-плазменного полирования (ЭПП) деталей [например, Патент ГДР (DD) №238074 (А1), МПК C25F 3/16, опубл. 06.08.1986].

Известен также способ полирования металлических поверхностей, включающий анодную обработку в электролите [Патент РБ №1132, МПК C25F 3/16, опубл. 1996, БИ №3], а также способ электрохимического полирования [Патент США №5028304, МПК В23Н 3/08, C25F 3/16, C25F 5/00, опубл. 02.07.1991].

Однако известные способы электрополирования не позволяют производить однородную обработку поверхности детали из металлического сплава, особенно деталей сложной формы.

Известен также способ полирования металлической детали, заключающийся в заполнении электропроводящими гранулами рабочего контейнера, выполненного из электропроводного материала, закрепление детали на держателе, погружении детали в электропроводящие гранулы, заполняющие контейнер, подключении детали к аноду, а контейнера к катоду [WO 2017186992 - |Method for smoothing and polishing metals via ion transport by means of free solid bodies, and solid bodies for carrying out said method. Опубл. 2017.11.02].

Однако известный способ [WO 2017186992] низкой производительностью, особенно при обработке деталей со значительной площадью поверхности.

Наиболее близким техническим решением, выбранным в качестве прототипа является способ электрополирования детали, включающий электролитно-плазменное полирование (ЭПП) путем погружения детали в электролит, формирование вокруг обрабатываемой поверхности детали парогазовой оболочки и зажигание разряда между обрабатываемой деталью и электролитом подачей на обрабатываемую деталь электрического потенциала [Патент РФ №2373306, МПК C25F 3/16. опубл: Бюл №32, 2009].

Известный способ электрополирования [Патент РФ №2373306] не позволяет производить качественное полирование поверхности деталей из металлических сплавов. Кроме того, при обработке деталей сложной формы существует вероятность возникновения брака из-за неоднородности обработки поверхности.

Задачей, на решение которой направлено заявляемое изобретение, является повышение качества и производительности электрополирования, деталей сложной формы из металлических сплавов.

Техническим результатом изобретения является повышение качества и производительности обработки поверхности деталей сложной формы за счет повышения однородности обработки поверхности и уменьшения ее шероховатости.

Технический результат достигается тем, что в способе электрополирования детали, включающем ее электролитно-плазменное полирование путем погружения детали в электролит, формирование вокруг обрабатываемой поверхности детали парогазовой оболочки и зажигание разряда между обрабатываемой деталью и электролитом подачей на обрабатываемую деталь электрического потенциала в отличие от прототипа, после проведения электролитно-плазменного полирования осуществляют полирование электропроводящими гранулами, причем обеспечивают контакт всей полируемой поверхности обрабатываемой части детали с электропроводящими гранулами,. приводят электропроводящие гранулы в вибрационное движение обеспечивающее равномерное омывание (обволакивание) электропроводящими гранулами обрабатываемой части детали, подают на деталь положительный, а на электропроводящие гранулы отрицательный электрический потенциал и ведут обработку до получения заданной шероховатости. Кроме того возможны следующие дополнительные приемы выполнения способа: в качестве полируемой детали используют лопатку компрессора газотурбинного двигателя или газотурбинной установки из железохромоникелевых сплавов, причем электролитно-плазменное полирование проводят при температуре от 60°С до 90°С, в среде водного раствора соли фторида аммония концентрацией 3,5-11,0 г/литр, до достижения минимально возможной величины шероховатости, прикладывая к обрабатываемой лопатке электрический потенциал величиной от 260 до 280 В, а затем вынимают лопатку из ванны, производят ее промывку в дистиллированной воде, погружают ее в контейнер с электропроводящими пористыми гранулами размерами от 0,6 до 0,8 мм, выполненными из сульфированного сополимера стирол-дивинилбензола, пропитанного электролитом состава водный раствор соли фторида аммония концентрацией 5 -8,0 г/литр и проводят второй этап полирования при плотности тока 1,4 до 1,9 А/см2 до достижения минимально возможной шероховатости поверхности; в качестве полируемой детали используют лопатку компрессора газотурбинного двигателя или газотурбинной установки из титановых сплавов, причем электролитно-плазменное полирование проводят при температуре от 65°С до 90°С, в среде водного раствора водный раствор смеси NH4F и KF при содержании NH4F - от 5 до 15 г/л и KF - от 30 до 50 г/л, до достижения минимально возможной величины шероховатости, прикладывая к обрабатываемой лопатке электрический потенциал величиной от 270 до 290 В, а затем вынимают лопатку из ванны, производят ее промывку в дистиллированной воде, погружают ее в контейнер с электропроводящими пористыми гранулами размерами от 0,6 до 0,8 мм, выполненными из сульфированного сополимера стирол-дивинилбензола, пропитанного электролитом состава водный раствор смеси NH4F и KF при содержании NH4F - от 8 до 14 г/л и KF - от 36 до 48 г/л, и проводят второй этап полирования при плотности тока от 1,2 до 1,8 А/см2 до достижения минимально возможной шероховатости поверхности; в качестве полируемой детали используют лопатку турбины газотурбинного двигателя или газотурбинной установки из никелевых сплавов, причем электролитно-плазменное полирование проводят при температуре от 65°С до 85°С, в среде водного раствора соли фторида аммония концентрацией 5,5-10,0 г/литр, до достижения минимально возможной величины шероховатости, прикладывая к обрабатываемой лопатке электрический потенциал величиной от 260 до 280 В, а затем вынимают лопатку из ванны, производят ее промывку в дистиллированной воде, погружают ее в контейнер с электропроводящими пористыми гранулами размерами от 0,6 до 0,8 мм, выполненными из сульфированного сополимера стирол-дивинилбензола, пропитанного электролитом состава водный раствор соли фторида аммония концентрацией 6 - 9,0 г/литр и проводят второй этап полирования при плотности тока 1,5 до 2,1 А/см2 до достижения минимально возможной шероховатости поверхности; полирование электропроводящими гранулами производят при их вибрации от 8-120 Гц с амплитудой 0,2-3,5 мм.

Заявляемый способ электрополирования полирования поверхности детали, например, пера лопатки в процессе его изготовления или восстановительного ремонта осуществляется следующим образом. Процесс электрополирования полирования осуществляют в два этапа: вначале к обрабатываемой лопатке прикладывают электрический потенциал заданной величины (для железохромоникелевых сплавов величиной от 260 до 280 В, для титановых сплавов - от 270 до 290 В, для никелевых сплавов - от 260 до 280 В) и проводят полирование до достижения минимально возможной при при обработке ЭПП шероховатости. В качестве электролита используют: для железохромоникелевых сплавов - водный раствор соли фторида аммония концентрацией 3,5-11,0 г/литр и проводят ЭПП при температуре от 60°С до 90°С, для титановых сплавов - водный раствор смеси NH4F и KF при содержании NH4F - от 5 до 15 г/л и KF - от 30 до 50 г/л и ЭПП проводят при температуре от 65°С до 90°С, для никелевых сплавов - водный раствор соли фторида аммония концентрацией 5,5-10,0 г/литр и ЭПП проводят при температуре от 65°С до 85°С). ЭПП поверхности детали ведут в среде электролита при поддержании вокруг детали парогазовой оболочки. В качестве ванны используют емкость, выполненную из материала, стойкого к воздействию электролита.

После проведения предварительной обработки детали методом ЭПП, осуществляют полирование электропроводящими гранулами, причем обеспечивают контакт всей полируемой поверхности обрабатываемой части детали с электропроводящими гранулами, приводят электропроводящие гранулы в вибрационное движение обеспечивающее равномерное омывание (обволакивание) электропроводящими гранулами обрабатываемой части детали, подают на деталь положительный, а на электропроводящие гранулы отрицательный электрический потенциал и ведут обработку до получения заданной шероховатости.

Использование двухстадийной обработки деталей объясняется следующим. Использование ЭПП, обладающей высокой производительностью, позволяет произвести грубое полирование поверхности. Использование электрополирования гранулами, имеющей низкую по сравнению с ЭПП производительность, позволяет значительно уменьшить шероховатость поверхности после ЭПП и обеспечить высокую однородность обработки.

При обработке деталей (например лопаток компрессора ГТД) из железохромоникелевых сплавов вынимают лопатку из ванны, производят ее промывку в дистиллированной воде, погружают ее в контейнер с электропроводящими пористыми гранулами размерами от 0,6 до 0,8 мм, выполненными из сульфированного сополимера стирол-дивинилбензола, пропитанного электролитом состава водный раствор соли фторида аммония концентрацией 5 -8,0 г/литр и проводят второй этап полирования при плотности тока 1,4 до 1,9 А/см2 до достижения минимально возможной шероховатости поверхности.

При обработке деталей (например лопаток компрессора ГТД) из титановых сплавов вынимают лопатку из ванны, производят ее промывку в дистиллированной воде, погружают ее в контейнер с электропроводящими пористыми гранулами размерами от 0,6 до 0,8 мм, выполненными из сульфированного сополимера стирол-дивинилбензола, пропитанного электролитом состава водный раствор смеси NH4F и KF при содержании NH4F - от 8 до 14 г/л и KF - от 36 до 48 г/л, и проводят второй этап полирования при плотности тока от 1,2 до 1,8 А/см2 до достижения минимально возможной шероховатости поверхности.

При обработке деталей (например лопаток турбины ГТД) из никелевых сплавов вынимают лопатку из ванны, производят ее промывку в дистиллированной воде, погружают ее в контейнер с электропроводящими пористыми гранулами размерами от 0,6 до 0,8 мм, выполненными из сульфированного сополимера стирол-дивинилбензола, пропитанного электролитом состава водный раствор соли фторида аммония концентрацией 6 - 9,0 г/литр и проводят второй этап полирования при плотности тока 1,5 до 2,1 А/см2 до достижения минимально возможной шероховатости поверхности.

Во всех случаях сравнительных исследований способов полирования, описанных в нижеприведенных примерах (Пример 1, Пример 2, Пример 3), сравнивались величины шероховатости на различных участках детали после обработки по предлагаемому способу и способу-прототипу [патент РФ №2373306]. После обработки производился замер шероховатости и определялся разброс шероховатости на различных участках поверхности обработанных деталей. Производительность процесса оценивалась по сравнению с известным способом полирования [WO 2017186992]. Исходная шероховатость поверхности испытуемых деталей составляла от Ra 0,72 мкм до Ra 0,60 мкм.

Пример 1. Обрабатываемые образцы лопаток из железохромоникелевых сплавов (ХН45МВТЮБР-ИД, ХН45МВТЮБР-ПД) погружали в ванну с водным раствором электролита и прикладывали к детали положительное, а к электролиту - отрицательное напряжение. Полирование поверхности пера лопатки производили в два этапа: вначале к обрабатываемой лопатке прикладывали электрический потенциал величиной от 260 до 280 В и проводили полирование до достижения минимально возможной при использовании ЭПП величины шероховатости. В качестве электролита использовали водный раствор соли фторида аммония концентрацией 3,5-11,0 г/литр и проводили ЭПП при температуре от 60°С до 90°С. Затем, вынимали лопатку из ванны, производили ее промывку в дистиллированной воде, погружали ее в контейнер с электропроводящими пористыми гранулами размерами от 0,6 до 0,8 мм, выполненными из сульфированного сополимера стирол-дивинилбензола, пропитанного электролитом состава водный раствор соли фторида аммония концентрацией 5 -8,0 г/литр и проводили второй, финишный этап полирования при плотности тока 1,4 до 1,9 А/см2 до достижения минимально возможной шероховатости поверхности.

Неудовлетворительным результатом (Н.Р.) считался результат в котором отсутствовал эффект полирования или уменьшения шероховатости поверхности детали.

Условия обработки по предлагаемому способу.

Первый этап (ЭПП):

Электрический потенциал (напряжение): 250 В - Н.Р.; 260 В - удовлетворительный результат (У.Р.); 270 В - У.Р.; 280 В - У.Р.; 290 В - Н.Р.

Электролит - водный раствор соли фторида аммония концентрацией: 3,0 г/литр - Н.Р.; 3,5 г/литр - У.Р.; 5,0 г/литр - У.Р.; 11,0 г/литр - У.Р.; 12 г/литр - Н.Р.

Температура процесса обработки: от 50°С - Н.Р.; 60°С - У.Р.; 80°С - У.Р.; 90°С - У.Р.; 97°С - Н.Р.

Второй этап (электрополирование в гранулах):

Промывка лопаток в дистиллированной воде.

Погружение лопаток в контейнер с электропроводящими пористыми гранулами размерами от 0,6 до 0,8 мм (0,4 мм (Н.Р.), 0,6 мм (У.Р.), 0,7 мм (У.Р.), 0,8 мм (У.Р.), 1,0 мм (Н.Р.)), выполненными из сульфированного сополимера стирол-дивинилбензола (У.Р.), пропитанного электролитом состава водный раствор соли фторида аммония концентрацией 5 - 8,0 г/литр (4,0 г/литр (Н.Р.), 5,0 г/литр (У.Р.), 6,0 г/литр (У.Р.), 7,0 г/литр (У.Р.), 8,0 г/литр (У.Р.), 10,0 г/литр (Н.Р.)) и при плотности тока 1,4 до 1,9 А/см2 (1,2 А/см2 (Н.Р.), 1,4 А/см2 (У.Р.), 1,6 А/см2 (У.Р.), 1,9 А/см2 (У.Р.), 2,1 А/см2 (Н.Р.)). При обработке использовались колебательные движения в двух плоскостях с частотой 8-120 Гц: 6 Гц (Н.Р.), 10 Гц (У.Р.), 15 Гц (У.Р.), 25 Гц (У.Р.), 30 Гц (У.Р.), 35 Гц (У.Р.), 50 Гц (У.Р.), 70 Гц (У.Р.), 90 Гц (У.Р.), 100 Гц (У.Р.), 120 Гц (У.Р.), 135 Гц (Н.Р.) и с амплитудой 0,2-3,5 мм (0,07 мм - Н.Р., 0,2 мм - У.Р., 0,8 мм - У.Р., 1,2 мм - У.Р., 1,8 мм - У.Р., 2,6 мм - У.Р., 3,2 мм - У.Р., 3,5 мм - У.Р., 4,1 мм - Н.Р.)

По сравнению с известным способом полирования [WO 2017186992] производительность процесса обработки деталей сложной формы из железохромоникелевых сплавов по предлагаемому способу в среднем в 5,0 - 6,3 раза выше, а по сравнению со способом-прототипом [патент РФ №2373306], а качество и однородность поверхности значительно улучшается (при использовании прототипа [патент РФ №2373306] разброс значений шероховатости поверхности в среднем составляет Ra 0,30…0,04 мкм, а при обработке по предлагаемому способу составляет Ra 0,04…0,02 мкм)

Пример 2. Обработке подвергали детали (лопатки компрессора) из титановых сплавов марок ВТ9, ВТ-1, ВТ3-1, ВТ8. Детали погружали в ванну с водным раствором электролита и прикладывали к детали положительное, а к электролиту - отрицательное напряжение. Полирование поверхности пера лопатки производили в два этапа: вначале к обрабатываемой лопатке прикладывали электрический потенциал величиной от 270 до 290 В и проводили полирование до достижения минимально возможной при использовании ЭПП величины шероховатости. В качестве электролита использовали водный раствор смеси NH4F и KF при содержании NH4F - от 5 до 15 г/л и KF - от 30 до 50 г/л и проводили ЭПП при температуре от 65°С до 90°С. Затем, вынимали лопатку из ванны, производили ее промывку в дистиллированной воде, погружали ее в контейнер с электропроводящими пористыми гранулами размерами от 0,6 до 0,8 мм, выполненными из сульфированного сополимера стирол-дивинилбензола, пропитанного электролитом состава водный раствор смеси NH4F и KF при содержании NH4F - от 8 до 14 г/л и KF - от 36 до 48 г/л и проводили второй, финишный этап полирования при плотности тока 1,2 до 1,8 А/см2 до достижения минимально возможной шероховатости поверхности.

Условия обработки по предлагаемому способу.

Первый этап (ЭПП):

Электрический потенциал (напряжение): 260 В - Н.Р.; 270 В - (У.Р.); 280 В - У.Р.; 290 В - У.Р.; 300 В - Н.Р.

Электролит - водный раствор смеси NH4F и KF при содержании NH4F (4 г/л - Н.Р., 5 г/л - У.Р., 8 г/л - У.Р., 10 г/л - У.Р., 12 г/л - У.Р., 15 г/л - У.Р., более15 г/л- Н.Р.) и KF (25 г/л - Н.Р., 30 г/л - У.Р., 35 г/л - У.Р., 40 г/л - У.Р., 50 г/л - У.Р., 55 г/л - Н.Р.)

Температура процесса обработки: от 60°С - Н.Р.; 65°С - У.Р.; 80°С - У.Р.; 90°С - У.Р.; 97°С - Н.Р.

Второй этап (электрополирование в гранулах):

Промывка лопаток в дистиллированной воде.

Погружение лопаток в контейнер с электропроводящими пористыми гранулами размерами от 0,6 до 0,8 мм (0,4 мм (Н.Р.), 0,6 мм (У.Р.), 0,7 мм (У.Р.), 0,8 мм (У.Р.), 1,0 мм (Н.Р.)), выполненными из сульфированного сополимера стирол-дивинилбензола (У.Р.), пропитанного электролитом состава водный раствор смеси NH4F и KF при содержании NH4F (6 г/л - Н.Р., 8 г/л - У.Р., 10 г/л - У.Р., 12 г/л - У.Р., 14 г/л - У.Р., более 14 г/л - Н.Р.) и KF (32 г/л - Н.Р., 36 г/л - У.Р., 42 г/л - У.Р., 45 г/л - У.Р., 48 г/л - У.Р., 52 г/л - Н.Р.) и при плотности тока 1,2 до 1,8 А/см2 (1,0 А/см2 (Н.Р.), 1,2 А/см2 (У.Р.), 1,6 А/см2 (У.Р.), 1,8 А/см2 (У.Р.), 2,0 А/см2 (Н.Р.)). При обработке использовались колебательные движения в двух плоскостях с частотой 8-120 Гц: 6 Гц (Н.Р.), 10 Гц (У.Р.), 15 Гц (У.Р.), 25 Гц (У.Р.), 30 Гц (У.Р.), 35 Гц (У.Р.), 50 Гц (У.Р.), 70 Гц (У.Р.), 90 Гц (У.Р.), 100 Гц (У.Р.), 120 Гц (У.Р.), 135 Гц (Н.Р.) и с амплитудой 0,2-3,5 мм (0,07 мм - Н.Р., 0,2 мм - У.Р., 0,8 мм - У.Р., 1,2 мм - У.Р., 1,8 мм - У.Р., 2,6 мм - У.Р., 3,2 мм - У.Р., 3,5 мм - У.Р., 4,1 мм - Н.Р.).

По сравнению с известным способом полирования [WO 2017186992] производительность процесса обработки деталей сложной формы из титановых сплавов по предлагаемому способу в среднем в 6,4 - 7,2 раза выше, а по сравнению со способом-прототипом [патент РФ №2373306], а качество и однородность поверхности значительно улучшается (при использовании прототипа [патент РФ №2373306] разброс значений шероховатости поверхности в среднем составляет Ra 0,40…0,06 мкм, а при обработке по предлагаемому способу составляет Ra 0,05…0,02 мкм)

Пример 3. Обработке подвергали лопатки из никелевых сплавов марок ЖС6У, ЖС32. Погружали детали в ванну с водным раствором электролита и прикладывали к детали положительное, а к электролиту - отрицательное напряжение. Полирование поверхности пера лопатки производили в два этапа: вначале к обрабатываемой лопатке прикладывали электрический потенциал величиной от 260 до 280 В и проводили полирование до достижения минимально возможной при использовании ЭПП величины шероховатости. В качестве электролита использовали водный раствор соли фторида аммония концентрацией 5,5-10,0 г/литр и проводили ЭПП при температуре от 60°С до 90°С. Затем, вынимали лопатку из ванны, производили ее промывку в дистиллированной воде, погружали ее в контейнер с электропроводящими пористыми гранулами размерами от 0,6 до 0,8 мм, выполненными из сульфированного сополимера стирол-дивинилбензола, пропитанного электролитом состава водный раствор соли фторида аммония концентрацией 6 - 9,0 г/литр и проводили второй, финишный этап полирования при плотности тока 1,5 до 2,1 А/см2 до достижения минимально возможной шероховатости поверхности.

Условия обработки по предлагаемому способу.

Первый этап (ЭПП):

Электрический потенциал (напряжение): 250 В - Н.Р.; 260 В - удовлетворительный результат (У.Р.); 270 В - У.Р.; 280 В - У.Р.; 290 В - Н.Р.

Электролит - водный раствор соли фторида аммония концентрацией: 5,0 г/литр - Н.Р.; 5,5 г/литр - У.Р.; 6,5 г/литр - У.Р.; 8,0 г/литр - У.Р.; 10,0 г/литр - У.Р.; 12 г/литр - Н.Р.

Температура процесса обработки: от 55°С - Н.Р.; 65°С - У.Р.; 80°С - У.Р.; 85°С - У.Р.; 90°С - Н.Р.

Второй этап (электрополирование в гранулах):

Промывка лопаток в дистиллированной воде.

Погружение лопаток в контейнер с электропроводящими пористыми гранулами размерами от 0,6 до 0,8 мм (0,4 мм (Н.Р.), 0,6 мм (У.Р.), 0,7 мм (У.Р.), 0,8 мм (У.Р.), 1,0 мм (Н.Р.)), выполненными из сульфированного сополимера стирол-дивинилбензола (У.Р.), пропитанного электролитом состава водный раствор соли фторида аммония концентрацией 6 - 9,0 г/литр (5,0 г/литр (Н.Р.), 6,0 г/литр (У.Р.), 7,0 г/литр (У.Р.), 8,0 г/литр (У.Р.), 10,0 г/литр (У.Р.), 12,0 г/литр (Н.Р.)) и при плотности тока 1,5 до 2,1 А/см (1,3 А/см2 (Н.Р.), 1,5 А/см2 (У.Р.), 1,6 А/см2 (У.Р.), 1,9 А/см2 (У.Р.), 2,1 А/см2 (У.Р.), 2,3 A/см2 (Н.Р.)). При обработке использовались колебательные движения в двух плоскостях с частотой 8-120 Гц: 6 Гц (Н.Р.), 10 Гц (У.Р.), 15 Гц (У.Р.), 25 Гц (У.Р.),30 Гц (У.Р.), 35 Гц (У.Р.), 50 Гц (У.Р.), 70 Гц (У.Р.), 90 Гц (У.Р.), 100 Гц (У.Р.), 120 Гц (У.Р.), 135 Гц (Н.Р.) и с амплитудой 0,2-3,5 мм (0,07 мм - Н.Р., 0,2 мм - У.Р., 0,8 мм - У.Р., 1,2 мм - У.Р., 1,8 мм - У.Р., 2,6 мм - У.Р., 3,2 мм - У.Р., 3,5 мм - У.Р., 4,1 мм - Н.Р.).

По сравнению с известным способом полирования [WO2017186992] производительность процесса обработки деталей сложной формы из никелевых сплавов по предлагаемому способу в среднем в 6,4 - 7,2 раза выше, а по сравнению со способом-прототипом [патент РФ №2373306], а качество и однородность поверхности значительно улучшается (при использовании прототипа [патент РФ №2373306] разброс значений шероховатости поверхности в среднем составляет Ra 0,35…0,06 мкм, а при обработке по предлагаемому способу составляет Ra 0,04…0,02 мкм)

Таким образом, предложенный способ электрополирования детали позволяет повысить качество и производительность обработки поверхности деталей сложной формы за счет повышения однородности обработки поверхности и уменьшения ее шероховатости.

Источник поступления информации: Роспатент

Показаны записи 11-20 из 22.
20.01.2018
№218.016.1d37

Способ деформационно-термической обработки аустенитных коррозионностойких сталей

Изобретение относится к области металлургии, а именно к термомеханической обработке аустенитных коррозионно-стойких сталей. Для повышения прочностных свойств стали при температурах деформации ниже температуры рекристаллизации с сохранением однородной аустенитной структуры предварительно...
Тип: Изобретение
Номер охранного документа: 0002640702
Дата охранного документа: 11.01.2018
10.05.2018
№218.016.44c8

Способ упрочняющей обработки деталей из титановых сплавов с ультрамелкозернистой структурой

Изобретение относится к способу упрочняющей обработки деталей из титановых сплавов с ультрамелкозернистой структурой и может быть использовано в авиационном двигателестроении и энергетическом турбостроении для защитно-упрочняющей обработки пера рабочих лопаток компрессора ГТД или паровой...
Тип: Изобретение
Номер охранного документа: 0002649928
Дата охранного документа: 05.04.2018
09.06.2018
№218.016.5aa2

Способ защиты блиска газотурбинного двигателя из титановых сплавов от пылеабразивной эрозии

Изобретение относится к способу защиты блиска газотурбинного двигателя из титановых сплавов от пылеабразивной эрозии. Осуществляют упрочняющую обработку микрошариками, полирование кромок лопаток блиска, ионно-плазменную модификацию материала поверхностного слоя лопаток блиска с последующим...
Тип: Изобретение
Номер охранного документа: 0002655563
Дата охранного документа: 28.05.2018
09.06.2018
№218.016.6043

Сверхвысокооборотный микрогенератор с пониженным тепловыделением

Изобретение относится к электротехнике и может быть использовано в качестве источника электроснабжения автономных объектов. Технический результат заключается в снижении тепловыделения сверхвысокооборотных микрогенераторов. Сверхвысокооборотный микрогенератор с пониженным тепловыделением...
Тип: Изобретение
Номер охранного документа: 0002656868
Дата охранного документа: 07.06.2018
11.06.2018
№218.016.6106

Способ пластического структурообразования цилиндрических мерных заготовок

Изобретение относится к машиностроению, а именно к обработке металлов давлением, и может быть использовано для получения микрокристаллической структуры металла с целью его упрочнения. Способ пластического структурообразования цилиндрической мерной заготовки включает многократное деформирование...
Тип: Изобретение
Номер охранного документа: 0002657274
Дата охранного документа: 09.06.2018
04.07.2018
№218.016.6a4b

Сверхпрочная высокомарганцевая сталь, полученная за счет комбинирования механизмов упрочнения

Изобретение относится к области материалов с ультрамелкозернистой (УМЗ) структурой, а именно к сталям, которые могут быть использованы в автомобильной промышленности, атомной энергетике, при разработке микроэлектромеханических систем. Ультрамелкозернистая высокомарганцевая сталь обладает...
Тип: Изобретение
Номер охранного документа: 0002659542
Дата охранного документа: 02.07.2018
13.07.2018
№218.016.70eb

Установка для ионно-плазменного модифицирования и нанесения покрытий на моноколеса с лопатками

Изобретение относится к технике для нанесения покрытий на детали машин, а именно к вакуумной ионно-плазменной обработке поверхностей, и может быть использовано для нанесения функциональных покрытий на моноколеса турбомашин. Установка для вакуумной ионно-плазменной обработки поверхности...
Тип: Изобретение
Номер охранного документа: 0002661162
Дата охранного документа: 12.07.2018
07.12.2018
№218.016.a4d6

Способ изготовления керамической формы для литья по выплавляемым моделям

Изобретение относится к литейному производству и может быть использовано для получения отливок литьем по выплавляемым моделям. Способ изготовления керамической формы для литья по выплавляемым моделям включает послойное нанесение на выплавляемую модель суспензии на основе водного связующего и...
Тип: Изобретение
Номер охранного документа: 0002674273
Дата охранного документа: 06.12.2018
16.01.2019
№219.016.b07e

Способ нанесения защитного многослойного покрытия на лопатки блиска газотурбинного двигателя из титанового сплава от пылеабразивной эрозии

Изобретение относится к машиностроению и может быть использовано в авиационном двигателестроении и энергетическом турбостроении для защиты пера рабочих лопаток моноколеса компрессора ГТД из титановых сплавов от пылеабразивной эрозии. Способ нанесения защитного многослойного покрытия на лопатки...
Тип: Изобретение
Номер охранного документа: 0002677041
Дата охранного документа: 15.01.2019
18.05.2019
№219.017.5393

Ткань с электромагнитным и пьезоэлектрическим нагревом

Изобретение относится к текстильной промышленности, в частности, к электронагревательным тканям промышленного и бытового назначения, имеющим в своей структуре пьезоэлементы и электронагревательные нити. Технический результат: увеличение нагревательной способности ткани и более полное...
Тип: Изобретение
Номер охранного документа: 0002687769
Дата охранного документа: 16.05.2019
Показаны записи 11-20 из 141.
27.10.2013
№216.012.7a11

Способ получения теплозащитного покрытия на детали газовой турбины из никелевого или кобальтового сплава

Изобретение относится к области машиностроения, а именно к способам получения теплозащитных покрытий на деталях турбин из никелевых или кобальтовых сплавов, в частности газовых турбин авиадвигателей и энергетических установок. Способ включает нанесение жаростойкого подслоя и формирование...
Тип: Изобретение
Номер охранного документа: 0002496911
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.7a13

Установка для ионно-лучевой и плазменной обработки

Изобретение может быть использовано при обработке длинномерных изделий для модифицирования поверхности и нанесения функциональных покрытий с использованием технологий вакуумной ионно-плазменной обработки, ионной имплантации и нанесения покрытий. Цилиндрическая вакуумная камера (1) установки...
Тип: Изобретение
Номер охранного документа: 0002496913
Дата охранного документа: 27.10.2013
20.11.2013
№216.012.81b3

Составной сегмент прирабатываемого уплотнения турбины

Изобретение относится к машиностроению, в частности к уплотнениям зазоров проточной части турбомашин, длительно работающих в условиях повышенных температур и высокочастотных вибраций. Составной сегмент прирабатываемого уплотнения турбины содержит уплотняющий блок, выполненный в виде призмы из...
Тип: Изобретение
Номер охранного документа: 0002498879
Дата охранного документа: 20.11.2013
20.11.2013
№216.012.82bb

Надбандажное прирабатываемое уплотнение для паровой турбины

Надбандажное прирабатываемое уплотнение для паровой турбины содержит уплотнительные кольцевые гребешки ротора турбины, сегменты уплотнения и кольцевые пазы статора турбины. Сегменты уплотнения включают в себя уплотняющие блоки, прикрепленные к корпусам уплотняющих блоков, имеющим в поперечном...
Тип: Изобретение
Номер охранного документа: 0002499143
Дата охранного документа: 20.11.2013
20.03.2014
№216.012.ac95

Надбандажное лабиринтное уплотнение для паровой турбины

Лабиринтное надбандажное уплотнение для паровой турбины содержит уплотнительный кольцевой гребешок и уплотняющие блоки. Гребешок выполнен или установлен на бандаже лопаток ступени ротора турбины. Уплотняющие блоки установлены с уплотняющим радиальным зазором относительно кольцевого гребешка...
Тип: Изобретение
Номер охранного документа: 0002509896
Дата охранного документа: 20.03.2014
27.08.2014
№216.012.eea2

Способ изготовления металлического изделия из порошкового материала цикличным послойным лазерным синтезом

Изобретение относится к порошковой металлургии, в частности к изготовлению металлических изделий из порошков селективным лазерным спеканием. Наносят слой керамического порошка, проводят селективное спекание на заданных участках слоя и удаляют указанный материал из неспеченных участков. Между...
Тип: Изобретение
Номер охранного документа: 0002526909
Дата охранного документа: 27.08.2014
20.11.2014
№216.013.071e

Способ обработки лопатки газотурбинного двигателя

Изобретение относится к электрофизическим и электрохимическим методам обработки, в частности к способу размерной и упрочняющей обработки лопаток ГТД, и может быть использовано в турбомашиностроении при обработке рабочих и направляющих лопаток паровых турбин, лопаток газоперекачивающих...
Тип: Изобретение
Номер охранного документа: 0002533223
Дата охранного документа: 20.11.2014
10.01.2015
№216.013.1e1d

Способ повышения износостойкости резьбовой поверхности детали из легированных сталей

Изобретение относится к машиностроению и может быть использовано для защитно-упрочняющей обработки и нанесения износостойких покрытий на резьбовые поверхности деталей, применяемых, например, в ролико-винтовых и шарико-винтовых передачах. Способ включает подготовку поверхности под нанесение...
Тип: Изобретение
Номер охранного документа: 0002539137
Дата охранного документа: 10.01.2015
10.05.2015
№216.013.4ada

Способ изготовления металлического изделия послойным лазерным нанесением порошкового материала

Изобретение относится к области лазерной обработки материалов и может быть использовано для изготовления металлических изделий из порошков селективным лазерным спеканием. Наносят первый порошковый материал и селективно спекают на заданных участках слоя. Удаляют первый порошковый материал из...
Тип: Изобретение
Номер охранного документа: 0002550669
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4adb

Способ изготовления металлического изделия лазерным цикличным нанесением порошкового материала и установка для его осуществления

Изобретение относится к изготовлению металлических изделий из порошков послойным селективным лазерным спеканием. Способ включает образование оболочки для формируемого изделия путем нанесения слоя из первого порошкового материала и его спекание по всей рабочей поверхности. Нанесение слоя из...
Тип: Изобретение
Номер охранного документа: 0002550670
Дата охранного документа: 10.05.2015
+ добавить свой РИД