×
23.02.2020
220.018.0516

Результат интеллектуальной деятельности: Способ определения параметров многоэлементных двухполюсников

Вид РИД

Изобретение

Аннотация: Изобретение относится к контрольно-измерительной технике, в частности к способам определения параметров двухполюсников. Сущность способа заключается в проведении трех этапов измерений. На перовом и втором этапах измерений на исследуемые двухполюсники подают скачок постоянного напряжения Е, величина которого известна, и после завершения переходного процесса, определяют значения напряжений U и U на основе образцовых элементов - резистора R и конденсатора C, которые поочередно подключают к измерительной цепи. Третий этап измерений проводится на основе образцового конденсатора С и измерительной цепи, выполненной на базе операционного усилителя. В цепь инвертирующего входа усилителя включают образцовый конденсатор, а в цепь отрицательной обратной связи - измеряемый двухполюсник, на который подают скачок постоянного напряжения Е и определяют мгновенные значения напряжений u(t), в фиксированные моменты времени t, и t, не превышающие длительности переходного процесса в измерительной цепи. По результатам четырех измерений напряжений определяются параметры двухполюсника. Технический результат: сокращение времени и количества измерений, проводимых в течение переходного процесса за счет выполнения части измерений после завершения переходного процесса. 5 ил., 1 табл.

Изобретение относится к контрольно-измерительной технике, в частности к способу определения параметров многоэлементных двухполюсников, и может быть использовано при измерении различных физических величин с помощью емкостных датчиков, имеющих схему замещения в виде многоэлементных двухполюсников.

Уровень техники

Известен способ определения параметров многоэлементных двухполюсных цепей, который заключается в использовании воздействия на исследуемую двухполюсную R-C или L-R цепь сигналом ступенчатой формы и применении операции интегрирования при определении параметров R и С двухполюсника R-C или параметров L и R двухполюсника L-R. В процессе интегрирования свободной составляющей переходного процесса измеряют первое значение интеграла H1 от указанного напряжения на участке [0…t1]. Далее измеряют второе значение интеграла Н2 от указанного напряжения на участке [t1…2t1], далее вычисляют значения показателя p и амплитуды А переходного процесса на выходе. Данные параметры определяют значения R, L и С (патент RU №2310872).

Недостатками данного способа являются:

1. ограниченные функциональные возможности, связанные с измерением параметров небольшого количества двухполюсников, включающих в себя не более трех элементов;

2. необходимость изменения точек подключения измеряемого двухполюсника в цепях операционного усилителя, в зависимости от конфигурации объекта исследования.

Известен способ определения параметров двухполюсников, основанный на анализе переходного процесса в измерительном преобразователе, выполненном на базе операционного усилителя. В зависимости от конфигурации схемы замещения двухполюсника его включают либо в цепь отрицательной обратной связи, либо в цепь инвертирующего входа, при этом образцовый резистор включается во входную или отрицательную цепь соответственно. При подаче на вход измерительного преобразователя входного сигнала (постоянного напряжения) в измерительной цепи возникает переходный процесс в течение которого выполняют три дискретных измерения выходного напряжения через образцовый интервал времени Δt. После чего вычисляют параметры многоэлементного двухполюсника путем решения системы из трех уравнений с соответствующим количеством неизвестных, при этом микропроцессорный контроллер получает значения постоянной составляющей, крутизны линейно изменяющейся составляющей, значения постоянной времени и амплитуды экспоненциальной составляющей переходного процесса (патент RU №2180966).

Недостатками этого способа являются:

1. необходимость проведения трех измерений в короткий промежуток времени, ограниченный длительностью переходного процесса, и как следствие увеличение длительности измерения в целом;

2. потребность в изменении точек подключения двухполюсника в операционном усилителе, обусловленная конфигурацией схемы исследуемого объекта.

Наиболее близким по технической сущности и достигаемому положительному эффекту и принятый авторами за прототип является известный способ определения параметров переходного процесса, основанный на том, что в момент времени t1 после начала переходного процесса измеряют первое мгновенное значение переходного процесса, в момент времени 2t1 измеряют второе мгновенное значение переходного процесса, в момент времени 3t1 измеряют третье мгновенное значение переходного процесса, в момент 4t1 измеряют четвертое мгновенное значение переходного процесса и вычисляют постоянную составляющую А0, крутизну линейно изменяющейся составляющей A1, установившееся значение А2 и постоянную времени возрастающей экспоненциальной составляющей переходного процесса (патент RU №2187822).

Недостатками этого способа являются:

1. необходимость проведения четырех измерений в короткий промежуток времени, ограниченный длительностью переходного процесса;

2. к моменту измерения третьего и четвертого мгновенных значений переходного процесса экспоненциальный переходный процесс считается установившемся, в результате чего возникают дополнительные погрешности измерений.

Раскрытие изобретения

Технический результат, который может быть достигнут с помощью предлагаемого способа определения параметров многоэлементных двухполюсников, сводится к сокращению времени, количества измерений, проводимых в течение переходного процесса, и повышению их точности.

Технический результат достигается с помощью способа определения параметров многоэлементных двухполюсников, содержащих в составе схемы замещения три параллельные ветви: с чисто активной проводимостью, с чисто емкостной проводимостью и ветвью, состоящей из последовательно соединенных RC-элементов, таким образом, на исследуемый двухполюсник через последовательно соединенный с ним образцовый резистор R0, сопротивление которого выбирается в пределах от 100 до 500 кОм ±1%, подают скачок постоянного напряжения Е0, величина которого составляет от 5 до 12 В, измеряют напряжение U1 на средней точке измерительной цепи относительно общего проводника после завершения переходного процесса, затем измерительную цепь разряжают, заменяют в измерительной цепи образцовый резистор R0 на образцовый конденсатор C01, емкость которого принимается в пределах от 50 до 1000 пФ ±0,25%, измеряют напряжение U2 на средней точке измерительной цепи относительно общего проводника после завершения переходного процесса, затем измерительную цепь разряжают, далее производят измерения напряжения на выходе измерительной цепи, выполненной на базе операционного усиления (ОУ), в цепи отрицательной обратной связи которого включен образцовый конденсатор С02, величина которого выбирается в диапазоне от 50 до 1000 пФ ±0,25%, а в цепи инвертирующего входа ОУ - измеряемый двухполюсник, при подаче на вход измерительной цепи скачка постоянного напряжения Е0, величина которого составляет от 5 до 12 В, u3(t1), u4(t2) в фиксированные моменты времени t1, и t2, не превышающие длительности переходного процесса в измерительной цепи, и, окончательно, по результатам четырех измерений напряжений, величинам опорных элементов, величине опорного напряжения, величинам фиксированных моментов времени, определяют параметры двухполюсника по формулам:

Δt=t2-t1,

где R1 - сквозное активное сопротивление, Ом;

C1 - емкость мгновенной поляризации, Ф;

C2 - емкость релаксационной поляризации, Ф;

R2 - активное релаксационное сопротивление, Ом.

Краткое описание чертежей

На фиг. 1 изображена схема замещения измерительной цепи первого этапа измерений.

На фиг. 2 - схема замещения измерительной цепи второго этапа измерений.

На фиг. 3-измерительная цепь для третьего этапа измерения.

На фиг. 4 - график переходного процесса третьего этапа измерения.

На фиг. 5. - схема установки для осуществления экспериментальной проверки работоспособности предлагаемого способа определения параметров многоэлементных двухполюсников.

Осуществление изобретения

Сущность способа определения параметров многоэлементных двухполюсников заключается в следующем. На первом этапе измерений (фиг. 1) к двухполюснику последовательно подключают образцовый резистор R0, параметры которого известны, и подают скачок напряжения Е0 заранее определенной величины. После завершения переходного процесса в средней точке измерительной цепи относительно общего проводника измеряют величину напряжения U1, которая описывается соотношением:

или

тогда

Из чего следует, что величина R1 может быть определена по следующему выражению:

Измерив значение напряжения U1, по известным значениям Е0 и R0 можно получить значение элемента схемы замещения двухполюсника R1 - сквозного активного сопротивления. После завершения первого этапа измерений измерительную цепь разряжают.

На втором этапе измерений (фиг. 2) образцовый резистор R0 заменяют на образцовый конденсатор C01 известной емкости и, как и в предыдущем этапе, измеряют величину напряжения U2. При этом емкости конденсаторов и напряжение на них связаны соотношением:

Откуда

Измерив напряжение U2, по известным значениям Е0 и C01 можно получить суммарное значение емкости элементов схемы замещения - конденсаторов C1 и С2. После завершения второго этапа измерений измерительную цепь разряжают.

Третий этап измерений (фиг. 3) выполняют на основе измерительной цепи, состоящей из операционного усилителя ОУ, в цепь отрицательной обратной связи которого включают образцовый конденсатор С02, величина которого известна, а в цепь инвертирующего входа операционного усилителя включают измеряемый многоэлементный двухполюсник. С помощью ключа S на вход измерительной цепи подают скачок известного значения постоянного напряжения Е0, после чего в течение длительности развивающегося переходного процесса в фиксированные моменты времени t1 и t2 измеряют выходные напряжения u3 и u4 соответственно (фиг. 4). При этом выходное напряжение на операционном усилителе ОУ будет изменяться по закону переходного процесса:

Исходя из этого выходное напряжение операционного усилителя для фиксированных моментов времени t1 и t2 можно записать в виде:

Представим указанные выражения в виде разности:

Преобразуем приведенное выше выражение с учетом того, что разность между отсчетами времени t1 и t2 может быть записана, как Δt:

Поскольку значения R1 и С12 известны из первого и второго этапа измерений, выражение (11) можно преобразовать следующим образом:

Разделив правые части уравнений (11) и (12) друг на друга, получим:

Постоянную времени т можно определить из следующего выражения:

Из уравнения (12) следует:

Окончательно, определим величину R2:

Причем очередность выполнения первого и второго этапов измерений не является обязательной, поскольку указанные этапы полностью независимы, однако, необходимо иметь ввиду, что расчет величин по третьему этапу измерений строится на величинах, которые должны быть известны из первых двух этапов измерений.

Значение образцового резистора Ro рекомендуется выбирать в пределах от 100 до 1000 кОм ±1%.

Так же для упрощения измерительной цепи, образцовые конденсаторы C01 и С02 могут быть заменены одним конденсатором соответствующей емкости, удовлетворяющей заданному диапазону значений - от 50 до 1000 пФ ±0,25%.

В качестве операционного усилителя рекомендуется применять измерительные (инструментальные) усилители, например, INA128P, производства Texas Instruments, поскольку они обладают улучшенными параметрами и пригодны для использования в измерительном и тестирующем оборудовании, где требуется большая точность и высокая стабильность схемы, как кратковременно, так и долговременно.

Заранее принятое значение постоянного напряжения Е0 может быть выбрано в диапазоне от 5 до 12 В, что регламентировано номинальным напряжением аккумуляторных батарей, используемых в портативных измерительных устройствах. Рекомендуемое значение - 9 В, выдаваемое батарей типа «Крона» 625 мА⋅ч.

Проверка работоспособности предлагаемого способа проводилась методом сравнения точности результатов измерений с известным способом измерения параметров многоэлементных двухполюсников на установке (фиг. 5), выполненной на базе AVR-микроконтроллера 1 типа ATmega 8-16PI, выпускаемого в настоящее время компанией Microchip Technology Inc. В качестве операционного усилителя установлен измерительный (инструментальный) усилитель 2 типа INA128P производства Texas Instruments. Отображение результатов измерений реализовано с помощью LCD-дисплея 3 типа WH 1602В YHI ЕМ производства компании Winstar Display Co. Ltd. В качестве коммутационного устройства цепей измерения установлен коммутатор 5.

При работе выхода РА0, т.е. при подаче скачка напряжения Е0, выходы РА1 и РА2 находятся в высокоимпендансном состоянии и влияние на измерительную цепь не оказывают. При работе выхода РА1, цепи РА0 и РА2 переводятся в высокоимпендансное состояние и влияние на процесс измерения не оказывают. Аналогично при работе выхода РА2, выходы РА0, РА1 и ADC0 переводятся в высокоимпендансное состояние.

Преимущество точности результатов измерения предлагаемого способа определения параметров многоэлементных двухполюсников для заданных характеристик исследуемого объекта 4 подтверждается результатами проведенных измерений в соответствии с приведенной таблицей.

Таким образом, по сравнению с прототипом и известными способами исследования двухполюсников, предлагаемый способ определения параметров многоэлементных двухполюсников обладает следующими преимуществами:

1. позволяет вдвое сократить время и количество измерений, проводимых в течение переходного процесса, что особенно важно для портативных измерительных устройств, имеющих малые размеры первичных преобразователей, а, следовательно, и значительно меньшее время протекания переходного процесса при равных диапазонах измеряемых емкостей и габаритах измерительных преобразователей прототипа и аналога;

2. позволяет повысить точность измерений, поскольку в течение развивающегося переходного процесса требуется только два измерения;

3. доступность практической реализации на базе современной микроконтроллерной техники, которая позволит дополнительно уменьшить время выполнения измерений за счет автоматического выполнения всех необходимых операций.


Способ определения параметров многоэлементных двухполюсников
Способ определения параметров многоэлементных двухполюсников
Способ определения параметров многоэлементных двухполюсников
Способ определения параметров многоэлементных двухполюсников
Способ определения параметров многоэлементных двухполюсников
Способ определения параметров многоэлементных двухполюсников
Способ определения параметров многоэлементных двухполюсников
Способ определения параметров многоэлементных двухполюсников
Способ определения параметров многоэлементных двухполюсников
Источник поступления информации: Роспатент

Показаны записи 81-90 из 125.
09.02.2020
№220.018.0136

Фрикционное соединение приводного вала и шкива

Изобретение относится к области машиностроения. Фрикционное соединение приводного вала со шкивом включает втулку в виде сжатой цилиндрической пружины с нулевым расстоянием между витками - пружинную втулку, размещенную между поверхностями вала и шкива, упорную шайбу, тарельчатую шайбу и гайку....
Тип: Изобретение
Номер охранного документа: 0002713754
Дата охранного документа: 07.02.2020
17.02.2020
№220.018.0308

Ручной пробоотборник почвы

Изобретение относится к устройствам для отбора проб почв с целью проведения лабораторных исследований для определения абразивной составляющей. Ручной пробоотборник почвы включает полый цилиндр с радиусом полости R и заостренной нижней кромкой с двумя рукоятями, закрепленными к нему...
Тип: Изобретение
Номер охранного документа: 0002714348
Дата охранного документа: 14.02.2020
20.02.2020
№220.018.040f

Способ восстановления цилиндрической пружины и устройство для его осуществления

Изобретение относится к ремонтному производству и может быть использовано при восстановлении упругости и первоначальной геометрии винтовых цилиндрических пружин, работающих на сжатие. Способ восстановления цилиндрической пружины включает оценку ее состояния, растяжение пружины до появления...
Тип: Изобретение
Номер охранного документа: 0002714571
Дата охранного документа: 18.02.2020
23.02.2020
№220.018.0575

Устройство для поражения масс саранчи в полёте

Устройство для поражения масс саранчи в полете включает летательное транспортное средство - вертолет, оснащенный емкостью для рабочей жидкости, трубопроводами, водозапорными устройствами и распылителем. Дополнительно устройство оснащено емкостью с подогревом воды для промывки системы,...
Тип: Изобретение
Номер охранного документа: 0002714767
Дата охранного документа: 19.02.2020
07.03.2020
№220.018.0a04

Универсальный резервуар для обработки и приготовления жидких пищевых продуктов

Изобретение относится к области обработки и приготовления сельскохозяйственных продуктов, в том числе молока, и может быть использовано в сельскохозяйственном производстве, пищевой промышленности, а также при обработке и хранении жидких продуктов. Универсальный резервуар состоит из корпуса с...
Тип: Изобретение
Номер охранного документа: 0002716119
Дата охранного документа: 05.03.2020
07.03.2020
№220.018.0a58

Устройство магнитной обработки клубней картофеля емкостного типа

Устройство магнитной обработки клубней картофеля емкостного типа содержит основание с колесами, механизм отклонения и фиксации рабочей емкости в вертикальной плоскости для погрузки и выгрузки клубней картофеля. Рабочая емкость выполнена из немагнитного материала, установлена на валу и...
Тип: Изобретение
Номер охранного документа: 0002716110
Дата охранного документа: 05.03.2020
15.03.2020
№220.018.0c31

Способ контроля качества знаний, уверенности в них и устройство для его осуществления

Изобретение относится к области технологий компьютерного тестирования, в частности к устройству контроля качества знаний и уверенности в них, и может быть использовано при обработке цифровых данных с помощью вычислительных машин, в которых вычисления осуществляются компьютерами, основанными на...
Тип: Изобретение
Номер охранного документа: 0002716580
Дата охранного документа: 12.03.2020
19.03.2020
№220.018.0d67

Разрушитель структуры прочной почвы

Изобретение относится к устройствам для обработки почвы. Разрушитель структуры прочной почвы содержит жесткую стойку с заостренной фронтальной кромкой в части, взаимодействующей с почвой, и соединенный с ней рабочий элемент, с возможностью изменения его положения по высоте. Рабочий элемент в...
Тип: Изобретение
Номер охранного документа: 0002716997
Дата охранного документа: 17.03.2020
25.03.2020
№220.018.0feb

Разрушитель структуры прочной почвы

Изобретение относится к устройствам для обработки почвы. Разрушитель структуры прочной почвы содержит жесткую стойку с заостренной фронтальной кромкой в части, взаимодействующей с почвой, и соединенный с ней рабочий элемент, выполненный с возможностью изменения его положения по высоте. Рабочий...
Тип: Изобретение
Номер охранного документа: 0002717487
Дата охранного документа: 23.03.2020
25.04.2020
№220.018.19b0

Микроконтроллерное устройство измерения емкости для систем контроля и управления

Изобретение относится к измерительной технике, в частности к устройствам для измерения физических величин емкостными датчиками, и может быть использовано во встраиваемых вычислительных системах контроля и управления. Микроконтроллерное измерительное устройство емкости для систем контроля и...
Тип: Изобретение
Номер охранного документа: 0002719790
Дата охранного документа: 23.04.2020
Показаны записи 11-11 из 11.
27.05.2023
№223.018.71e9

Информационно-измерительная система мониторинга почвенной эмиссии со в атмосферу

Изобретение относится к области измерительной техники и может быть использовано для определения интенсивности почвенного дыхания. Сущность изобретения состоит в следующем. Информационно-измерительная система мониторинга почвенной эмиссии СО в атмосферу содержит герметичную камеру в форме...
Тип: Изобретение
Номер охранного документа: 0002796117
Дата охранного документа: 17.05.2023
+ добавить свой РИД