×
28.02.2020
220.018.06d6

Результат интеллектуальной деятельности: Способ определения объема жидкости в трубопроводе

Вид РИД

Изобретение

№ охранного документа
0002715357
Дата охранного документа
26.02.2020
Аннотация: Изобретение может быть использовано в нефтегазовой промышленности для измерения объема накопленной жидкости в протяженных трубопроводах наземной прокладки на опорах, транспортирующих газожидкостные потоки. Способ предусматривает установку функционально объединенных между собой датчиков, выполненных с возможностью проведения замера и передачи значений массы во всех местах контакта наружной поверхности трубопровода с опорами. На основании результатов замера расчетным путем определяют массу (М) трубопровода с содержащейся в нем газожидкостной смесью, собственную массу трубопровода и объем (V) жидкости в трубопроводе из соотношения где ρ - значение плотности жидкости в трубопроводе, ρ - значение плотности газа в трубопроводе, М - масса газа в трубопроводе, при этом где d - внешний диаметр трубопровода (м), h - толщина стенки трубопровода (м), L - длина трубопровода (м). Техническим результатом является повышение эффективности контроля объема накапливаемой в трубопроводе жидкости за счет повышения надежности работы и точности показаний датчиков, обеспечение возможности определять места скопления жидкости, а также расширение арсенала технических средств. 1 табл., 1 ил.

Изобретение относится к измерительной технике и может быть использовано в нефтегазовой промышленности для измерения объема накопленной жидкости в протяженных трубопроводах наземной прокладки, транспортирующих газожидкостные потоки.

Известен способ определения массы жидкости в резервуаре (патент РФ №2494353, G01F 17/00, опубл. 27.09.2013), заключающийся в измерении уровня жидкости, измерении плотности жидкости и определении массы жидкости в резервуаре по объему. При этом определяют среднее значение плотности жидкости в резервуаре путем периодических измерений плотности жидкости в поверхностном слое и на глубине через равные промежутки времени до момента, когда значения плотности на глубине и поверхности выровняются, после чего рассчитывают среднее арифметическое значение плотности, используя последние значения плотности жидкости в поверхностном слое и на глубине. Затем измеряют уровень жидкости посредством метрштока, закрепленного в резервуаре, путем получения телевизионного изображения метрштока, в зоне соприкосновения его с поверхностью жидкости. При этом метршток подсвечивают источником света, расположенным вместе с телевизионной видеокамерой над поверхностью жидкости, а для излома хода лучей подсветки используют зеркало, закрепленное на поплавке под поверхностью жидкости наклонно к оси источника света и оси объектива телевизионной видеокамеры. Причем поплавок установлен на метрштоке с возможностью вертикального перемещения при изменении уровня жидкости. Передают изображение посредством телевизионной видеокамеры на устройство отображения результатов измерения. С учетом градуировочной характеристики конкретного резервуара по измеренному значению уровня определяют объем жидкости в резервуаре, после чего по полученному значению объема и среднему арифметическому значению плотности определяют массу жидкости в резервуаре. Недостатком указанного способа является то, что его реализация предполагает наличие ровной поверхности жидкости, уровень которой определяют оптическими приборами. В общем случае газожидкостной поток в трубопроводах не обладает постоянной формой границы газовой и жидкой фаз, что ограничивает применимость данного способа. Кроме того, данный способ обладает низкой надежностью при применении его на протяженных трубопроводах, поскольку движущийся газожидкостной поток способен повредить элементы оптической системы.

Наиболее близким к предложенному способу (прототипом) является способ измерения плотности и уровня жидкости (патент РФ №2441204, G01F 23/14, опубл. 27.01.2012), включающий установку в резервуар с исследуемой жидкостью двух датчиков давления друг над другом на фиксированном расстоянии, фиксацию значений смещения нуля нижнего и верхнего датчиков, когда уровень жидкости находится ниже их уровней, фиксацию разности значений давлений нижнего и верхнего датчиков, когда уровень жидкости находится немного выше уровня верхнего датчика, вычисления плотности и уровня жидкости по полученной фиксированной разности давлений и значениям смещения нуля датчиков. Если уровень жидкости не опускается ниже уровня нижнего датчика, то в резервуаре размещают между верхним и нижним датчиками на фиксированном расстоянии от нижнего датчика средний датчик давления. Фиксируют значение смещения нуля среднего датчика, когда уровень жидкости находится ниже его уровня, фиксируют разность значений давлений нижнего и среднего датчиков, когда уровень жидкости находится немного выше уровня среднего датчика, определяют смещение нуля нижнего датчика по фиксированной разности давлений между нижним и средним датчиками и значениям смещения нуля среднего и верхнего датчиков. Однако, в известном способе датчики, установленные внутри трубопровода, подвергаются воздействию газожидкостного потока, идущего через трубопровод, что обусловливает снижение надежности работы и точности показаний датчиков. Кроме того, в известном способе для установки датчиков необходимо сверлить либо резать стенки трубопровода, что усложняет монтаж датчиков и ухудшает надежность трубопровода.

Предлагаемый способ основан на использовании зависимости массы газожидкостной смеси в трубопроводе от соотношения в ней жидкой и газовой фаз. При этом значения плотности газовой и жидкой фаз определяют в зависимости от состава транспортируемой среды и рабочих условий (давление, температура), которые предполагают известными.

Задачей, на решение которой направлено предлагаемое изобретение, является разработка способа определения объема жидкости в трубопроводах, транспортирующих изменяющийся газожидкостной поток, обеспечивающего непрерывный контроль объема жидкости, накапливаемой в процессе эксплуатации протяженных трубопроводов.

Техническим результатом, на достижение которого направлено предлагаемое изобретение, является повышение эффективности контроля объема накапливаемой в трубопроводе жидкости за счет повышения надежности работы и точности показаний датчиков, обеспечение возможности определять места скопления жидкости, а также расширение арсенала технических средств для осуществления упомянутого контроля в протяженных трубопроводах.

Указанный технический результат достигается за счет того, что в способе определения объема жидкости в трубопроводе на всем протяжении трубопровода, проложенного на опорах, в местах контакта наружной поверхности трубопровода с опорами устанавливают датчики, выполненные с возможностью определения массы и функционально объединенные с возможностью передачи по каналам связи полученных данных. Затем осуществляют одновременный замер значений приходящейся на каждую из опор массы трубопровода с содержащейся в нем газожидкостной смесью, после чего на основании результатов замера выполняют расчет массы (М) трубопровода с содержащейся в нем газожидкостной смесью из соотношения

где mi - измеренное значение приходящейся на i-ую опору массы трубопровода с газожидкостной смесью (кг),

n - количество опор трубопровода,

и, с учетом предварительно полученного значения массы (МТР) трубопровода из соотношения

где ρМ - плотность материала трубопровода (кг/м3),

d - внешний диаметр трубопровода (м),

h - толщина стенки трубопровода (м),

L - длина трубопровода (м),

определяют объем жидкости (Vж) в трубопроводе

где ρЖ - значение плотности жидкости в трубопроводе (кг/м3),

ρГ - значение плотности газа в трубопроводе (кг/м3),

МГ - масса газа в трубопроводе (кг), при этом

На чертеже представлена схема установки датчиков на трубопроводе.

Способ осуществляют следующим образом.

В местах контакта нижней образующей трубопровода и его опор устанавливают датчики, выполненные с возможностью определения массы трубопровода с находящейся в нем газожидкостной смесью. Используют серийно выпускаемые датчики, обеспечивающие необходимый диапазон измерений: от массы трубопровода, приходящейся на одну опору, при полном заполнении его газовой фазой, при атмосферном давлении, до массы, приходящейся на одну опору трубопровода, при его полном заполнении жидкой фазой, например, тензометрические датчики веса ST-X-A-22 (производитель Южно-Уральский весовой завод), определяющие и передающие значения массы.

Установленные датчики объединяют в измерительную систему, позволяющую осуществлять одновременный замер значений массы (mi) во всех местах контакта трубопровода с опорами.

На основании результатов одновременного замера значений приходящейся на каждую из опор массы трубопровода с содержащейся в нем газожидкостной смесью, выполняют расчет общей массы (М) трубопровода с содержащейся в нем газожидкостной смесью

где mi - измеренное значение приходящейся на i-ую опору массы трубопровода с газожидкостной смесью, (кг),

n - количество опор трубопровода.

Предварительно рассчитывают собственную массу (МТР) трубопровода

где ρм - плотность материала трубопровода (кг/м3),

d - внешний диаметр трубопровода (м),

h - толщина стенки трубопровода (м),

L - длина трубопровода (м).

По фактическим значениям термобарических параметров газожидкостного потока на входе и на выходе трубопровода определяют значения плотности жидкой и газовой фаз в трубопроводе, для чего выполняют расчет средних значений давления (Рср) и температуры (Тср) в трубопроводе (СТО Газпром 2-3.5-051-2006. Нормы технологического проектирования магистральных газопроводов. М.: ИРЦ Газпром, 2006):

где Рвх - давление газожидкостного потока на входе трубопровода (Па),

Рвых - давление газожидкостного потока на выходе трубопровода (Па),

где Т0 - температура окружающей среды (К),

Твх - температура газожидкостного потока на входе трубопровода (К),

Твых - температура газожидкостного потока на выходе трубопровода (К).

Значения плотности жидкой (ρж) и газовой (ρГ) фаз в трубопроводе при среднем значении давления (Рср) и температуры (Тср) определяют по справочным данным (например, ГСССД 160-93. Газ природный расчетный. Издательство стандартов, 1993) либо рассчитывают с помощью программных комплексов (например, Pipesim компании Shlumberger).

После чего, с учетом полученных значений (М), (МТР), (ρж), (ρГ), определяют объем жидкости в трубопроводе

где МГ - масса газа в трубопроводе, полностью заполненном газовой фазой (кг), рассчитываемая из соотношения

При постоянных (неизменных) термобарических условиях эксплуатации трубопровода (постоянных значениях давления Рср и температуры Тср) объем жидкости в трубопроводе в каждый последующий момент эксплуатации (на момент времени t) определяют по упрощенной формуле

где М0 - измеренная общая масса трубопровода с газожидкостной смесью на начальный момент времени (кг),

Mt - измеренная общая масса трубопровода с газожидкостной смесью на текущий момент времени t (кг),

- объем жидкости в трубопроводе на начальный момент времени, значение которого известно или определено по формулам (1)-(6) (м3).

Пример осуществления способа.

Предлагаемым способом был исследован трубопровод протяженностью L=600 м, наружным диаметром d=0,530 м и толщиной стенки h=0,027 м. Трубопровод проложен наземно, на опорах, расположенных с интервалом 30 м, и изготовлен из стали плотностью ρм = 7800 кг/м3.

Транспортируемая по трубопроводу среда представляет собой смесь природного газа и воды. Термобарические параметры на входе трубопровода:

Рвх=2,00⋅106 Па; Твх=288,0 К.

Термобарические параметры на выходе трубопровода:

Рвых = 1,98⋅106 Па; Твых = 287,6 К.

Температура окружающего воздуха составляет То=268,0 К.

Результаты замера массы трубопровода в местах установки датчиков приведены в таблице.

Вычислили общую массу (М) трубопровода с содержащейся в нем газожидкостной смесью по формуле (1)

Предварительно рассчитали собственную массу (МТР) трубопровода по формуле (2)

По формуле (3) рассчитали среднее значение давления (Рср) в трубопроводе

и по формуле (4) - среднее значение температуры (Тср) в трубопроводе

Определили значения плотности жидкой и газовой фаз потока в трубопроводе. Согласно справочным данным, при рассчитанных значениях температуры и давления плотность газа составляет 14,3 кг/м3, а плотность воды при тех же условиях - 999,4 кг/м3.

Вычислили массу газа (МГ) в трубопроводе по формуле (6)

По формуле (5) определили объем жидкости в трубопроводе

Кроме того, по результатам измерений, полученным от датчиков, можно определить, что максимальное скопление жидкости находится в районе расположения 10-ой, 11-ой и 12-ой опор, что позволит принять решения по дальнейшей эксплуатации трубопровода.


Способ определения объема жидкости в трубопроводе
Способ определения объема жидкости в трубопроводе
Способ определения объема жидкости в трубопроводе
Способ определения объема жидкости в трубопроводе
Способ определения объема жидкости в трубопроводе
Способ определения объема жидкости в трубопроводе
Способ определения объема жидкости в трубопроводе
Способ определения объема жидкости в трубопроводе
Способ определения объема жидкости в трубопроводе
Источник поступления информации: Роспатент

Показаны записи 151-160 из 160.
20.04.2023
№223.018.4b1f

Катионный ингибирующий буровой раствор

Изобретение относится к буровым растворам на водной основе и может найти применение при бурении нефтяных и газовых скважин, преимущественно при бурении солевых и неустойчивых глинистых пород. Технический результат - повышение ингибирующих свойств бурового раствора и улучшение его...
Тип: Изобретение
Номер охранного документа: 0002775214
Дата охранного документа: 28.06.2022
21.04.2023
№223.018.4f10

Модульная система протекторной защиты для морских сооружений

Изобретение относится к системе электрохимической защиты от коррозии морских сооружений методом наложенного тока и может быть использовано для долговременной защиты подводных морских сооружений. Модульная система содержит ячейки с протекторами, балансировочную плату и кабели между ячейками и...
Тип: Изобретение
Номер охранного документа: 0002791558
Дата охранного документа: 10.03.2023
21.04.2023
№223.018.4f3d

Способ эксплуатации скважин

Изобретение относится к нефтегазодобывающей промышленности и может быть применено при эксплуатации газовых, газоконденсатных и нефтяных скважин. Способ эксплуатации скважин, в том числе обводненных, заключается в том, что на фонтанной арматуре над крестовиной дополнительно устанавливают...
Тип: Изобретение
Номер охранного документа: 0002792861
Дата охранного документа: 28.03.2023
21.04.2023
№223.018.4f4d

Буровой раствор

Изобретение относится к буровым растворам на водной основе и может найти применение при бурении глинистых и солевых пород, а также при вскрытии продуктивных пластов. Технический результат - повышение ингибирующей и крепящей способности по отношению к глинистым породам. Буровой раствор включает,...
Тип: Изобретение
Номер охранного документа: 0002792860
Дата охранного документа: 28.03.2023
21.04.2023
№223.018.4f5d

Способ герметизации заколонных пространств обсадных колонн скважин в условиях распространения низкотемпературных пород

Изобретение относится к области проведения геологоразведочных работ и последующей разработки месторождений полезных ископаемых, в частности месторождений нефти и газа в условиях распространения низкотемпературных пород. Для осуществления способа герметизации заколонных пространств обсадных...
Тип: Изобретение
Номер охранного документа: 0002792859
Дата охранного документа: 28.03.2023
21.04.2023
№223.018.4f85

Способ эксплуатации газовых и газоконденсатных скважин

Изобретение относится к нефтегазодобывающей промышленности и может быть применено при эксплуатации газовых, газоконденсатных и нефтяных скважин. Способ эксплуатации газовых и газоконденсатных скважин, в том числе обводненных, заключается в том, что на фонтанной арматуре над крестовиной...
Тип: Изобретение
Номер охранного документа: 0002792961
Дата охранного документа: 28.03.2023
12.05.2023
№223.018.546a

Установка для повышения эффективности добычи газа

Изобретение относится к нефтегазовой промышленности. Техническим результатом является повышение эффективности технологических процессов добычи газа в результате комплексного использования энергии давления пластового газа в продолжение всего периода разработки месторождения за счет применения...
Тип: Изобретение
Номер охранного документа: 0002795489
Дата охранного документа: 04.05.2023
23.05.2023
№223.018.6e13

Способ получения минерального вяжущего на основе серы и устройство для его осуществления

Группа изобретений относится к области производства дорожных и строительных композиционных материалов, а именно к способу получения минерального вяжущего на основе серы. Технический результат группы изобретений - упрощение процесса получения минерального вяжущего на основе серы. Дозированное...
Тип: Изобретение
Номер охранного документа: 0002758907
Дата охранного документа: 02.11.2021
24.05.2023
№223.018.6f4d

Способ захоронения смеси газов, основным компонентом которой является углекислый газ

Изобретение предназначено для использования в области подземного хранения углекислого газа, а также защиты окружающей среды. Способ захоронения смеси газов, основным компонентом которой является углекислый газ, заключается в том, что: выбирают геологические структуры с герметичной покрышкой, в...
Тип: Изобретение
Номер охранного документа: 0002796092
Дата охранного документа: 16.05.2023
16.06.2023
№223.018.7a9c

Термосолестойкий буровой раствор

Изобретение относится к буровым растворам на водной основе и может найти применение при бурении нефтяных и газовых скважин, преимущественно при бурении солевых и неустойчивых глинистых пород в условиях воздействия высоких температур до 240°С. Технический результат – повышение солеустойчивости...
Тип: Изобретение
Номер охранного документа: 0002739270
Дата охранного документа: 22.12.2020
Показаны записи 1-2 из 2.
12.04.2023
№223.018.449d

Способ контроля дебита газовой скважины

Изобретение относится к газодобывающей промышленности и может быть использовано для непрерывного измерения дебита газовых скважин в процессе их эксплуатации. Согласно способу газовую скважину переводят из рабочего режима в исследовательский режим, для чего перенаправляют газ, выходящий из...
Тип: Изобретение
Номер охранного документа: 0002770023
Дата охранного документа: 14.04.2022
12.05.2023
№223.018.546a

Установка для повышения эффективности добычи газа

Изобретение относится к нефтегазовой промышленности. Техническим результатом является повышение эффективности технологических процессов добычи газа в результате комплексного использования энергии давления пластового газа в продолжение всего периода разработки месторождения за счет применения...
Тип: Изобретение
Номер охранного документа: 0002795489
Дата охранного документа: 04.05.2023
+ добавить свой РИД