×
23.02.2020
220.018.0545

Результат интеллектуальной деятельности: Способ стабилизации выходного напряжения вентильного магнитоэлектрического генератора

Вид РИД

Изобретение

№ охранного документа
0002714921
Дата охранного документа
21.02.2020
Аннотация: Изобретение относится к области электротехники и может быть использовано в системе электропитания автономных объектов. Техническим результатом является улучшение массогабаритных и энергетических показателей при упрощении технической реализации способа, что обеспечивает повышение энергоэффективности процесса стабилизации его напряжения, повышение технологичности его реализации. Способ заключается в том, что переменное напряжение МЭГ выпрямляют с изменяемой частотой вращения его вала и при изменении частоты вращения вала от ƒ до ƒ регулируют его в направлении стабилизации на заданном уровне, формируют нерегулируемое основное выпрямленное напряжение U и дополнительное выпрямленное напряжение ΔU, эти два напряжения суммируют в соответствии с выражением U=U±ΔU, а стабилизацию этого результирующего выпрямленного напряжения U осуществляют путем регулирования дополнительного выпрямленного напряжения ΔU по уровню и по знаку в диапазоне ±ΔU=(+)ΔU÷0÷(-)ΔU, причем в диапазоне изменения частоты от ƒ до напряжение ΔU суммируют с основным напряжением U, а в диапазоне от до ƒ вычитают из него. Сущность способа поясняется структурно-функциональной схемой (ВМЭГ). 2 ил.

Изобретение относится к области электротехники, а именно - к области электрических генераторов с переменной частотой вращения вала и может быть использовано при построении вентильных генераторов (ВГ) для систем электропитания автономных объектов, например, для летательных аппаратов, где требуются бесконтактность и минимально возможная масса и габариты.

Известны регулируемые по напряжению бесконтактные генераторы комбинированного возбуждения, включающие в себя два индуктора - нерегулируемый индуктор на постоянных магнитах и регулируемый индуктор с электромагнитным возбуждением, который реализуется на основе конструкции типа сексин - см. стр. 180, рис. 6.16 в Электрооборудование летательных аппаратов: учебник для вузов. В двух томах / под ред. С.А. Грузкова. - М.: Изд.-о МЭИ. - Том 1. Системы электроснабжения летательных аппаратов. - 2005. - 508 с. При подключении к выходу такого генератора выпрямительного блока он превращается в «бесконтактный вентильный генератор (БВГ)». Регулирование возбуждения для стабилизации выходного напряжения БВГ осуществляется с помощью электронного блока регулирования тока возбуждения регулируемого индуктора. Такие БВГ обеспечивают стабилизацию выходного напряжения при изменении частоты вращения вала генератора и нагрузки в заданных диапазонах.

Недостатком данного решения являются технологические сложности реализации конструкции второго индуктора типа сексин, которые возрастают с ростом мощности и частоты вращения вала.

Наиболее близким по технической сущности к предложенному изобретению является БВГ с возбуждением только от постоянных магнитов. Они выполняются в виде последовательно соединенных бесконтактной фазной электрической машины (ЭМ) и управляемого вентильного блока (УВБ), который может выполняться, например, на тиристорах (см. стр. 279 в [2]: Комлев И.В. Регулируемый магнитоэлектрический вентильный генератор Труды н/т-й конф. «Электрификация летательных аппаратов», посвященная 125-летию академика В.С. Кулебакина. Москва, 1 ноября 2016 г. ИД Академии Жуковского, 2016. - 322 с.) Способ стабилизации напряжения вентильного магнитоэлектрического генератора (МЭГ) заключается в том, что переменное напряжение МЭГ с изменяемой частотой вращения его вала выпрямляют, при изменении частоты вращения вала от ƒmin до ƒmax, регулируют его в направлении стабилизации на заданном уровне. Стабилизация напряжения осуществляется путем фазового управления 18 тиристорами, на которых выполняется выполнения выпрямительный мост. Управление (УВБ) для стабилизации напряжения осуществляется фазовым способом с помощью блока управления (БУ).

Недостатком этого решения является повышенная сложность УВБ и недостаточно высокая его помехоустойчивость. Кроме того, входной коэффициент мощности УВБ сильно уменьшается с ростом угла регулирования тиристоров, что при стабилизации выходного напряжения БВГ в режиме максимальной частоты вращения вала приводит к увеличению проектно необходимой габаритной мощности ЭМ, то есть к ухудшению ее массогабаритных и энергетических показателей.

Технической задачей изобретения является улучшение массогабаритных и энергетических показателей при упрощении технической реализации способа.

Технический результат способа заключается в повышении энергоэффективности процесса стабилизации его напряжения (при переменной частоте вращения вала) и технологичности практической его реализации.

Это достигается тем, что при известном способе стабилизации выходного напряжения вентильного магнитоэлектрического генератора (МЭГ), состоящем в том, что переменное напряжение МЭГ с изменяемой частотой вращения его вала выпрямляют, при изменении частоты вращения вала от ƒmin до ƒmax регулируют его в направлении стабилизации на заданном уровне, формируют нерегулируемое основное выпрямленное напряжение Ud0 и дополнительное выпрямленное напряжение ΔUd0, эти два напряжения суммируют в соответствии с выражением: Ud0Σ=Ud0±ΔUd0, а стабилизацию этого результирующего выпрямленного напряжения Ud0Σ осуществляют путем регулирования дополнительного выпрямленного напряжения ΔUd0 по уровню и по знаку в диапазоне: ±Ud0=(+)ΔUd0max÷0÷(-)ΔUd0max, причем в диапазоне изменения частоты от ƒmin до напряжение ΔUd0 суммируют с основным напряжением Ud0, а в диапазоне от до ƒmax вычитают из него.

Изобретение поясняется чертежами где на фиг. 1 показана структурно-функциональная схема вентильного магнитоэлектрического генератора (ВМЭГ), реализующая способ стабилизации, на фиг. 2 приведена скоростная характеристика ВМЭГ, поясняющая зависимость его выходного напряжения от частоты вращения вала для двух диапазонов ее изменения: от 6000 об/мин до 9000 об/мин и от 6000 об/мин до 12000 об/мин.

Стабилизированный по выходному напряжению вентильный магнитоэлектрический генератор (ВМЭГ) содержит: синхронный генератор 1 с возбуждением от постоянных магнитов, своим выходом подключенный ко входам выпрямительного блока 2, а также последовательно включенное в цепь постоянного тока этого блока 2 выход реверсивного вольтодобавочного канала (РВДК). Силовая часть РВДК включает в себя высокочастотный инвертор напряжения (ВЧИН) 3, выполненный на транзисторах 3.1, 3.2 с делителем напряжения 3 на конденсаторах 3.3, 3.4, которые своими выводами 3.5, 3.6, подключены к выходным выводам 2.1, 2.2 выпрямительного блока 2, между которыми включен также накопительный конденсатор 2.3; согласующий трансформатор напряжения 4 (установленный на выходе инвертора 3) с первичной 4.1 и двумя вторичными обмотками 4.2, 4.3, причем последние с двумя полностью управляемыми ключами с односторонней проводимостью 5, 6 образуют реверсивный вольтодобавочный выпрямитель (РВДВ) по нулевой схеме. Точка соединения силовых выводов ключей 5, 6 через дроссель 7 подключена к одному выходному выводу 8 ВМЭГ, а второй его выходной вывод 9 объединен с выходным выводом выпрямительного блока 2.2. Между выходными выводами 8, 9 ВМЭГ включен конденсатор 10, который совместно с дросселем 7 образует сглаживающий Г образный LC фильтр. Нагрузку 11 подключают к выходным выводам 8, 9 ВМЭГ. Управление инвертором напряжения 3 осуществляется блоком управления (БУ) 12, выходы которого через драйверы 13 подключены к управляющим входам ключей инвертора напряжения 3. Для стабилизации напряжения ВМЭГ при возмущающих воздействиях по нагрузке используется контур отрицательной обратной связи (КООС) по напряжению 14. При реализации драйверов 13 и КООС 14 используются стандартные решения. Электропитание узлов 12, 13, 14 осуществляется блоком питания внутренних нужд (БПВН) 15.

Для пояснения принципа работы реверсивного вольтодобавочного канала (РВДК) воспользуемся зависимостью выходного напряжения ВМЭГ от частоты вращения приводного вала ЭМ, представленной на фиг. 2. На ней в качестве примера показаны два возможных диапазона изменения частоты вращения вала: 1-й диапазон - от nmin=6000 об/мин до nmax=9000 об/мин и 2-й диапазон - от nmin=6000 об/мин до nmax=12000 об/мин. Линии 0-k1 и 0-k2 на фиг. 2 отражают скоростные характеристики (в относительных единицах) для двух диапазонов изменения частоты вращения вала U*МЭГ=ƒ(n); а линии 0-g1 и 0-g2 - скоростные характеристики регулируемой части ВМЭГ - U*РГ=ƒ(n). Стабилизация выходного напряжения ВМЭГ характеризуется линиями h-02 и h-c соответственно. Для 1-го диапазона изменения частоты отрезки h-01 и 01-02 определяют 1-ю и 2-ю зоны стабилизации напряжения: в 1-й зоне (h-02) реализуется режим вольтодобавки (ВД), а во 2-й зоне (01-02) - режим вольтовычитания (ВВ). Аналогичный комментарий распространяется и на 2-й диапазон изменения частоты.

Процесс регулирования рассмотрим только для 1-го диапазона. За номинальную частоту вращения вала здесь принимается значение: Функциональная задача РВДК заключается в следующем: в 1-й зоне изменения частоты вращения nmin<nном к напряжению Ud0 основного канала (напряжение на накопительном конденсаторе 2.3) должно добавляться напряжение вольтодобавочного (стабилизирующего) канала ΔUd0, которое с ростом частоты вращения вала n должно автоматически уменьшаться по уровню от (+)ΔUd0max при nmin до 0 при nном (отрезок n1-h на фиг. 2.), а во 2-й зоне при nmax>n>nном из основного напряжения Ud0 дополнительное напряжение должно вычитаться и с ростом частоты вращения вала n автоматически увеличиваться по уровню от 0 при nном до (-)ΔUd0max при nmax (отрезок 02-k1 на фиг. 2). Это означает, что при переходе из 1-ой зоны (ВД) во 2-ю зону (ВВ) логика работы регулятора ширины импульсов (РШИ) должна изменяться на обратную. Из этого следует, что датчик напряжения МЭГ должен обладать V-образной характеристикой, на фиг. 2 определяемой изогнутой линией . В 1-й зоне транзисторы 3.1, 3.2 ВЧИН включают попеременно с задержкой на угол регулирования α, а транзисторы 5.1, 6.1 должны быть включены постоянно, т.е. РВДК здесь работает в выпрямительном режиме. Во 2-й зоне транзисторы 3.1, 3.2 выключают, а ВЧИН работает в выпрямительном режиме. Здесь транзисторы 5.1, 6.1 РВДК должны работать попеременно, но на интервалах, определяемых углом регулирования α, они должны находиться во включенном состоянии, т.е. на этих интервалах мощность МЭГ передается в нагрузку непосредственно. Это означает, что РВДК работает здесь в обращенном, т.е. в инверторном режиме. При этом обратный поток энергии идет на подзаряд накопительного конденсатора 2.3. В результате напряжение на нем возрастает, диоды выпрямительного моста 2 запираются, и отбор мощности от МЭГ 1 прекращается до того момента, когда конденсатор 2.3 разрядится на нагрузку 11, и напряжение на нем станет меньше, чем напряжение на выходе выпрямителя 2. Далее процесс подзаряда и разряда конденсатора 2.3 будет повторяться. Вышеописанные процессы работы РВДК обеспечивают стабилизацию выходного напряжения ВМЭГ.

Использование изобретения обеспечивает повышение КПД и уменьшение общей массы МЭГ и РВДК за счет преобразования не полной мощности МЭГ, а лишь его части. Численная оценка результата определяется диапазоном изменения частоты вращения вала МЭГ. Например, при кратности изменения частоты вращения вала Kn=nmax/nmin=1/5 максимальная мощность РВДК (в крайних точках частотного диапазона - nmin и nmax) составляет 20% от выходной номинальной мощности ВМЭГ, а при Kn=2 уже 30%. Мощность электронного блока уменьшается в 5 раз в первом случае и в 3 раза - во втором.

Способ стабилизации выходного напряжения вентильного магнитоэлектрического генератора (МЭГ), заключающийся в том, что переменное напряжение МЭГ выпрямляют с изменяемой частотой вращения его вала и при изменении частоты вращения вала от ƒ до ƒ регулируют его в направлении стабилизации на заданном уровне, отличающийся тем, что формируют нерегулируемое основное выпрямленное напряжение U и дополнительное выпрямленное напряжение ΔU, эти два напряжения суммируют в соответствии с выражением U=U±ΔU, а стабилизацию этого результирующего выпрямленного напряжения U осуществляют путем регулирования дополнительного выпрямленного напряжения ΔU по уровню и по знаку в диапазоне ±ΔU=(+)ΔU÷0÷(-)ΔU, причем в диапазоне изменения частоты от ƒ до напряжение ΔU суммируют с основным напряжением U, а в диапазоне от до ƒ вычитают из него.
Способ стабилизации выходного напряжения вентильного магнитоэлектрического генератора
Способ стабилизации выходного напряжения вентильного магнитоэлектрического генератора
Способ стабилизации выходного напряжения вентильного магнитоэлектрического генератора
Способ стабилизации выходного напряжения вентильного магнитоэлектрического генератора
Способ стабилизации выходного напряжения вентильного магнитоэлектрического генератора
Источник поступления информации: Роспатент

Показаны записи 131-140 из 208.
14.05.2019
№219.017.5184

Лимитер

Изобретение относится к оборудованию для оснащения термоядерных реакторов типа токамак. Лимитер содержит емкость 1, заполненную литием 2 и имеющую тепловой контакт с оммическим или СВЧ-нагревателями 3, кольцо 4, зафиксированное вращающимися опорами 5, неподвижно закрепленными на корпусе...
Тип: Изобретение
Номер охранного документа: 0002687292
Дата охранного документа: 13.05.2019
16.05.2019
№219.017.5256

Способ работы тепловой электрической станции и устройство для его реализации

Изобретение относится к электроэнергетике и может быть применено на тепловых электростанциях с паротурбинным циклом Ренкина, например на конденсационных электростанциях - КЭС, на парогазовых электростанциях - ПГУ, использующих топливо - традиционный природный газ. Применение предлагаемого...
Тип: Изобретение
Номер охранного документа: 0002687382
Дата охранного документа: 13.05.2019
20.05.2019
№219.017.5d0a

Способ многослойной электронно-лучевой сварки

Изобретение относится к способу многослойной лучевой сварки. Осуществляют создание непосредственно в узком зазоре между свариваемыми деталями над сварочной ванной переменного отклоняющего магнитного поля электромагнитной системой, с катушкой индуктивности и разомкнутым магнитопроводом, имеющим...
Тип: Изобретение
Номер охранного документа: 0002688033
Дата охранного документа: 17.05.2019
26.05.2019
№219.017.6190

Маховик переменного момента инерции

Изобретение относится к области машиностроения. Маховик переменного момента инерции содержит камеру (1) цилиндрической формы. На внутренних торцевых поверхностях камеры соосно с ней жестко закреплены цилиндр малого диаметра (5) и цилиндр большого диаметра (6), расположенные коаксиально. Во...
Тип: Изобретение
Номер охранного документа: 0002689051
Дата охранного документа: 23.05.2019
04.06.2019
№219.017.72f9

Спинтронное устройство генерирования сверхвысокочастотных колебаний

Изобретение относится к устройствам генерирования и формирования СВЧ радиосигналов. Технический результат - увеличение мощности и стабильности выходных колебаний. Для этого в устройство генерирования СВЧ колебаний, содержащее спин-трансферный генератор 1, состоящий из последовательно...
Тип: Изобретение
Номер охранного документа: 0002690217
Дата охранного документа: 31.05.2019
04.06.2019
№219.017.7356

Трехфазное симметрирующее устройство

Использование: в области электроэнергетики. Технический результат – повышение точности работы устройства и снижение потерь электроэнергии, обусловленных несимметрией, и как следствие повышение качества электрической энергии. Трехфазное симметрирующее устройство выполнено с возможностью...
Тип: Изобретение
Номер охранного документа: 0002690370
Дата охранного документа: 03.06.2019
04.06.2019
№219.017.7361

Внутритрубный упругий микроробот с управляемой пьезоактюатором формой

Изобретение относится к робототехнике, а именно к мобильным миниатюрным роботам, предназначенным для осуществления работ в трубчатых каналах различных типов. Внутритрубный упругий микроробот выполнен в виде гибкого многоопорного неразрезного стержня, опорами которого служат шарнирно...
Тип: Изобретение
Номер охранного документа: 0002690258
Дата охранного документа: 31.05.2019
07.06.2019
№219.017.74ff

Фильтрокомпенсирующая установка

Использование: в области электротехники. Технический результат - снижение уровня необратимых потерь электроэнергии, уменьшение массогабаритов, повышение коэффициента мощности и снижение коэффициентов гармонических составляющих напряжения электрической сети. Фильтрокомпенсирующая установка,...
Тип: Изобретение
Номер охранного документа: 0002690689
Дата охранного документа: 05.06.2019
07.06.2019
№219.017.7508

Ротор асинхронного электродвигателя

Изобретение относится к электротехнике и электромашиностроению, предназначено для применения в асинхронных электродвигателях мощностью более 100 кВт и направлено на повышение надежности работы электродвигателя и сопряженных с ним питающей сети и технологического оборудования за счет улучшения...
Тип: Изобретение
Номер охранного документа: 0002690680
Дата охранного документа: 05.06.2019
04.07.2019
№219.017.a4d8

Бестопливная тригенерационная установка

Изобретение относится к детандер-генераторным агрегатам для производства электроэнергии и устройствам для производства тепла и холода за счет разделения газового потока. Между газопроводом высокого давления и газопроводом низкого давления, разделенными дросселем, установлена линия подачи газа...
Тип: Изобретение
Номер охранного документа: 0002693352
Дата охранного документа: 02.07.2019
Показаны записи 11-14 из 14.
18.12.2019
№219.017.ee12

Стабилизированный по напряжению генератор на основе асинхронной машины с короткозамкнутой роторной обмоткой

Стабилизированный по напряжению генератор на основе асинхронной машины с короткозамкнутой роторной обмоткой относится к области электротехники и может быть использован при построении машинно-электронных генерирующих систем постоянного (МЭГС-1) или переменного (МЭГС-2) тока при переменной...
Тип: Изобретение
Номер охранного документа: 0002709101
Дата охранного документа: 16.12.2019
06.02.2020
№220.017.feda

Бесконтактный стабилизированный по напряжению генератор переменного тока с комбинированным возбуждением

Изобретение относится к области электротехники и может быть использовано при построении генераторов переменного и постоянного тока для систем электропитания автономных объектов, прежде всего, для летательных аппаратов, где требуются минимально возможная масса, габариты и бесконтактность, а...
Тип: Изобретение
Номер охранного документа: 0002713470
Дата охранного документа: 05.02.2020
21.07.2020
№220.018.34d3

Стабилизированный по напряжению вентильный магнитоэлектрический генератор

Изобретение относится к электротехнике. Технический результат заключается в повышении КПД и улучшении удельного его показателя. Стабилизированный по напряжению вентильный магнитоэлектрический генератор (ВМЭГ) содержит синхронную машину с возбуждением от постоянных магнитов 1, выпрямительный...
Тип: Изобретение
Номер охранного документа: 0002726950
Дата охранного документа: 17.07.2020
06.06.2023
№223.018.788f

Преобразователь постоянного напряжения в квазисинусоидальное трёхфазное напряжение повышенной мощности

Изобретение относится к области силовой преобразовательной техники и может быть использовано в системах электроснабжения и электропривода промышленных установок и транспортных средств. Технический результат заключается в повышении КПД и расширении области его применения при повышенных значениях...
Тип: Изобретение
Номер охранного документа: 0002762829
Дата охранного документа: 23.12.2021
+ добавить свой РИД