×
27.02.2020
220.018.0668

Результат интеллектуальной деятельности: Трехслойная ресурсосберегающая железобетонная панель

Вид РИД

Изобретение

Аннотация: Изобретение относится к строительству, в частности к ограждающим конструкциям промышленных зданий. Технической задачей предлагаемого изобретения является поддержание при длительной эксплуатации заданных теплофизических параметров трехслойной ресурсосберегающей железобетонной панели путем устранения комкообразования в витых пучках тонковолокнистого базальтового материала за счет выполнения кривизны линии каждого витка витого пучка по циклоиде как брахистохроне с быстрейшим переходом мелкодисперсных загрязнений из начального в конечное положение. 4 ил.

Изобретение относится к строительству, в частности к ограждающим конструкциям промышленных зданий.

Известна трехслойная ресурсосберегающая железобетонная панель (см. патент РФ №2621240 МПК Е04С 2/06, опубл. 01.06.2017. Бюл. №16), включающая теплоизоляционный слой, наружный и внутренний железобетонные слои, связанные между собой жесткими связями, выполненные в виде армированных бетонных шпонок, проходящих через теплоизоляционный слой, и армированные бетонные ребра, размещенные по периметру панели, дополнительно снабжена по меньшей мере двумя армированными бетонными шпонками, которые размещены на противоположных торцах панели, а армированные бетонные ребра в сечении, параллельном слоям панели, имеют площадь, определяемую из соотношения площади панели, толщины ее среднего слоя, коэффициентов теплопроводности материалов ребер, слоев панели, арматуры и утеплителя, а также требуемого сопротивления теплопередачи, при этом коэффициент теплопроводности материала армированных бетонных шпонок, проходящих через теплоизоляционный слой, в 2,5-3 раза превышает коэффициент теплопроводности материала армированных бетонных шпонок, размещенных на противоположных торцах панели, причем теплоизоляционный слой выполнен из тонковолокнистого материала и расположен в виде витых продольно вытянутых по длине панели пучков, пучки тонковолокнистого материала попарно количеством не менее четырех расположены в виде синусоид, продольно вытянутых по длине панели, выступы и впадины которых при совмещении являются концентраторами перемещающихся сейсмических колебаний, кроме того, касательная первого витого пучка каждой пары имеет направление по ходу движения часовой стрелки , при этом участки наибольшего сближения попарно расположенных витых пучков составляют узлы, способствующие образованию стоячих волн.

Недостатком является снижение теплозащитных свойств, особенно в переходные периоды года зима-весна и осень-зима, обусловленных высокой влажностью окружающей среды с низкими температурами наружного воздуха, что способствует проникновению парообразной и мелкодисперсной атмосферной влагой, и при наличии технологической влаги через торцевые поверхности в теплоизоляционный слой, с последующим увеличением его коэффициента теплопроводности и, соответственно, потеря тепла зданием в окружающую среду.

Известна трехслойная ресурсосберегающая железобетонная панель (см. патент РФ №2669897 МПК Е04С 2/06, Е04В1/76, опубл. 16.10.18. Бюл. №29), включающая теплоизоляционный слой, наружный и внутренний железобетонные слои, связанные между собой жесткими связями, выполненные в виде армированных бетонных шпонок, проходящих через теплоизоляционный слой, и армированные бетонные ребра, размещенные по периметру панели, дополнительно снабжена по меньшей мере двумя армированными бетонными шпонками, которые размещены на противоположных торцах панели, а армированные бетонные ребра в сечении, параллельном слоям панели, имеют площадь, определяемую из соотношения площади панели, толщины ее среднего слоя, коэффициентов теплопроводности материалов ребер, слоев панели, арматуры и утеплителя, а также требуемого сопротивления теплопередачи, при этом коэффициент теплопроводности материала армированных бетонных шпонок, проходящих через теплоизоляционный слой, в 2,5-3 раза превышает коэффициент теплопроводности материала армированных бетонных шпонок, размещенных на противоположных торцах панели, причем теплоизоляционный слой выполнен из тонковолокнистого материала и расположен в виде витых продольно вытянутых по длине панели пучков, пучки тонковолокнистого материала попарно количеством не менее четырех расположены в виде синусоид, продольно вытянутых по длине панели, выступы и впадины которых при совмещении являются концентраторами перемещающихся сейсмических колебаний, кроме того, касательная первого витого пучка каждой пары имеет направление по ходу движения часовой стрелки, при этом участки наибольшего сближения попарно расположенных витых пучков составляют узлы, способствующие образованию стоячих волн, торцы трехслойной ресурсосберегающей железобетонной панели, контактирующие с наружным воздухом окружающей промышленное здание среды, покрыты нанообразной стеклоподобной пленкой из оксида тантала, выполненной ионно-плазменным методом.

Недостатком является снижение теплофизических параметров при длительной эксплуатации в следствии комкообразования в витых пучках теплоизоляционного слоя, способствующих возникновению локальных как вибрационных колебаний при землетрясениях, так и потерь тепловой энергии в окружающую среду по всей площади трехслойной энергосберегающей железобетонной панели.

Технической задачей предлагаемого изобретения является поддержание при длительной эксплуатации заданных теплофизических параметров трехслойной ресурсосберегающей железобетонной панели путем устранения комкообразования в витых пучках тонковолокнистого базальтового материала за счет выполнения кривизны линии каждого витка витого пучка по циклоиде как брахистохроне с быстрейшим переходом мелкодисперсных загрязнений из начального в конечное положение.

Технический результат достигается тем, что трехслойная ресурсосберегающая железобетонная панель, включающая теплоизоляционный слой, наружный и внутренний железобетонные слои, связанные между собой жесткими связями, выполненные в виде армированных бетонных шпонок, проходящих через теплоизоляционный слой, и армированные бетонные ребра, размещенные по периметру панели, дополнительно снабжена по меньшей мере двумя армированными бетонными шпонками, которые размещены на противоположных торцах панели, а армированные бетонные ребра в сечении, параллельном слоям панели, имеют площадь, определяемую из соотношения площади панели, толщины ее среднего слоя, коэффициентов теплопроводности материалов ребер, слоев панели, арматуры и утеплителя, а также требуемого сопротивления теплопередачи, при этом коэффициент теплопроводности материала армированных бетонных шпонок, проходящих через теплоизоляционный слой, в 2,5-3 раза превышает коэффициент теплопроводности материала армированных бетонных шпонок, размещенных на противоположных торцах панели, причем теплоизоляционный слой выполнен из тонковолокнистого материала и расположен в виде витых продольно вытянутых по длине панели пучков, пучки тонковолокнистого материала попарно количеством не менее четырех расположены в виде синусоид, продольно вытянутых по длине панели, выступы и впадины которых при совмещении являются концентраторами перемещающихся сейсмических колебаний, кроме того, касательная первого витого пучка каждой пары имеет направление по ходу движения часовой стрелки, причем участки наибольшего сближения попарно расположенных витых пучков составляют узлы, способствующие образованию стоячих волн, при этом выполнена кривизна линии каждого витка витого пучка по циклоиде как брахистохроне с быстрейшим переходом мелкодисперсных частиц загрязнений из начального в конченое положение.

На фиг. 1 изображен общий вид трехслойной ресурсосберегающей железобетонной панели с частичными разрезами и торцами покрытыми нанообразной стеклоподобной пленкой из оксида тантала выполненной ионно-плазменным методом, на фиг. 2 – распределение температурных потоков и градиентов температур, как в торце панели, так и в теплоизоляционном слое, на фиг. 3 – элемент теплоизоляционного слоя из тонковолокнистого материала в виде витых пучков, синусоидально продольно вытянутых по длине панели, на фиг. 4 – кривизна линии каждого витка витого пучка по циклоиде как брахистроне.

Трехслойная ресурсосберегающая железобетонная панель включает наружный 1 и внутренний 2 железобетонные слои и средний теплоизоляционный слой 3. Наружный 1 и внутренний 2 железобетонные слои связаны жесткими связями, выполненными в виде армированных бетонных шпонок 4, проходящих через теплоизоляционный слой 3, и армированных бетонных шпонок 5, которые размещены на противоположных торцах панели. Общее количество армированных бетонных шпонок 4 и 5 определяют расчетным путем, при этом количество шпонок 5 должно быть не менее двух. Наружный 1 и внутренний 2 железобетонные слои также связаны армированными бетонными ребрами 6, которые имеют площадь, определяемую из соотношения площади панели, толщины ее среднего слоя, коэффициентов теплопроводности материалов ребер, слоев панели, арматуры и утеплителя, а также требуемого сопротивления теплопередачи. Ребра 6 размещены по всему периметру панели и герметизируют пространство между слоями 1 и 2, тем самым обеспечивая защиту теплоизоляционного слоя 3 от механических повреждений и атмосферного воздействия во время хранения, транспортировки и монтажа панели.

При этом материал армированных бетонных шпонок 4, проходящих через теплоизоляционный слой 3, имеет коэффициент теплопроводности, в 2,5-3 раза, превышающий коэффициент теплопроводности армированных бетонных шпонок 5, размещенных на противоположных торцах панели. Теплоизоляционный слой 3 выполнен из тонковолокнистого базальтового материала 7 и расположен в виде витых продольно вытянутых по длине панели пучков 8. Пучки 8 тонковолокнистого материала попарно 9 количеством не менее четырех расположены в виде синусоид 10, продольно вытянутых по длине панели, выступы 11 и впадины 12 которых при попарном совмещении являются концентраторами перемещающихся сейсмических волн 13. Кроме того, касательная 14 винтовой линии первого витого пучка 8 каждой пары 9 имеет направление по ходу движения часовой стрелки, а касательная 15 винтовой линии второго пучка 8 этой пары 9 имеет направление против хода движения часовой стрелки, при этом участки 16 и 17 наибольшего сближения попарно 9 расположенных витых пучков 8 составляют узлы, способствующие образованию стоячих волн 18.

Торцы 19 трехслойной ресурсосберегающей железобетонной панели, контактирующие с наружным воздухом окружающей среды, покрыты нанообразной стеклоподобной пленкой 20 из оксида тантала, выполненной ионно-плазменным методом. Кривизна линии 21 каждого витка 22 витого пучка 8 выполнена по циклоиде 23 как брахистохрона.

Поддержание нормированных теплофизических параметров трехслойной ресурсосберегающей железобетонной панели осуществляется следующим образом.

В процессе длительной эксплуатации в воздушных прослойках между витыми пучками тонковолокнистого базальтового материала накапливаются и перемещаются мелкодисперсные твердые частицы технологических загрязнений в виде песка, цемента, ржавчины и окалины, а также непрерывно конденсирующаяся и испаряющаяся технологическая мелкодисперсная влага

Колеблющаяся в теплоизоляционном слое 3 данная масса загрязнений перемещается по линии 21 кривизны каждого витка 22 витого пучка 8 медленно, под действием лишь вибрационных воздействий. Как следствие этого, по длине синусоид 10 наблюдается комкообразование на основании коагулирующихся, укрупняющихся и соединяющихся между собой мелкодисперсных твердых частиц, технологических материалов – цемента, песка, гравия, ржавчины и окалины, а также непрерывно испаряющейся и конденсирующейся технологической влаги. При этом компонование осуществляется с последующей локализацией в произвольных сечениях трехслойной ресурсосберегающей железобетонной панели.

В результате, при землетрясениях или воздействии на грунт движущегося тяжелогруженого транспорта вблизи строительного сооружения с трехслойными ресурсосберегающими железобетонными панелями, способствующих образованию сейсмических волн, наблюдается интенсивное воздействие вибрации в зонах локализации комкообразований с последующим возникновением аварийных ситуаций, приводящих к разрушению строительной конструкции (см., например, Полищук В.П. Проектирование железобетонных конструкций производственных зданий/учебное пособие.//Полищук В.П., Черняева Р.П. Москва. АСВ., 2014-116с).

Кроме того, концентрация комкообразований в локализованных зонах способствующей интенсификации тепловых потерь в окружающую среду т.к. теплопроводность капельной влаги загрязнений в 10 и более раз превышает теплопроводность воздуха и тонковолокнистого базальтового материала в теплоизоляционном слое 3.

При выполнении кривизны линии 21 каждого витка 22 витого пучка 8 по циклоиде как брахистохроне мелкодисперсные технологические твердые и жидкие частицы с быстрейшим спуском перемещаются от начальной точки А(А') к конечной точки В(В') без коагуляции, укрупнения и соединения между собой (см., например, Замечательные кривые, стр. 802, Выходский М.Я. Справочник по высшей математике. М.: Наука: 1969 – 872 с., ил). В результате устраняется образование комкования и, соответственно, появление локальных зон с поддержанием при длительной эксплуатации нормированных теплофизических параметров как по прочностной надежности строительной конструкции, так и обеспечению микроклимата в помещении.

Ресурсосберегающие свойства в условиях эксплуатации, особенно при высокой влажности и изменяющихся температурах наружного воздуха проявляется следующим образом.

В переходные периоды года с зимы на весну и с осени на зиму наблюдается существенное изменение температуры в течение суток с повышенной влажностью окружающей среды, и в этих условиях через торцы панелей, контактирующие с наружным воздухом, наблюдается интенсивное перемещение парообразной и мелкодисперсной влаги по всей длине конструкции, где особенно проявляются в теплоизоляционном слое.

В связи с тем, что коэффициент теплопроводности атмосферной влаги составляется λ=0,5513 Вт/(м.гр.) (см. стр.312 Нащокин В.В. Техническая термодинамика и теплопередача. М.: Высшая школа. 1980. 469 с., ил) и превышает более чем в 8 раз коэффициент теплопроводности тонковолокнистого базальтового материала, то соответственно, возрастает и общая теплопроводность теплоизоляционного слоя 2 и, как следствие, увеличиваются потери тепла зданием в окружающую среду.

Поддержание надежностных параметров трехслойной ресурсосберегающей железобетонной панели при эксплуатации в условиях сейсмического воздействия осуществляется следующим образом.

При наличии механического воздействия со стороны грунта, например землетрясение, сейсмическая волна 13 перемещается также и по длине панели как по наружному 1 и внутреннему 2 железобетонному слоям, так и по теплоизоляционному слою 3, выполненному из тонковолокнистого материала. В связи с тем, что плотность теплоизоляционного слоя 3 из тонковолокнистого материала значительно меньше плотности железобетонных слоев 1 и 2, сейсмическая волна имеет более высокую амплитуду и скорость распространения по длине панели с образованием резонансных всплесков на ее торцах. Вследствие закручивания первого витого пучка 8 каждой пары 9 из тонковолокнистого материала по винтовой линии, касательная 14 которой имеет направление по ходу движения часовой стрелки, а закручивание витого второго пучка 8 той же пары 9 по винтовой линии, касательная 15 которой имеет направление против хода движения часовой стрелки (см., например, Выгодский М.Я. Высшая математика. М.: 1969. 820 с., ил.) наблюдается, что и слои воздуха, контактирующие при вибрационном сейсмическом воздействии как с первым, так и со вторыми витыми пучками 8 каждой пары 9, вращаются во встречном направлении.

В результате при соприкосновении встречно вращающихся слоев воздуха образуются в теплозащитном слое 3 микровзрывы (см., например, Меркулов А.П. Вихревой эффект и его применение в технике. Самара, 2002. 369 с., ил.), которые разрушают горизонтально перемещающиеся в воздушной среде теплоизоляционном слоя 3 сейсмическое волны по всей длине панели.

Кроме того, пучки 8 из тонковолокнистого материала, расположенные в виде синусоид 10 и продольно вытянутые по длине панели, также наряду с воздушной средой являются направляющими для перемещающихся сейсмических волн, которые концентрируются в выступах 11, а также во впадинах 12. При этом выделяются участки 16 и 17 наибольшего сближения попарно 9 расположенных витых пучков 8, которые способствуют появлению узлов, вызывающих образование стоячих волн (см., например, Ландау Л.О., Лившиц Е.М. Теоретическая физика. М.: Наука, 1986. 836 с., ил.), которые гасят сейсмические волны и нейтрализуют резонансные всплески, как на торцах панели, так и в основных наружном 1 и внутреннем 2 железобетонных слоях.

При покрытии нанообразной стеклоподобной пленкой 20, выполненной ионно-плазменным методом, торцов 19 трехслойной ресурсосберегающей железобетонной панели, мелкодисперсная и парообразная влага скользит под силой тяжести без коагуляции и укрупнения, не контактируя как с теплоизоляционным слоем 3, так и с наружным 1 и внутренним 2 железобетонными слоями. В результате, не только поддерживается постоянство теплозащитных свойств тонковолокнистого базальтового материала 7, но и устраняется увлажнение материалов наружного 1 и внутреннего 2 железобетонных слоев, что способствует поддержанию нормированных прочностных параметров в целом всей трехслойной ресурсосберегающей железобетонной панели.

Воздействие суточных изменений температуры воздуха окружающей среды приводит к циклическому воздействию тепловых потоков от наружного 1 и внутреннего 2 слоев к теплоизоляционному слою 3, при этом теплоизоляционный слой 3, выполняя основную функцию устранения прохождения теплового потока, препятствует передаче тепла как от внутреннего 2 слоя к наружному 1 слою, так и наоборот, включая наличие более высокой температуры, например под воздействием солнечной радиации поверхности наружного слоя 1 по сравнению с внутренней поверхностью внутреннего слоя 2 отапливаемого помещения при отрицательных температурах воздуха окружающей среды. Следовательно, энергоемкость отапливаемого здания обусловлена максимально необходимыми ресурсозатратами на высокотемпературный энергоноситель системы отопления, поддерживающий расчетные параметры микроклимата в помещении по условию тепловых потерь через наружные ограждения – трехслойные железобетонные панели (см., например, СНиП 2.04.05-91 Отопление, вентиляция, кондиционирование воздуха. М.: Стройиздат, 1997).

Для снижения ресурсозатрат на производство, транспортировку и потребление высокотемпературного (90-150°С) теплоносителя, используемого в системе отопления зданий (см., например, СНиП 2.04.07-86 Тепловые сети. М.: Стройиздат* 1987(с изм. от 21.04.94 г.)), теплоизоляционный слой 3 выполнен из тонковолокнистого базальтового материала 7, расположенного в виде витых продольно вытянутых по длине панели пучков 8. Тогда в светлое время суток при наличии солнечной радиации с отрицательными температурами воздуха окружающей среды поверхность наружного 1 слоя теплопроводностью передает тепло тонковолокнистому базальтовому материалу 7 теплоизоляционного слоя 3, а в связи с тем, что тонковолокнистый базальтовый материал 7 расположен в виде витых продольно вытянутых по длине панели пучков 8, наблюдается аккумулирование тепловой энергии по толщине теплоизоляционного слоя 3 (см., например, Волокнистые материалы из базальтов. Украина, Изд. «Техника», Киев, 1971. 76 с., ил.).

При отсутствии солнечной радиации и/или в темное время суток, аккумулированная в теплоизоляционном слое 3 теплота переходит через внутренний 2 слой в отапливаемое помещение, поддерживая параметры микроклимата в нем, что позволяет снизить расход высокотемпературного теплоносителя системы отопления.

В дневное время суток при отопительном периоде эксплуатации здания тепловая энергия от теплообменного аппарата, преимущественно расположенного у наружного ограждения, например из трехслойных железобетонных панелей, наряду с прогревом внутреннего воздуха теплопроводностью передается внутреннему слою 2 и далее теплоизоляционному слою 3, где аккумулируется на витых продольно вытянутых пучках 8 тонковолокнистого базальтового материала 7, практически устраняя поступление теплового потока в наружный слой 1.

Накопленная путем аккумулирования в теплоизоляционном слое 3 тепловая энергия в наступающее ночное время суток, когда допускается уменьшение нормированной температуры внутреннего воздуха за счет снижения расхода высокотемпературного теплоносителя системы отопления, особенно в офисах и производственных зданиях из-за сокращения наличия людей или их полного отсутствия, теплопроводностью передается через внутренний слой 2 в помещение. В результате обеспечивается ресурсосберегающая эксплуатация здания. Следовательно, выполнение теплоизоляционного слоя 3 из тонковолокнистого базальтового материала 7 в виде витых продольно вытянутых пучков 8 обеспечивает не только защиту от тепловых потерь, но и поддержание нормированного температурного теплового режима в здании за счет отдачи тепла, которое было аккумулировано и в последующем передано внутреннему воздуху отапливаемого помещения.

При отрицательных температурах окружающей среды армированные бетонные ребра определенной толщины представляют собой дополнительные «мостики холода», а устранение данного явления путем уменьшения толщин армированных бетонных ребер по периметру панели (по прототипу), конечно, снижает теплопотери, но не всегда оправдано по прочности параметрам конструкции.

Выполнение армированных бетонных шпонок, размещенных на противоположных торцах панели, из материала с коэффициентом теплопроводности в 2,5-3 раза меньшим, чем коэффициент теплопроводности материала армированных бетонных шпонок, проходящих через теплоизоляционный слой, приводит к местному перераспределению температурных и тепловых полей в местах контакта бетонных шпонок с основным материалом трехслойной панели.

Температурное поле внешней окружающей среды с минусовой температурой воздействует на армированную бетонную шпонку на торце панели и температурное поле внутренней с минусовой температурой окружающей среды (например, расположение панели как перекрытия здания) с градиентом температур различной (до трехкратной) интенсивности, обусловленной теплопроводностью соответствующих материалов. В результате в месте контакта (фиг. 1) для торца панели, где возможно появление «мостиков холода», образуется температурно-тепловой пограничный слой (см., например, стр.68-77. Исаченко В.П. и др. Теплопередача. М.: Энергоиздат, 1981, 416 с., ил.), обусловленный встречным направлением градиентов температур (grad t) внешней окружающей среды и теплового потока рассеивания (qрас), определяющих тепловые потери панели от внутренней окружающей среды, например тепла помещения при использовании панели в качестве перекрытия здания. При этом толщина температурно-теплового пограничного слоя увеличивается при периодическом в течении суток разном изменении температуры воздуха окружающей среды от минусовых до нулевых и даже плюсовых. В то же время в месте контакта армированных бетонных шпонок, проходящих через теплоизоляционный слой, также образуется температурно-тепловой пограничный слой, обеспечивающий рассеивание теплового потока, определяющего тепловые потери как по внешнему и внутреннему железобетонному слою, так и теплоизоляционному слою, но со значением температурных градиентов, трехкратно меньших, чем для наружных условий.

В результате наличия местных зон (армированные бетонных шпонок на торцах панели и в теплоизоляционном слое) перераспределение температурных и тепловых полей обеспечивает повышение теплотехнических свойств трехслойной ресурсосберегающей железобетонной панели в целом.

Оригинальность предлагаемого технического решения заключается в том, что обеспечиваются при длительной эксплуатации нормированные параметры в условиях воздействия сейсмических волн, вызываемых при землетрясениях или движении тяжелогруженых транспортных средств вблизи строительных сооружений, а также поддерживается заданный микроклимат в помещениях, путем устранения комкообразования по длине синусоид, продольно вытянутых в трехслойный ресурсосберегающих железобетонных панелях за счет выполнения кривизны линии каждого витка витого пучка по циклоиде как брахистохроне, с быстрейшим переходом в ней мелкодисперсных частиц загрязнений из начального положения в конечное.

Трехслойная ресурсосберегающая железобетонная панель, включающая теплоизоляционный слой, наружный и внутренний железобетонные слои, связанные между собой жесткими связями, выполненные в виде армированных бетонных шпонок, проходящих через теплоизоляционный слой, и армированные бетонные ребра, размещенные по периметру панели, дополнительно снабжена по меньшей мере двумя армированными бетонными шпонками, которые размещены на противоположных торцах панели, а армированные бетонные ребра в сечении, параллельном слоям панели, имеют площадь, определяемую из соотношения площади панели, толщины ее среднего слоя, коэффициентов теплопроводности материалов ребер, слоев панели, арматуры и утеплителя, а также требуемого сопротивления теплопередачи, при этом коэффициент теплопроводности материала армированных бетонных шпонок, проходящих через теплоизоляционный слой, в 2,5-3 раза превышает коэффициент теплопроводности материала армированных бетонных шпонок, размещенных на противоположных торцах панели, причем теплоизоляционный слой выполнен из тонковолокнистого материала и расположен в виде витых, продольно вытянутых по длине панели пучков, пучки тонковолокнистого материала попарно количеством не менее четырех расположены в виде синусоид, продольно вытянутых по длине панели, выступы и впадины которых при совмещении являются концентраторами перемещающихся сейсмических колебаний, кроме того, касательная первого витого пучка каждой пары имеет направление по ходу движения часовой стрелки, при этом участки наибольшего сближения попарно расположенных витых пучков составляют узлы, способствующие образованию стоячих волн, причем торцы трехслойной ресурсосберегающей железобетонной панели, контактирующие с наружным воздухом окружающей промышленное здание среды, покрыты нанообразной стеклоподобной пленкой из оксида тантала, выполненной ионно-плазменным методом, отличающаяся тем, что выполнена кривизна линии каждого витка витого пучка по циклоиде как брахистохроне с быстрейшим переходом мелкодисперсных частиц загрязнений из начального в конечное положение.
Трехслойная ресурсосберегающая железобетонная панель
Трехслойная ресурсосберегающая железобетонная панель
Источник поступления информации: Роспатент

Показаны записи 31-40 из 320.
12.01.2017
№217.015.5f51

Способ получения металлического нанопорошка из отходов быстрорежущей стали в керосине

Изобретение относится к получению порошков. Отходы быстрорежущей вольфрамсодержащей стали Р6М5 подвергают электроэрозионному диспергированию в реакторе в среде диэлектрической жидкости посредством искровых разрядов между указанными отходами и электродами, состоящими из того же материала. В...
Тип: Изобретение
Номер охранного документа: 0002590045
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.6109

Способ определения подлинности передаваемых командных слов

Изобретение относится к вычислительной технике и может быть использовано для аутентифицированной передачи данных между управляющей программой и аппаратным средством ЭВМ. Техническим результатом является обеспечение подлинности передачи командных слов от легального источника в устройство при...
Тип: Изобретение
Номер охранного документа: 0002591181
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.68e1

Энергосберегающее устройство охлаждения режущего инструмента

Изобретение относится к области высокоскоростной обработки деталей на оборудовании с ЧПУ, в частности к системам охлаждения резцов. Техническим результатом является снижение энергопотребления при охлаждении режущей части резца. Оборудование для обработки деталей содержит переднюю бабку, заднюю...
Тип: Изобретение
Номер охранного документа: 0002591931
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.6a48

Стеклоблочный воздухоподогреватель-электрогенератор

Изобретение относится к теплоэнергетике и может быть использовано при нагревании воздуха, подаваемого на горение. Техническим результатом изобретения является повышение эффективности стеклоблочного воздухоподогревателя-электрогенератора за счет конструкции стеклоблоков имеющих...
Тип: Изобретение
Номер охранного документа: 0002592938
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.6d5d

Способ получения магнитной жидкости

Изобретение может быть использовано при получении магнитно-жидкостных уплотнений вращающихся валов, магнитных смазок, в процессах магнитного обогащения немагнитных материалов, в биологии и медицине. При получении магнитной жидкости из оксидгидроксида железа (III) или гетита и олеиновой кислоты...
Тип: Изобретение
Номер охранного документа: 0002597376
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.6eeb

Способ получения нанопорошка меди из отходов

Изобретение относится к порошковой металлургии. Способ получения нанопорошка меди из отходов электротехнической медной проволоки, содержащих не менее 99,5% меди, включает их электроэрозионное диспергирование в дистиллированной воде при частоте следования импульсов 100-120 Гц, напряжении на...
Тип: Изобретение
Номер охранного документа: 0002597445
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.6efd

Экспресс-способ выбора параметров шлифования обрабатываемого материала микрорезанием единичным зерном в металлической связке

Изобретение относится к обработке материалов резанием. Способ включает закрепление детали на координатном столе под объективом оптического устройства, обработку материала шлифовальным инструментом, проектирование увеличенного изображения зоны резания на экран с чертежом. Обработку материала...
Тип: Изобретение
Номер охранного документа: 0002597444
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.713c

Демпфирующий резец

Резец содержит режущую пластину и узел ее крепления, державку с выборкой в ней, имеющей прямоугольное основание, вставку из материала с высоким демпфированием и металлическую оправку. Для снижения трудоемкости монтирования вставки в прямоугольном основании выборки выполнено сквозное резьбовое...
Тип: Изобретение
Номер охранного документа: 0002596546
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.780f

Мостовой измеритель параметров двухполюсников

Изобретение относится к контрольно-измерительной технике, автоматике и промэлектронике и предназначено для определения параметров четырехэлементных двухполюсников или параметров датчиков с четырехэлементной схемой замещения. Технический результат: уменьшение погрешности измерения за счет...
Тип: Изобретение
Номер охранного документа: 0002598977
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.78c2

Способ получения медного порошка из отходов

Изобретение относится к получению медного порошка из отходов электротехнической медной проволоки. Отходы, содержащие не менее 99,5% меди, подвергают электроэрозионному диспергированию в дистиллированной воде при частоте следования импульсов 28-100 Гц, напряжении на электродах 150-220 В и...
Тип: Изобретение
Номер охранного документа: 0002599476
Дата охранного документа: 10.10.2016
Показаны записи 31-40 из 122.
20.02.2016
№216.014.ce4b

Вентиляторная градирня

Изобретение относится к теплоэнергетике, может быть использовано для охлаждения оборотной воды. Вентиляторная градирня содержит вытяжную башню с воздуховодными окнами по периметру ее нижней части, воздухоуловитель, водораспределительную систему с суживающимися соплами и расположенную...
Тип: Изобретение
Номер охранного документа: 0002575244
Дата охранного документа: 20.02.2016
27.03.2016
№216.014.dc63

Аэротенк-вытеснитель

Изобретение относится к биологической очистке сточных вод и может быть использовано в промышленности и коммунальном хозяйстве. Аэротенк-вытеснитель включает корпус 1, разделенный перегородками на сообщающиеся последовательно коридоры 3, вводы воды и активного ила, выводы очищенной воды и ила,...
Тип: Изобретение
Номер охранного документа: 0002579134
Дата охранного документа: 27.03.2016
20.02.2016
№216.014.e8ca

Вентиляторная градирня

Изобретение относится к теплоэнергетике, может быть использовано для охлаждения оборотной воды. Вентиляторная градирня содержат вытяжную башню, при этом вытяжная башня снабжена вентилятором, расположенным в ее верхней части, регулятором температуры с датчиком температуры атмосферного воздуха,...
Тип: Изобретение
Номер охранного документа: 0002575225
Дата охранного документа: 20.02.2016
10.04.2016
№216.015.2b95

Ротационная пульполовушка для очистки диффузионного сока

Изобретение относится к сахарной промышленности, а именно к очистке диффузионного сока от мезги. Предложена ротационная пульполовушка для очистки диффузионного сока, в состав которой входит корытообразный корпус с патрубком для подвода нефильтрованного диффузионного сока и бункер...
Тип: Изобретение
Номер охранного документа: 0002579218
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.3476

Устройство автоматизированного регулирования расхода тепла на отоплениев системах теплоснабжения

Изобретение относится к централизованному теплоснабжению жилых, общественных и промышленных зданий. Технический результат по снижению энергозатрат достигается тем, что устройство для автоматизированного регулирования расхода тепла на отопление в системах теплоснабжения содержит подающий и...
Тип: Изобретение
Номер охранного документа: 0002581975
Дата охранного документа: 20.04.2016
10.08.2016
№216.015.5491

Фильтр для очистки воздуха

Изобретение относится к очистке сжатого воздуха, в особенности от туманов, в различных отраслях народного хозяйства, преимущественно, на крупных компрессорных станциях со значительным суточным расходом сжатого воздуха. Фильтр для очистки воздуха содержит корпус с коническим днищем, выполненным...
Тип: Изобретение
Номер охранного документа: 0002593292
Дата охранного документа: 10.08.2016
13.01.2017
№217.015.6cdf

Устройство управления подъемно-копающими механизмами

Изобретение относится к пневматическим системам управления экскаваторами и кранами, работающими в условиях отрицательных температур. Техническим результатом является поддержания эффективной работы при длительной эксплуатации устройства подъемно-копающими механизмами за счет обеспечения...
Тип: Изобретение
Номер охранного документа: 0002597334
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.7022

Гелиосушилка

Изобретение относится к сушилкам, в частности к установкам для сушки растительной продукции, в частности винограда и фруктов. Гелиосушилка содержит вертикальную камеру с теплоизолирующими стенками, основанием и перфорированным дном, крышку с вытяжной трубой, солнечный нагреватель, связанный...
Тип: Изобретение
Номер охранного документа: 0002596676
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.7c39

Панель для дополнительной теплоизоляции стен здания

Изобретение относится к области разработки конструкций дополнительной теплоизоляции стен при строительстве и ремонте зданий, предназначенных для уменьшения поступления теплоты из помещения в толщу стены при установке теплоизоляционных панелей внутри помещения или для защиты стен от воздействия...
Тип: Изобретение
Номер охранного документа: 0002600582
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7dd7

Армированная кирпичная кладка

Изобретение относится к строительству и может быть использовано при строительстве многоэтажных зданий в сейсмических районах. Технический результат: поддержание надежной эксплуатации в течение длительного времени армированной кирпичной кладки за счет устранения коррозийного разрушения...
Тип: Изобретение
Номер охранного документа: 0002600951
Дата охранного документа: 27.10.2016
+ добавить свой РИД