×
29.02.2020
220.018.073e

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ ВЗРЫВЧАТОГО НАНОСТРУКТУРИРОВАННОГО МАТЕРИАЛА

Вид РИД

Изобретение

Аннотация: Способ изготовления наноструктурированного взрывчатого материала включает помещение навески порошкообразного взрывчатого вещества (ВВ) из группы индивидуальных азотсодержащих органических ВВ, имеющих упругость паров не ниже 10 Па, в тигель с крышкой, имеющей коническую внутреннюю полость, в центре которой выполнено осевое сквозное отверстие, возгонку навески ВВ при температуре 80-180°С и вакууме и осаждение сублимированного ВВ на подложку при остаточном давлении (10-10) Па в виде слоя из поликристаллических частиц. По направлению движения потока возгоняемых частиц ВВ на подложку устанавливают экран в виде диска с кольцевым сквозным пазом. Подложку устанавливают на опоре с возможностью вращения ее вокруг центральной оси, а ось вращения подложки устанавливают с эксцентриситетом (Δ). Полученный слой ВВ механически отделяют от подложки и механически измельчают до заданной величины удельной поверхности частиц ВВ с получением нанокристаллического порошкообразного материала для последующего формирования заряда ВВ. Способ обеспечивает получение наноструктурированного взрывчатого материала с высокой детонационной способностью и позволяет регулировать процесс перекристаллизации ВВ до получения частиц, размер которых находится в диапазоне менее 1 мкм. 7 ил., 1 табл.

Предлагаемое изобретение относится к области изготовления взрывчатых веществ (ВВ) и взрывчатых составов (ВС) на их основе с высокой детонационной способностью.

Актуальность решаемой проблемы основана на необходимости изготовления наполнителя с высокой реакционной способностью для заряда с улучшенными детонационными свойствами. Экспериментально было показано, что с уменьшением размера частиц ВВ возрастает детонационная способность заряда ВВ. Однако, при попытках применения данного условия при изготовлении заряда из разрозненных частиц ВВ не приводит к возрастанию детонационной способности ВВ, т.к. реакционная способность таких частиц существенно не возрастает, а формировать заряд из таких частиц технологически проблематично.

Наиболее близким по технической сущности к заявляемому является способ получения смесевого ВВ, включающего смешение компонентов смесевого ВВ и формирование заряда ВВ, в котором предварительно порошкообразный гексоген подвергают возгонке (сублимации) в вакууме при остаточном давлении (2-5)×10-3 Па и при температуре 140-160°С, затем полученный слой сублимированного гексогена механически отделяют от подложки и механически измельчают до частиц дисперсности 250-500 мкм и используют для приготовления заряда ВВ (патент РФ №2616729, МПК С06В 25/00, публ. 18.04.17 г.).

К недостаткам прототипа относится недостаточно высокая детонационная способность ВВ и отсутствие средств для управления параметрами процесса возгонки и кристаллизации, что необходимо для получения минимально достижимого размера кристаллов ВВ и величины критического диаметра смесевого ВВ.

Задачей авторов предлагаемого изобретения является разработка способа изготовления наноструктурированного взрывчатого материала для получения заряда с высокой детонационной способностью, с возможностью регулирования процесса перекристаллизации ВВ до получения частиц, размер которых находится в диапазоне менее 1 мкм.

Технический результат, обеспечиваемый при использовании предлагаемого способа, заключается в обеспечении изготовления наноструктурированного взрывчатого вещества для получения заряда с высокой детонационной способностью, с возможностью регулирования процесса перекристаллизации ВВ до получения частиц, размер которых находится в диапазоне менее 1 мкм.

Указанные задача и технический результат обеспечиваются тем, что в отличие от известного в предлагаемом способе изготовления наноструктурированного взрывчатого материала, включающего предварительное взятие в тигле навески порошкообразного взрывчатого вещества из группы индивидуальных азотсодержащих органических ВВ, имеющих упругость паров не ниже 10-5 Па, возгонку навески ВВ при температурах 80-180°С вакууме и осаждение на подложку, возгонку осуществляют помещая навеску ВВ в тигель с крышкой, имеющей коническую внутреннюю полость, в центре которой выполнено осевое сквозное отверстие для фокусировки и ограничения выхода потока возгоняемых частиц ВВ, по направлению движения потока возгоняемых частиц ВВ на подложку устанавливают экран, который выполнен в виде диска с кольцевым сквозным пазом, осаждение возогнанного ВВ ведут послойно при остаточном давлении (10-3-10-2) Па на подложку, в виде слоя из поликристаллических частиц, при этом подложку устанавливают на опоре с возможностью вращения ее вокруг центральной оси, а ось вращения подложки устанавливают с эксцентриситетом (Δ) относительно оси сопла таким образом, чтобы в процессе осаждения на подложке образовался кольцевой слой, при этом меняют дискретность нарастания кольцевого слоя в заданном диапазоне значений, после чего полученный слой наноструктурированного поликристаллического ВВ механически отделяют от подложки и механически измельчают до заданной величины удельной поверхности частиц ВВ с получением нанокристаллического порошкообразного наполнителя для последующего формирования заряда ВВ.

Предлагаемый способ изготовления наноструктурированного взрывчатого материала поясняется следующим образом.

На фиг. 1 представлена схема реализации предлагаемого способа, где 1 - подложка, 2 - экран для ограничения поступления потока частиц на подложку, 3 - крышка с соплом для фокусировки потока частиц, 4 - тигель с ВВ, 5 - навеска ВВ.

ВВ (поз. 5 фиг 1) возгоняется в вакууме при остаточном давлении (10-3-10-2) Па путем его нагрева в тигле (поз. 4 фиг. 1) до температуры сублимации. С помощью крышки тигля, имеющей коническую внутреннюю полость и осевое отверстие (сопло), сублимированное ВВ фокусируется и поступает к подложке (поз. 1 фиг. 1), вращающейся вокруг оси. Сопло ограничивает выход паров из тигля. Ось вращения подложки установлена с эксцентриситетом (Δ фиг. 1) относительно оси сопла так, что в процессе конденсации на подложке формируется кольцевой слой.

ВВ осаждается на подложку дискретно, лишь во время ее прохождения над испарителем. Для предотвращения оседания паров ВВ на подложку вне зоны расположения сопла используется экран (поз. 2 фиг. 1) в виде сплошного цилиндрического диска с пазом, через который происходит осаждение сублимированного ВВ на подложку.

Количество ВВ, осаждаемого на подложку за один ее оборот (то есть дискретность нарастания слоя, а, соответственно, размер кристалла в получаемом слое и детонационную способность ВВ), наиболее эффективно можно регулировать:

скоростью вращения подложки, изменяя время нахождения подложки над соплом: увеличение скорости вращения подложки, при прочих равных условиях, уменьшает количество ВВ конденсирующего за один обороти способствует уменьшению размера кристаллов в осажденном слое ВВ, что приводит к повышению детонационной способности ВВ;

диаметром сопла, то есть изменяя количество паров ВВ, поступающих к подложке в единицу времени: увеличение диаметра сопла (испарителя), при прочих равных условиях, увеличивает количество ВВ конденсирующего за один оборот и способствует укрупнению кристаллов, в том числе за счет перегрева подложки при выделении теплоты кристаллизации, в осажденном слое ВВ, что приводит к снижению детонационной способности ВВ.

Экспериментально было подтверждено, что при использовании предлагаемого способ обеспечивается более высокий результат по сравнению с прототипом, заключающийся в обеспечении изготовления наноструктурированного взрывчатого материала для получения заряда с высокой детонационной способностью, с возможностью регулирования процесса перекристаллизации ВВ до получения частиц, размер которых находится в диапазоне менее 1 мкм.

На фиг. 2-7 представлены фотографии микроструктуры при варьировании различных режимов перекристаллизации слоя возогнанного ВВ, которые поясняются следующими примерами.

Пример 1. В лабораторных условиях на установке для сублимирования ВВ (на базе вакуумного поста ВУП-4) было проведено исследование влияния дискретности осаждения паров на кристаллическую структуру и детонационную способность ВВ.

Сублимированное ВВ тэн осаждали на вращающуюся подложку. Для сублимации использовали испаритель диаметром 20 мм, крышку с соплом не использовали.

В первом случае, испаритель и подложка были установлены соосно, экран не использовали, то есть сублимированное ВВ непрерывным образом осаждали на подложку. Это привело к формированию поликристаллического слоя тэна с кристаллами, размер которых, хотя бы по одному из направлений,составлял более 10 мкм (фиг. 2). Критическая толщина детонации такого поликристаллического слоя тэна, определенная в опытах, составила 0,20 мм.

Во втором случае, процесс конденсации осуществляли дискретно: подложка и испаритель были установлены с эксцентриситетом 30 мм; использовали экран, позволяющий формировать на подложке кольцевой слой шириной 3 мм. В этом случае размер кристаллов тэна в поликристаллическом слое по любому из выбранных направлений не превышал 10 мкм (фиг. 3), а критическая толщина детонации такого слоя составила 0,15 мм.

Пример 2. В лабораторных условиях на установке для сублимирования ВВ (на базе вакуумного поста ВУП-4) было проведено исследование влияния диаметра сопла испарителя на кристаллическую структуру и детонационной способности ВВ.

Пары ВВ тэн осаждали на подложку через экран по схеме, показанной на фиг. 1.

В первом случае, диаметр испарителя составлял 25 мм. Размер индивидуальных кристаллов тэна в поликристаллическом слое, в этом случае, составлял от одного до десяти микрометров (фиг. 3), а критическая толщина детонации такого слоя составляла 0,15 мм.

Во втором случае диаметр испарителя составлял 5 мм. В этом случае, поликристаллический слой перекристаллизованного тэна состоял из кристаллов с размерами менее одного микрометра (фиг. 4) и имел критическую толщину детонации 0,10 мм.

Пример 3. В лабораторных условиях на установке для сублимирования ВВ (ВУ-700TDE) было проведено исследование влияния дискретности нарастания слоя на кристаллическую структуру ВВ и детонационную способность ВС на его основе.

Сублимированный гексоген осаждали на подложку, вращающуюся со скоростью 30 об/мин.

В первом случае ВВ гексоген возгоняли через крышку испарителя, имеющего прямоугольное отверстие размером 8 мм × 75 мм и непрерывным образом осаждали на подложку. В этом случае размер кристаллов в поликристаллическом слое гексогена составлял от 40 мкм до 100 мкм (фиг. 5). Критическое сечение в канале с поворотами для заряда ВВ, изготовленного на основе такого поликристаллического гексогена и содержащего кроме наполнителя около 10 процентов связующего, составляло 3,0 мм × 1,0 мм.

Во втором случае процесс перекристаллизации осуществляли дискретно: гексоген возгоняли через сопло диаметром 4,2 мм и осаждали через экран на подложку в виде кольца шириной 20 мм. В этом случае поликристаллический слой перекристаллизованного гексогена состоял из пластинчатых кристаллов толщиной около 10 мкм с сильно развитой поверхностью за счет большого числа ступеней роста (фиг. 6). Критическое сечение в канале с поворотами для заряда ВВ, изготовленного на основе такого поликристаллического гексогена и содержащего кроме наполнителя около 10 процентов связующего, составляло 1,5 мм × 1,2 мм.

Пример 4. В лабораторных условиях на установке для сублимирования ВВ (ВУ-700TDE) было проведено исследование влияния скорости вращения подложки на кристаллическую структуру ВВ и детонационную способность ВС на его основе.

ВВ гексоген перекристаллизовали предлагаемым способом, показанным на фиг. 1.

В первом случае подложка вращалась со скоростью 30 об/мин. В этом случае поликристаллический слой перекристаллизованного гексогена состоял из пластинчатых кристаллов толщиной менее 10 мкм с сильно развитой поверхностью за счет большого числа ступеней роста (фиг. 6). Критическое сечение в канале с поворотами для заряда ВВ, изготовленного на основе такого гексогена и содержащего кроме наполнителя около 10 процентов связующего, в заряде шириной 1,5 мм составило 1,2 мм.

Во втором случае подложка вращалась со скоростью 400 об/мин. В этом случае, поликристаллический слой перекристаллизованного гексогена характеризовался кристаллами, размерами которых хоть в одном направлении был менее 1 мкм (фиг. 7). Критическое сечение в канале с поворотами для заряда ВВ, изготовленного на основе такого гексогена и содержащего кроме наполнителя около 10 процентов связующего, в заряде шириной 1,5 мм составило 0,5 мм.

Результаты испытаний по примерам 1-4 сведены в таблицу 1. Как это показали примеры, реализация предлагаемого способа изготовления наноструктурированного взрывчатого материала показала достижение более высокого по сравнению с прототипом, результата, а именно - получение ВВ для изготовления заряда с высокой детонационной способностью.

Способ изготовления наноструктурированного взрывчатого материала, включающий предварительное взятие в тигле навески порошкообразного взрывчатого вещества (ВВ) из группы индивидуальных азотсодержащих органических ВВ, имеющих упругость паров не ниже 10 Па, возгонку навески ВВ при температуре 80-180°С и вакууме и осаждение на подложку, отличающийся тем, что возгонку осуществляют помещая навеску ВВ в тигель с крышкой, имеющей коническую внутреннюю полость, в центре которой выполнено осевое сквозное отверстие для фокусировки и ограничения выхода потока возгоняемых частиц ВВ, по направлению движения потока возгоняемых частиц ВВ на подложку устанавливают экран, который выполнен в виде диска с кольцевым сквозным пазом, осаждение возогнанного сублимированного ВВ ведут послойно при остаточном давлении (10-10) Па на подложку в виде слоя из поликристаллических частиц, при этом подложку устанавливают на опоре с возможностью вращения ее вокруг центральной оси, а ось вращения подложки устанавливают с эксцентриситетом (Δ) относительно оси сопла таким образом, чтобы в процессе осаждения на подложке образовался кольцевой слой, при этом меняют дискретность нарастания кольцевого слоя в заданном диапазоне значений, после чего полученный слой поликристаллического ВВ механически отделяют от подложки и механически измельчают до заданной величины удельной поверхности частиц ВВ с получением нанокристаллического порошкообразного наполнителя для последующего формирования заряда ВВ.
СПОСОБ ИЗГОТОВЛЕНИЯ ВЗРЫВЧАТОГО НАНОСТРУКТУРИРОВАННОГО МАТЕРИАЛА
Источник поступления информации: Роспатент

Показаны записи 541-550 из 796.
29.08.2019
№219.017.c466

Электрическая взрывная сеть

Изобретение относится к взрывной технике и может быть использовано при создании электрических средств и сетей подрыва взрывных зарядов. Электрическая взрывная сеть содержит источник питания и по крайней мере одну линию передачи электрического импульса с двумя зашунтированными выводами,...
Тип: Изобретение
Номер охранного документа: 0002698350
Дата охранного документа: 26.08.2019
01.09.2019
№219.017.c537

Способ измерения времени пролета метаемым телом мерной базы и устройство для его осуществления

Группа изобретений относится к испытательной технике, а именно к внешнетраекторной регистрации параметров пролета метаемого тела (МТ) на участках промежуточной и внешней баллистики, при осколочных и пулеосколочных испытаниях. Способ включает установку по траектории полета метаемого тела в...
Тип: Изобретение
Номер охранного документа: 0002698531
Дата охранного документа: 28.08.2019
01.09.2019
№219.017.c568

Волноводный ферритовый переключатель с магнитной памятью

Изобретение относится к области радиотехники. Волноводный ферритовый переключатель с магнитной памятью содержит волноводное разветвление, в центре которого между диэлектрическими прокладками расположен ферритовый вкладыш с управляющей обмоткой, при этом ферритовый вкладыш состоит из примыкающих...
Тип: Изобретение
Номер охранного документа: 0002698544
Дата охранного документа: 28.08.2019
01.09.2019
№219.017.c5b2

Способ дистанционного определения термодинамической температуры быстропротекающего процесса, развивающегося в радиопрозрачном объекте, устройство для его осуществления, способы калибровки устройства и генератора шума в составе этого устройства

Изобретение относится к технике радиофизических измерений и может быть использовано для измерения в миллиметровом участке спектра собственного теплового излучения разнообразных быстропротекающих газодинамических процессов, развивающихся в радиопрозрачных объектах. Заявлен способ...
Тип: Изобретение
Номер охранного документа: 0002698523
Дата охранного документа: 28.08.2019
06.09.2019
№219.017.c7d0

Насадка для антенны летательного аппарата

Изобретение относится к области радиотехники, а именно к антенной технике и технике антенных измерений. Насадка для антенны летательного аппарата содержит коаксиальный соединитель, экранирующий корпус, внутри которого расположены проводящая втулка, установленная при помощи изолятора соосно...
Тип: Изобретение
Номер охранного документа: 0002699237
Дата охранного документа: 04.09.2019
06.09.2019
№219.017.c7da

Дифференциальный измерительный преобразователь

Изобретение относится к области измерительной техники, а именно к измерительным преобразователям с частотной формой выходных сигналов. Техническим результатом является обеспечение проверки работоспособности частотозадающих элементов и всего измерительного преобразователя по значению выходной...
Тип: Изобретение
Номер охранного документа: 0002699255
Дата охранного документа: 04.09.2019
06.09.2019
№219.017.c7e0

Субнаносекундный ускоритель электронов

Изобретение относится к технике формирования электронных пучков субнаносекундной длительности и может быть использовано при создании субнаносекундных ускорителей электронов мегавольтного диапазона. Данные ускорители широко применяются для определения временного разрешения наносекундных...
Тип: Изобретение
Номер охранного документа: 0002699231
Дата охранного документа: 04.09.2019
06.09.2019
№219.017.c80b

Преобразователь напряжения разбаланса мостовой схемы в частоту или скважность

Преобразователь напряжения разбаланса мостовой схемы в частоту или скважность относится к информационно-измерительной технике и может быть использован в прецизионных преобразователях физических параметров (линейного ускорения, давления), магнитометрах, устройствах измерения гальванически...
Тип: Изобретение
Номер охранного документа: 0002699303
Дата охранного документа: 04.09.2019
06.09.2019
№219.017.c81f

Установка центробежная и держатель изделия для центробежной установки

Группа изобретений относится к испытательной технике, а именно к установкам для испытаний изделий на воздействие линейных ускорений. Установка центробежная содержит фундаментную опору, вертикальный двухопорный вал с верхней и нижней опорами, привод вала, установленный на раме, шарнирно...
Тип: Изобретение
Номер охранного документа: 0002699302
Дата охранного документа: 04.09.2019
07.09.2019
№219.017.c8a7

Устройство для регистрации состояния, симметрии и динамики движения лайнеров в газовой среде

Использование: для исследований квазиизэнтропической сжимаемости газов в мегабарной области давлений. Сущность изобретения заключается в том, что устройство содержит размещенные на основании полусферический заряд взрывчатого вещества, в полости которого осесимметрично последовательно...
Тип: Изобретение
Номер охранного документа: 0002699382
Дата охранного документа: 05.09.2019
Показаны записи 11-15 из 15.
18.05.2019
№219.017.5907

Смесевое взрывчатое вещество и способ его изготовления

Изобретение относится к области разработки смесевых взрывчатых веществ (ВВ), а именно мощных бризантных ВВ с повышенными удельными характеристиками кумулятивных зарядов различного назначения, например используемых в газонефтедобыче. Предложенный состав смесевого высокобризантного ВВ включает...
Тип: Изобретение
Номер охранного документа: 0002417971
Дата охранного документа: 10.05.2011
31.07.2019
№219.017.ba52

Способ спектрометрического анализа газообразных продуктов разложения взрывчатых веществ

Данное изобретение относится к области методов анализа механизмов поведения взрывчатых веществ (ВВ) при термических воздействиях и может быть использовано для исследования продуктов терморазложения ВВ. Сущность изобретения заключается в том, что в отличие от известного способа анализа...
Тип: Изобретение
Номер охранного документа: 0002695954
Дата охранного документа: 29.07.2019
31.07.2020
№220.018.3ace

Детонационная разводка, инициируемая лазерным излучением, и состав светочувствительного взрывчатого вещества для инициирования детонационной разводки

Использование: область взрывных работ, в частности конструкции взрывных устройств. Задача: разработка безопасной и простой детонационной разводки (ДР), в которой минимизированы факторы, снижающие ее безопасность и надежность срабатывания ДР. Сущность изобретения: в отличие от конструкции...
Тип: Изобретение
Номер охранного документа: 0002728085
Дата охранного документа: 28.07.2020
22.04.2023
№223.018.5117

Способ изготовления смесевого взрывчатого вещества

Изобретение относится к области технологии изготовления смесевых взрывчатых веществ. Для изготовления смесевого взрывчатого вещества осуществляют подготовку и смешение исходных компонентов, производят введение технологических добавок. Смешению подвергают сначала порошкообразный тэн и...
Тип: Изобретение
Номер охранного документа: 0002794210
Дата охранного документа: 12.04.2023
16.06.2023
№223.018.7bdb

Термопластичный взрывчатый состав и способ его изготовления

Группа изобретений относится к области технологий получения смесевых термопластичных взрывчатых материалов. Термопластичный взрывчатый состав в качестве взрывчатых компонентов содержит диаминодинитроэтилен, 3,4-бис-(4-нитрофуразан-3-ил)-фуразан, а в качестве инертной добавки -...
Тип: Изобретение
Номер охранного документа: 0002756081
Дата охранного документа: 27.09.2021
+ добавить свой РИД