×
29.02.2020
220.018.073e

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ ВЗРЫВЧАТОГО НАНОСТРУКТУРИРОВАННОГО МАТЕРИАЛА

Вид РИД

Изобретение

Аннотация: Способ изготовления наноструктурированного взрывчатого материала включает помещение навески порошкообразного взрывчатого вещества (ВВ) из группы индивидуальных азотсодержащих органических ВВ, имеющих упругость паров не ниже 10 Па, в тигель с крышкой, имеющей коническую внутреннюю полость, в центре которой выполнено осевое сквозное отверстие, возгонку навески ВВ при температуре 80-180°С и вакууме и осаждение сублимированного ВВ на подложку при остаточном давлении (10-10) Па в виде слоя из поликристаллических частиц. По направлению движения потока возгоняемых частиц ВВ на подложку устанавливают экран в виде диска с кольцевым сквозным пазом. Подложку устанавливают на опоре с возможностью вращения ее вокруг центральной оси, а ось вращения подложки устанавливают с эксцентриситетом (Δ). Полученный слой ВВ механически отделяют от подложки и механически измельчают до заданной величины удельной поверхности частиц ВВ с получением нанокристаллического порошкообразного материала для последующего формирования заряда ВВ. Способ обеспечивает получение наноструктурированного взрывчатого материала с высокой детонационной способностью и позволяет регулировать процесс перекристаллизации ВВ до получения частиц, размер которых находится в диапазоне менее 1 мкм. 7 ил., 1 табл.

Предлагаемое изобретение относится к области изготовления взрывчатых веществ (ВВ) и взрывчатых составов (ВС) на их основе с высокой детонационной способностью.

Актуальность решаемой проблемы основана на необходимости изготовления наполнителя с высокой реакционной способностью для заряда с улучшенными детонационными свойствами. Экспериментально было показано, что с уменьшением размера частиц ВВ возрастает детонационная способность заряда ВВ. Однако, при попытках применения данного условия при изготовлении заряда из разрозненных частиц ВВ не приводит к возрастанию детонационной способности ВВ, т.к. реакционная способность таких частиц существенно не возрастает, а формировать заряд из таких частиц технологически проблематично.

Наиболее близким по технической сущности к заявляемому является способ получения смесевого ВВ, включающего смешение компонентов смесевого ВВ и формирование заряда ВВ, в котором предварительно порошкообразный гексоген подвергают возгонке (сублимации) в вакууме при остаточном давлении (2-5)×10-3 Па и при температуре 140-160°С, затем полученный слой сублимированного гексогена механически отделяют от подложки и механически измельчают до частиц дисперсности 250-500 мкм и используют для приготовления заряда ВВ (патент РФ №2616729, МПК С06В 25/00, публ. 18.04.17 г.).

К недостаткам прототипа относится недостаточно высокая детонационная способность ВВ и отсутствие средств для управления параметрами процесса возгонки и кристаллизации, что необходимо для получения минимально достижимого размера кристаллов ВВ и величины критического диаметра смесевого ВВ.

Задачей авторов предлагаемого изобретения является разработка способа изготовления наноструктурированного взрывчатого материала для получения заряда с высокой детонационной способностью, с возможностью регулирования процесса перекристаллизации ВВ до получения частиц, размер которых находится в диапазоне менее 1 мкм.

Технический результат, обеспечиваемый при использовании предлагаемого способа, заключается в обеспечении изготовления наноструктурированного взрывчатого вещества для получения заряда с высокой детонационной способностью, с возможностью регулирования процесса перекристаллизации ВВ до получения частиц, размер которых находится в диапазоне менее 1 мкм.

Указанные задача и технический результат обеспечиваются тем, что в отличие от известного в предлагаемом способе изготовления наноструктурированного взрывчатого материала, включающего предварительное взятие в тигле навески порошкообразного взрывчатого вещества из группы индивидуальных азотсодержащих органических ВВ, имеющих упругость паров не ниже 10-5 Па, возгонку навески ВВ при температурах 80-180°С вакууме и осаждение на подложку, возгонку осуществляют помещая навеску ВВ в тигель с крышкой, имеющей коническую внутреннюю полость, в центре которой выполнено осевое сквозное отверстие для фокусировки и ограничения выхода потока возгоняемых частиц ВВ, по направлению движения потока возгоняемых частиц ВВ на подложку устанавливают экран, который выполнен в виде диска с кольцевым сквозным пазом, осаждение возогнанного ВВ ведут послойно при остаточном давлении (10-3-10-2) Па на подложку, в виде слоя из поликристаллических частиц, при этом подложку устанавливают на опоре с возможностью вращения ее вокруг центральной оси, а ось вращения подложки устанавливают с эксцентриситетом (Δ) относительно оси сопла таким образом, чтобы в процессе осаждения на подложке образовался кольцевой слой, при этом меняют дискретность нарастания кольцевого слоя в заданном диапазоне значений, после чего полученный слой наноструктурированного поликристаллического ВВ механически отделяют от подложки и механически измельчают до заданной величины удельной поверхности частиц ВВ с получением нанокристаллического порошкообразного наполнителя для последующего формирования заряда ВВ.

Предлагаемый способ изготовления наноструктурированного взрывчатого материала поясняется следующим образом.

На фиг. 1 представлена схема реализации предлагаемого способа, где 1 - подложка, 2 - экран для ограничения поступления потока частиц на подложку, 3 - крышка с соплом для фокусировки потока частиц, 4 - тигель с ВВ, 5 - навеска ВВ.

ВВ (поз. 5 фиг 1) возгоняется в вакууме при остаточном давлении (10-3-10-2) Па путем его нагрева в тигле (поз. 4 фиг. 1) до температуры сублимации. С помощью крышки тигля, имеющей коническую внутреннюю полость и осевое отверстие (сопло), сублимированное ВВ фокусируется и поступает к подложке (поз. 1 фиг. 1), вращающейся вокруг оси. Сопло ограничивает выход паров из тигля. Ось вращения подложки установлена с эксцентриситетом (Δ фиг. 1) относительно оси сопла так, что в процессе конденсации на подложке формируется кольцевой слой.

ВВ осаждается на подложку дискретно, лишь во время ее прохождения над испарителем. Для предотвращения оседания паров ВВ на подложку вне зоны расположения сопла используется экран (поз. 2 фиг. 1) в виде сплошного цилиндрического диска с пазом, через который происходит осаждение сублимированного ВВ на подложку.

Количество ВВ, осаждаемого на подложку за один ее оборот (то есть дискретность нарастания слоя, а, соответственно, размер кристалла в получаемом слое и детонационную способность ВВ), наиболее эффективно можно регулировать:

скоростью вращения подложки, изменяя время нахождения подложки над соплом: увеличение скорости вращения подложки, при прочих равных условиях, уменьшает количество ВВ конденсирующего за один обороти способствует уменьшению размера кристаллов в осажденном слое ВВ, что приводит к повышению детонационной способности ВВ;

диаметром сопла, то есть изменяя количество паров ВВ, поступающих к подложке в единицу времени: увеличение диаметра сопла (испарителя), при прочих равных условиях, увеличивает количество ВВ конденсирующего за один оборот и способствует укрупнению кристаллов, в том числе за счет перегрева подложки при выделении теплоты кристаллизации, в осажденном слое ВВ, что приводит к снижению детонационной способности ВВ.

Экспериментально было подтверждено, что при использовании предлагаемого способ обеспечивается более высокий результат по сравнению с прототипом, заключающийся в обеспечении изготовления наноструктурированного взрывчатого материала для получения заряда с высокой детонационной способностью, с возможностью регулирования процесса перекристаллизации ВВ до получения частиц, размер которых находится в диапазоне менее 1 мкм.

На фиг. 2-7 представлены фотографии микроструктуры при варьировании различных режимов перекристаллизации слоя возогнанного ВВ, которые поясняются следующими примерами.

Пример 1. В лабораторных условиях на установке для сублимирования ВВ (на базе вакуумного поста ВУП-4) было проведено исследование влияния дискретности осаждения паров на кристаллическую структуру и детонационную способность ВВ.

Сублимированное ВВ тэн осаждали на вращающуюся подложку. Для сублимации использовали испаритель диаметром 20 мм, крышку с соплом не использовали.

В первом случае, испаритель и подложка были установлены соосно, экран не использовали, то есть сублимированное ВВ непрерывным образом осаждали на подложку. Это привело к формированию поликристаллического слоя тэна с кристаллами, размер которых, хотя бы по одному из направлений,составлял более 10 мкм (фиг. 2). Критическая толщина детонации такого поликристаллического слоя тэна, определенная в опытах, составила 0,20 мм.

Во втором случае, процесс конденсации осуществляли дискретно: подложка и испаритель были установлены с эксцентриситетом 30 мм; использовали экран, позволяющий формировать на подложке кольцевой слой шириной 3 мм. В этом случае размер кристаллов тэна в поликристаллическом слое по любому из выбранных направлений не превышал 10 мкм (фиг. 3), а критическая толщина детонации такого слоя составила 0,15 мм.

Пример 2. В лабораторных условиях на установке для сублимирования ВВ (на базе вакуумного поста ВУП-4) было проведено исследование влияния диаметра сопла испарителя на кристаллическую структуру и детонационной способности ВВ.

Пары ВВ тэн осаждали на подложку через экран по схеме, показанной на фиг. 1.

В первом случае, диаметр испарителя составлял 25 мм. Размер индивидуальных кристаллов тэна в поликристаллическом слое, в этом случае, составлял от одного до десяти микрометров (фиг. 3), а критическая толщина детонации такого слоя составляла 0,15 мм.

Во втором случае диаметр испарителя составлял 5 мм. В этом случае, поликристаллический слой перекристаллизованного тэна состоял из кристаллов с размерами менее одного микрометра (фиг. 4) и имел критическую толщину детонации 0,10 мм.

Пример 3. В лабораторных условиях на установке для сублимирования ВВ (ВУ-700TDE) было проведено исследование влияния дискретности нарастания слоя на кристаллическую структуру ВВ и детонационную способность ВС на его основе.

Сублимированный гексоген осаждали на подложку, вращающуюся со скоростью 30 об/мин.

В первом случае ВВ гексоген возгоняли через крышку испарителя, имеющего прямоугольное отверстие размером 8 мм × 75 мм и непрерывным образом осаждали на подложку. В этом случае размер кристаллов в поликристаллическом слое гексогена составлял от 40 мкм до 100 мкм (фиг. 5). Критическое сечение в канале с поворотами для заряда ВВ, изготовленного на основе такого поликристаллического гексогена и содержащего кроме наполнителя около 10 процентов связующего, составляло 3,0 мм × 1,0 мм.

Во втором случае процесс перекристаллизации осуществляли дискретно: гексоген возгоняли через сопло диаметром 4,2 мм и осаждали через экран на подложку в виде кольца шириной 20 мм. В этом случае поликристаллический слой перекристаллизованного гексогена состоял из пластинчатых кристаллов толщиной около 10 мкм с сильно развитой поверхностью за счет большого числа ступеней роста (фиг. 6). Критическое сечение в канале с поворотами для заряда ВВ, изготовленного на основе такого поликристаллического гексогена и содержащего кроме наполнителя около 10 процентов связующего, составляло 1,5 мм × 1,2 мм.

Пример 4. В лабораторных условиях на установке для сублимирования ВВ (ВУ-700TDE) было проведено исследование влияния скорости вращения подложки на кристаллическую структуру ВВ и детонационную способность ВС на его основе.

ВВ гексоген перекристаллизовали предлагаемым способом, показанным на фиг. 1.

В первом случае подложка вращалась со скоростью 30 об/мин. В этом случае поликристаллический слой перекристаллизованного гексогена состоял из пластинчатых кристаллов толщиной менее 10 мкм с сильно развитой поверхностью за счет большого числа ступеней роста (фиг. 6). Критическое сечение в канале с поворотами для заряда ВВ, изготовленного на основе такого гексогена и содержащего кроме наполнителя около 10 процентов связующего, в заряде шириной 1,5 мм составило 1,2 мм.

Во втором случае подложка вращалась со скоростью 400 об/мин. В этом случае, поликристаллический слой перекристаллизованного гексогена характеризовался кристаллами, размерами которых хоть в одном направлении был менее 1 мкм (фиг. 7). Критическое сечение в канале с поворотами для заряда ВВ, изготовленного на основе такого гексогена и содержащего кроме наполнителя около 10 процентов связующего, в заряде шириной 1,5 мм составило 0,5 мм.

Результаты испытаний по примерам 1-4 сведены в таблицу 1. Как это показали примеры, реализация предлагаемого способа изготовления наноструктурированного взрывчатого материала показала достижение более высокого по сравнению с прототипом, результата, а именно - получение ВВ для изготовления заряда с высокой детонационной способностью.

Способ изготовления наноструктурированного взрывчатого материала, включающий предварительное взятие в тигле навески порошкообразного взрывчатого вещества (ВВ) из группы индивидуальных азотсодержащих органических ВВ, имеющих упругость паров не ниже 10 Па, возгонку навески ВВ при температуре 80-180°С и вакууме и осаждение на подложку, отличающийся тем, что возгонку осуществляют помещая навеску ВВ в тигель с крышкой, имеющей коническую внутреннюю полость, в центре которой выполнено осевое сквозное отверстие для фокусировки и ограничения выхода потока возгоняемых частиц ВВ, по направлению движения потока возгоняемых частиц ВВ на подложку устанавливают экран, который выполнен в виде диска с кольцевым сквозным пазом, осаждение возогнанного сублимированного ВВ ведут послойно при остаточном давлении (10-10) Па на подложку в виде слоя из поликристаллических частиц, при этом подложку устанавливают на опоре с возможностью вращения ее вокруг центральной оси, а ось вращения подложки устанавливают с эксцентриситетом (Δ) относительно оси сопла таким образом, чтобы в процессе осаждения на подложке образовался кольцевой слой, при этом меняют дискретность нарастания кольцевого слоя в заданном диапазоне значений, после чего полученный слой поликристаллического ВВ механически отделяют от подложки и механически измельчают до заданной величины удельной поверхности частиц ВВ с получением нанокристаллического порошкообразного наполнителя для последующего формирования заряда ВВ.
СПОСОБ ИЗГОТОВЛЕНИЯ ВЗРЫВЧАТОГО НАНОСТРУКТУРИРОВАННОГО МАТЕРИАЛА
Источник поступления информации: Роспатент

Показаны записи 481-490 из 796.
24.05.2019
№219.017.5dfc

Установка для моделирования ударной механической нагрузки с регулируемыми характеристиками

Изобретение относится к испытательной технике. Установка содержит устройство формирования внешнего ударного воздействия и контейнер, снабженный держателем объекта исследования, позволяющим изменять положение объекта исследования для регулирования характеристик ударной нагрузки, при этом...
Тип: Изобретение
Номер охранного документа: 0002688875
Дата охранного документа: 22.05.2019
29.05.2019
№219.017.6213

Приемная магнитная антенна

Изобретение относится к области радиоэлектроники и может быть использовано в качестве приемных антенн при создании радиоприемных устройств. Техническим результатом предлагаемого изобретения является увеличение действующей высоты магнитной антенны при одновременном расширении полосы частот...
Тип: Изобретение
Номер охранного документа: 0002687849
Дата охранного документа: 16.05.2019
29.05.2019
№219.017.62e2

Устройство перемещения и вращения подложкодержателя

Изобретение относится к устройствам для нанесения покрытий в вакууме и позволяет изменять расположение покрываемой детали относительно источника распыляемого или испаряемого материала с сохранением осевого вращения детали - подложки. Устройство состоит из опорного фланца 1, в котором выполнены...
Тип: Изобретение
Номер охранного документа: 0002688353
Дата охранного документа: 21.05.2019
29.05.2019
№219.017.647f

Способ формирования плазменного слоя в плазменных установках коаксиального типа и устройство для его осуществления

Изобретение относится к сильноточной импульсной технике и может быть использовано в электрофизических установках для получения мощных электромагнитных импульсов. В предлагаемом способе разделяют аксиальный поток плазмы на совокупность цилиндрических плазменных слоев, выводимых радиально в...
Тип: Изобретение
Номер охранного документа: 0002295205
Дата охранного документа: 10.03.2007
29.05.2019
№219.017.65ac

Клистронный генератор

Изобретение относится к технике СВЧ, может быть использовано при разработке мощных источников сверхвысокочастотного излучения для целей радиолокации, навигации и техники ускорителей элементарных частиц. Клистронный генератор содержит систему формирования магнитного поля, подключенные к...
Тип: Изобретение
Номер охранного документа: 0002396632
Дата охранного документа: 10.08.2010
29.05.2019
№219.017.6881

Взрывозащитная камера

Изобретение относится к средствам обеспечения безопасности взрывных работ и может быть использовано при создании взрывных камер и сооружений, предназначенных для герметичной локализации продуктов взрыва при испытательных работах и в аварийных ситуациях. Взрывозащитная камера содержит...
Тип: Изобретение
Номер охранного документа: 0002450243
Дата охранного документа: 10.05.2012
06.06.2019
№219.017.73fe

Устройство для определения чувствительности энергетического материала к трению ударного характера

Изобретение относится к области исследования или анализа энергетических материалов (ЭМ) путем определения их физических свойств, а именно, к устройствам для определения характеристик чувствительности ЭМ к трению ударного характера. Заявляемое устройство содержит расположенные в корпусе напротив...
Тип: Изобретение
Номер охранного документа: 0002690523
Дата охранного документа: 04.06.2019
06.06.2019
№219.017.7436

Коллектор с рекуперацией энергии свч прибора

Изобретение относится к области электронной техники, а именно к коллекторам сверхвысокочастотных (СВЧ) приборов О-типа с рекуперацией остаточной энергии электронного пучка. Коллектор с рекуперацией энергии СВЧ прибора содержит металлический цилиндрический корпус с закрытым торцом, внутренняя...
Тип: Изобретение
Номер охранного документа: 0002690530
Дата охранного документа: 04.06.2019
07.06.2019
№219.017.74d8

Способ получения и обработки изображений, сформированных с помощью протонного излучения

Использование: для протонной радиографии. Сущность изобретения заключается в том, что в камере для размещения объекта исследования сначала размещают тест-объект, который представляет собой подложку с одинаковыми реперными отметками, например стальными шарами, в узлах ортогональной решетки и...
Тип: Изобретение
Номер охранного документа: 0002690713
Дата охранного документа: 05.06.2019
07.06.2019
№219.017.7530

Способ получения пористого изделия из урана

Изобретение относится к изготовлению пористого изделия из урана. Способ включает загрузку исходного порошка гидрида урана в форму из водородостойкого материала, размещение формы в реакционной камере, вакуумирование и термическое разложение гидрида урана с последующим спеканием. Загрузку...
Тип: Изобретение
Номер охранного документа: 0002690764
Дата охранного документа: 05.06.2019
Показаны записи 11-15 из 15.
18.05.2019
№219.017.5907

Смесевое взрывчатое вещество и способ его изготовления

Изобретение относится к области разработки смесевых взрывчатых веществ (ВВ), а именно мощных бризантных ВВ с повышенными удельными характеристиками кумулятивных зарядов различного назначения, например используемых в газонефтедобыче. Предложенный состав смесевого высокобризантного ВВ включает...
Тип: Изобретение
Номер охранного документа: 0002417971
Дата охранного документа: 10.05.2011
31.07.2019
№219.017.ba52

Способ спектрометрического анализа газообразных продуктов разложения взрывчатых веществ

Данное изобретение относится к области методов анализа механизмов поведения взрывчатых веществ (ВВ) при термических воздействиях и может быть использовано для исследования продуктов терморазложения ВВ. Сущность изобретения заключается в том, что в отличие от известного способа анализа...
Тип: Изобретение
Номер охранного документа: 0002695954
Дата охранного документа: 29.07.2019
31.07.2020
№220.018.3ace

Детонационная разводка, инициируемая лазерным излучением, и состав светочувствительного взрывчатого вещества для инициирования детонационной разводки

Использование: область взрывных работ, в частности конструкции взрывных устройств. Задача: разработка безопасной и простой детонационной разводки (ДР), в которой минимизированы факторы, снижающие ее безопасность и надежность срабатывания ДР. Сущность изобретения: в отличие от конструкции...
Тип: Изобретение
Номер охранного документа: 0002728085
Дата охранного документа: 28.07.2020
22.04.2023
№223.018.5117

Способ изготовления смесевого взрывчатого вещества

Изобретение относится к области технологии изготовления смесевых взрывчатых веществ. Для изготовления смесевого взрывчатого вещества осуществляют подготовку и смешение исходных компонентов, производят введение технологических добавок. Смешению подвергают сначала порошкообразный тэн и...
Тип: Изобретение
Номер охранного документа: 0002794210
Дата охранного документа: 12.04.2023
16.06.2023
№223.018.7bdb

Термопластичный взрывчатый состав и способ его изготовления

Группа изобретений относится к области технологий получения смесевых термопластичных взрывчатых материалов. Термопластичный взрывчатый состав в качестве взрывчатых компонентов содержит диаминодинитроэтилен, 3,4-бис-(4-нитрофуразан-3-ил)-фуразан, а в качестве инертной добавки -...
Тип: Изобретение
Номер охранного документа: 0002756081
Дата охранного документа: 27.09.2021
+ добавить свой РИД