×
20.02.2020
220.018.03f1

Результат интеллектуальной деятельности: СПОСОБ САМОНАВЕДЕНИЯ НА НАЗЕМНУЮ ЦЕЛЬ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области управления летательными аппаратами и может быть использовано для наведения на наземную цель по ее радиоизлучению. Способ самонаведения на наземную цель включает двухмерное пеленгование цели, определение рассогласования между направлением на нее и направлением полета и траекторное управление полетом путем компенсации рассогласования, при этом измерительные системы согласуют между собой и с плоскостями управления. Дополнительно и синхронно с пеленгованием измеряют координаты и углы ориентации летательного аппарата, по совокупности этих измерений за время наведения и двухмерных пеленгов определяют координаты цели, по которым уточняют текущее направление на нее, а последующее траекторное управление полетом осуществляют по уточненному направлению на цель. Согласование измерительных систем между собой и с плоскостями управления выполняют путем преобразования измерительных систем координат с учетом углов ориентации летательного аппарата и с предварительным определением результатов измерений в виде составляющих векторов измерений. Технический результат – повышение точности наведения на цель. 1 з.п. ф-лы, 3 ил.

Изобретение относится к области управления летательными аппаратами и может быть использовано для наведения на наземную цель по ее радиоизлучению.

Известные способы самонаведения летательного аппарата на наземный источник радиоизлучения - цель основываются на двухмерном пеленговании.

Известен способ прямого наведения на неподвижную цель, в соответствии с которым, на летательном аппарате пеленгуют цель по ее радиоизлучению с измерением углов ориентации линии визирования в плоскостях управления по курсу и тангажу, результаты измерения, как параметры рассогласования, компенсируют при управлении полетом, выполняя поворот в сторону цели и совмещая в течение всего времени самонаведения ось летательного аппарата с линией визирования. Пеленгаторная антенная система при этом жестко скреплена с корпусом летательного аппарата и ориентирована по его продольной оси. [Максимов М.В., Горгонов Г.И. Радиоуправление ракетами. - М.: Сов. радио, 1964, с. 54-55].

При таком способе возникают ошибки наведения из-за несовпадения продольной оси летательного аппарата с вектором скорости.

Из известных наиболее близким к предлагаемому по технической сущности является способ самонаведения, в котором вектор воздушной скорости летательного аппарата или вектор истинной скорости требуется совместить с линией визирования цели. В данном способе дополнительно измеряют углы ориентации вектора скорости, а двухмерное пеленгование выполняют с помощью антенной системы неподвижной относительно корпуса летательного аппарата или на подвижной платформе, ориентируя ее по направлению вектора скорости. Соответственно параметры рассогласования, которые компенсируют в процессе полета, определяют, как разности углов ориентации вектора скорости и вектора пеленга или непосредственно по результатам двухмерного пеленгования. Вектор скорости может измеряться с помощью флюгерного устройства или акселерометра, соответственно в связанной или нормальной системе координат. Системы измерительных координат должны быть согласованы между собой и с плоскостями управления. [Максимов М.В., Горгонов Г.И. Радиоуправление ракетами. - М.: Сов. радио, 1964, с. 56-58].

Здесь и далее приняты прямоугольные правые системы координат с определением и обозначением осей в соответствии с [Асланян А.Э. Системы автоматического управления полетом летательных аппаратов. Киев, КВВАИУ, 1984, с. 9-10]. Под вектором пеленга понимается единичный вектор, направленный из места положения летательного аппарата на цель. Термин использован взамен принятого в описании способа-прототипа вектора дальности, модуль которого не измеряется.

Недостаток данного способа состоит в низкой точности наведения, так как в его процессе используют результаты только текущего пеленгования без учета предыстории.

Техническим результатом настоящего изобретения является повышение точности наведения на цель.

Указанный технический результат, достигается тем, что в известном способе самонаведения на наземную цель, включающем двухмерное пеленгование цели, определение рассогласования между направлением на цель и направлением полета и траекторное управление полетом путем компенсации рассогласования, при этом измерительные системы согласуют между собой и с плоскостями управления, согласно изобретению, дополнительно и синхронно с пеленгованием измеряют координаты и углы ориентации летательного аппарата, по совокупности этих измерений за время наведения и двухмерных пеленгов определяют координаты цели, по которым уточняют текущее направление на нее, а последующее траекторное управление полетом осуществляют по уточненному направлению на цель.

Указанный технический результат достигается также тем, что согласование измерительных систем между собой и с плоскостями управления выполняют путем преобразования измерительных систем координат с учетом углов ориентации летательного аппарата и с предварительным определением результатов измерений в виде составляющих векторов измерений.

Решение технической задачи основано на переходе от принципа способа-прототипа локальной оптимальности определения направления на цель, как текущего измеренного двухмерного пеленга, к принципу глобальной оптимальности, когда единственным исходно неизвестным параметром является местоположение цели. В соответствии с общей методологией синтеза [Репин В.Г., Тартаковский Г.П. Статистический синтез при априорной неопределенности и адаптация информационных систем. М., Сов. радио, 1977, с. 240-244] этим достигается повышение эффективности информационных систем, в настоящем изобретении - точности определения направления и наведения на цель. Для этого необходимо объединение всех предшествующих текущему моменту самонаведения результатов пеленгования. При этом не приемлемо простое суммирование пеленгов из-за изменения местоположения и ориентации летательного аппарата. Предложено объединение путем оценки координат цели с дополнительным привлечением информации о местоположении летательного аппарата и его ориентации и затем уточнения направления на цель. Необходимым условием является согласование измерительных систем между собой и с плоскостями управления. Согласование выполняют с учетом углов ориентации летательного аппарата преобразованием координат измерительных систем с помощью известных операций, но по отношению и с предварительным представление результатов измерений в виде составляющих векторов по координатным измерительным осям.

Таким образом, учет при уточнении направления на цель всех предшествующих текущему моменту самонаведения результатов пеленгования с оценкой ее координат на основе предложенного согласования измерительных систем между собой и с плоскостями управления позволяет достичь технического результата: повысить точность наведения.

Указанные преимущества, а также особенности настоящего изобретения поясняются прилагаемыми фигурами.

На фиг. 1 представлена структурная схема информационно-измерительной системы для реализации заявленного способа;

на фиг. 2 - траектория самонаведения по полу витку ниспадающей спирали в горизонтальной плоскости - а и по высоте - б;

на фиг. 3 - поле ошибок наведения в вертикальной и горизонтальной плоскости для способа-прототипа - а и предлагаемого способа - б.

Информационно-измерительная система содержит 1 - радиопеленгатор, 2 - бортовой навигационный комплекс, 3 - блок оценки координат цели, 4 - блок уточнения пеленга цели и 5 - блок определения рассогласования. Радиопеленгатор 1 и, через первые входы, блок оценки координат цели 3, блок уточнения пеленга цели 4 и блок определения рассогласования 5, соединены последовательно. Бортовой навигационный комплекс 2 первым выходом подключен ко второму входу блока определения рассогласования 5, а вторым и третьим выходом к одноименным входам блока оценки координат цели 3 и блока уточнения пеленга 4. Выходом информационно - измерительной системы является выход блока определения рассогласования 5.

В бортовом навигационном комплексе 2 измеряют: 1) углы ориентации , вектора воздушной скорости по курсу и тангажу, например с помощью флюгера, то есть в связанной системе координат (ССК); 2) координаты летательного аппарата X, Y, Z в нормальной земной системе координат (НЗСК); 3) углы ориентации летательного аппарата в пространстве курс, тангаж, крен: ψ, ϑ, γ, что соответствует углам ориентации ССК относительно НЗСК.

Угол ориентации вектора по курсу определяют, как угол между продольной осью летательного аппарата и проекцией вектора на плоскость бокового сечения, проходящую через эту и поперечную ось, а угол ориентации по тангажу - угол между указанной плоскостью и вектором или, что равноценно, между проекцией и самим вектором.

Навигационные измерения выполняют известными способами и устройствами из состава навигационно-пилотажных комплексов [Системы управления и бортовые цифровые вычислительные комплексы летательных аппаратов. Под ред. Н.М. Лысенко. М.: ВВИА им. проф. Н.Е. Жуковского, 1990, с. 244-259].

Радиопеленгатор 1 и его антенная система неподвижны относительно корпуса летательного аппарата. Результаты двухмерного пеленгования представляют в виде продольной, нормальной и поперечной составляющих X*, Y*, Z* вектора пеленга в ССК. Такое представление необходимо для выполнения условия согласования и обеспечивается, например применением антенной системы, состоящей из кольцевой решетки в плоскости бокового сечения и дополнительной антенны на нормальной оси, когда составляющие вектора пеленга определяют, как нормированные набеги фаз по осям ССК. [Уфаев В.А. Определение местоположения наземных целей по результатам двухмерного пеленгования с летно-подъемных средств. Антенны. 2015, №5, с. 59].

Если в радиопеленгаторе измеряют углы ориентации вектора пеленга по курсу и тангажу, азимут ξ и угол места θ, то переход к составляющим вектора выполняют выполняют согласно определению вектора пеленга

Блок оценки координат 3 обеспечивает определение координат цели по результатам всех на текущий момент измерений в НЗСК.

С помощью блока уточнения пеленга 4 определяют направление на цель, уточненный вектор пеленга, с представлением результатов в ССК в виде углов его ориентации по курсу и тангажу.

В блоке 5 определяют рассогласование, как разности углов ориентации вектора скорости и уточненного вектора пеленга.

Функционирование информационно-измерительной системы и процесс самонаведения происходит следующим образом.

Текущие результаты двухмерного пеленгования в блоке 3 вход 1 преобразуют с учетом пространственной ориентации летательного аппарата вход 3 из связанной в нормальную систему координат (НСК). Выполняют это для согласования координат измерительных систем вращением вектора пеленга с помощью обратного матричного преобразования [Асланян А.Э. Системы автоматического управления полетом летательных аппаратов. Киев, КВВАИУ, 1984, с. 13-14]. Для этого транспонированную матрицу перехода М(ψ, θ, γ), определяемую углами ориентации летательного аппарата, умножают на исходный измеренный вектор пеленга

где Т - операция транспонирования матрицы или вектора,

Именно в обеспечение применимости известного преобразования вектор пеленга представляют его составляющими (1).

По совокупности измерений координат летательного аппарата и преобразованного вектора пеленга в блоке 3 определяют координаты цели в горизонтальной плоскости НЗСК, например методом максимального правдоподобия [Уфаев В.А. Определение местоположения наземных целей по результатам двухмерного пеленгования с летно-подъемных средств. Антенны, 2015, №5, с. 58-64]

При дискретных в моменты времени t=1, 2, … измерениях функционал пространственной неопределенности получают по рекуррентной формуле

где ус - высота точки излучений цели, - наклонная дальность до ее возможного местоположения.

В начальный момент времени t=0 устанавливают F0(z,x)=0.

Координаты цели определяют (3), как положение минимума функционала пространственной неопределенности, который получают (4) накоплением за время самонаведения суммы квадратов разностей составляющих измеренных и истинных векторов пеленга в точках возможного положения цели. Область возможного положения цели квантуют с шагом, определяемым допустимой погрешностью наведения.

Накопление при непрерывных измерениях осуществляют интегрированием по времени, а высоту цели, если она неизвестна, оценивают по трехмерному функционалу пространственной неопределенности с дополнительным аргументом ус.

Наряду с изложенным может быть использовано определение координат цели по минимуму расстояния до линий пеленгов, приведенное в указанном источнике. Потенциально несколько менее точное, но с существенно меньшим объемом преобразований, в алгебраической форме, не требующей квантование пространства и многоканальной пространственной обработки.

По оценочным координатам цели и текущим координатам летательного аппарата в блоке 4 уточняют вектор пеленга цели из места текущего положения летательного аппарата с составляющими в НСК равными

где - оценочная наклонная дальность.

Затем, в обеспечение выполнения условия согласования, производят преобразование составляющих уточненного вектора пеленга (5) в связанную систему координат путем прямого матричного преобразования

После чего определяют углы ориентации преобразованного вектора пеленга по курсу и тангажу

где i - мнимая единица, arg(⋅) - аргумент комплексного числа заключенного в скобки, фаза вектора.

Преобразования (7) и (1) взаимно однозначно связаны, выполняют согласно определению вектора пеленга.

Общим принципом согласования является преобразование систем координат с определением векторов, представленных двумя углами ориентации по курсу и тангажу тремя составляющими в ССК при переходе из ССК в НСК и обратным преобразованием в углы ориентации при переходе из НСК в ССК с учетом ориентации летательного аппарата в пространстве.

Таким образом, на выходе блока уточнения пеленга 4 определяют уточненное направление на цель из текущего места положения летательного аппарата.

В блоке 5 определения рассогласования получают разности углов ориентации вектора скорости и преобразованного (7) вектора пеленга

Параметры рассогласования выдают из информационно-измерительной системы на исполнительные элементы летательного аппарата и изменением курса и тангажа компенсируют рассогласование параметров полета.

В соответствии с составом и типом измерительных и исполнительных систем возможны и другие варианты реализации предложенного способа. При прямом наведении скорость не измеряют, с установкой нулевого значения на входе 2 блока 5, компенсируют рассогласование по пеленгу, уточненному относительно текущего измерения по оценочным координатам цели, а при пеленговании в НСК, например с применением гиростабилизированной платформы, и управлении углами пути и наклона траектории не выполняют и матричные преобразования (2), (6), устанавливая М(ψ, θ, γ)=1.

Эффективность изобретения выражается в повышении точности и вероятности наведения на цель.

Количественная оценка выполнена моделированием применительно к наведению беспилотного летательного аппарата в улавливающую посадочную сеть при следующих условиях и основных параметрах: период измерений 1 с, средняя квадратическая ошибка пеленгования 1 град, скорость изменения угла пути и наклона траектории 1 град/с, цель - улавливающая цилиндрическая сеть радиусом основания и высотой 3 м, приводной передатчик установлен в центре сети.

На фиг. 2 для одного из статистических экспериментов показана траектория самонаведения по полувитку ниспадающей спирали: в горизонтальной плоскости а и по высоте полета б, где x, y, z - продольная (ордината), нормальная (высота, аппликата) и поперечная (абсцисса) оси координат, t - время полета. Исходное состояние в начале наведения - горизонтальный полет на высоте 1200 м со скоростью 30 м/с, угол пути равен -90°, угол наклона траектории 0°. В горизонтальной плоскости движение выполняется первоначально по окружности и по прямой линии на заключительном участке, по высоте полета, на начальном коротком участке порядка 10 с, по окружности и далее примерно по прямой глиссады. Формирование такой траектории обусловлено инерционностью процесса компенсации в условиях обычных ограничений скорости маневра летательного аппарата при постоянстве скорости его полета. Качественно и для способа-прототипа траектория аналогична, показанной на фиг. 2, но вследствие определения направления на цель по результатам только текущего пеленгования ошибки наведения здесь выше, чем по предлагаемому способу.

На фиг. 3 представлено поле ошибок наведения в вертикальной и горизонтальной плоскости по совокупности 104 статистических экспериментов: для способа-прототипа а и предлагаемого способа б. Разброс погрешностей для способа-аналога существенно выше, средняя квадратическая ошибка наведения предлагаемым способом по результатам статистического моделирования снижается в 1,4 раза, при этом вероятность наведения (попадания в сеть) увеличивается в оговоренных условиях с 0,88 до 0,97, соответственно вероятность промаха снижается в 4 раза.

Заявленный способ самонаведения на наземную цель применим для посадки летательных аппаратов по приводным передатчикам и для уничтожения цели по ее радиоизлучению.


СПОСОБ САМОНАВЕДЕНИЯ НА НАЗЕМНУЮ ЦЕЛЬ
Источник поступления информации: Роспатент

Показаны записи 211-220 из 244.
11.07.2020
№220.018.31c8

Способ определения параметров частотно-кодированных сигналов в автокорреляционном приемнике

Изобретение относится к области радиотехники, в частности к способам и технике радиотехнического мониторинга источников радиоизлучений. Технический результат выражается в обеспечении возможности определения наличия частотно-кодированных сигналов (ЧКС) и их параметров в автокорреляционном...
Тип: Изобретение
Номер охранного документа: 0002726188
Дата охранного документа: 09.07.2020
12.07.2020
№220.018.3215

Способ определения параметров частотно-кодированных сигналов в автокорреляционном приемнике

Изобретение относится к области радиотехники, в частности к способам и технике радиотехнического мониторинга источников радиоизлучений. Технический результат выражается в обеспечении возможности определения наличия частотно-кодированных сигналов (ЧКС) и их параметров в автокорреляционном...
Тип: Изобретение
Номер охранного документа: 0002726221
Дата охранного документа: 10.07.2020
15.07.2020
№220.018.3294

Беспилотный медицинский комплекс

Изобретение относится к области авиации, в частности к конструкциям комплексов медицинского назначения, в которых используются беспилотные летательные аппараты. Беспилотный медицинский комплекс содержит беспилотный летательный аппарат мультироторного типа, имеющий блок управления,...
Тип: Изобретение
Номер охранного документа: 0002726390
Дата охранного документа: 13.07.2020
16.07.2020
№220.018.3332

Противобуксовочное устройство

Изобретение относится к автомобильному транспорту. Противобуксовочное устройство содержит металлические кронштейны, выполненные составными их трех частей. Каждые две части попарно соединены между собой шарнирно. Одна из частей кронштейна имеет узкое отверстие по длине. Фиксирующие пластины...
Тип: Изобретение
Номер охранного документа: 0002726490
Дата охранного документа: 14.07.2020
18.07.2020
№220.018.33e0

Обувь

Изобретение относится к обуви, которая содержит верх и подошву, скрепленные между собой, при этом на ней расположены каналы, соединяющие полость под подошвой обуви с окружающей атмосферой и/или окружающей средой, причем на верху обуви дополнительно установлен съемный насадок, при этом...
Тип: Изобретение
Номер охранного документа: 0002726819
Дата охранного документа: 15.07.2020
21.07.2020
№220.018.34fb

Способ анализа сложных сигналов в автокорреляционном приемнике

Изобретение относится к области радиотехники, в частности к способам и технике радиотехнического мониторинга источников радиоизлучений. Технический результат, на достижение которого направлено заявляемое изобретение, выражается в повышении точности определения параметров ЛЧМ, ФКМ и простых...
Тип: Изобретение
Номер охранного документа: 0002726937
Дата охранного документа: 17.07.2020
24.07.2020
№220.018.3610

Способ учета ветра при применении авиационных бомб

Изобретение относится к области баллистического обеспечения применения авиационных бомб и может быть использовано при разработке новых и модернизации существующих авиационных прицельных систем летательных аппаратов. Для учета ветра при применении авиационных бомб скорость ветра измеряют на...
Тип: Изобретение
Номер охранного документа: 0002727280
Дата охранного документа: 21.07.2020
29.07.2020
№220.018.38a6

Устройство регулирования частоты автономного синхронного генератора электроагрегата

Изобретение относится к области электротехники и может быть использовано в устройствах регулирования частоты наземных средств энергоснабжения воздушных судов. Технический результат - уменьшение колебаний частоты автономного синхронного генератора, сокращение времени наступления установившегося...
Тип: Изобретение
Номер охранного документа: 0002727922
Дата охранного документа: 27.07.2020
06.08.2020
№220.018.3d68

Пистолет-распылитель

Изобретение относится к области создания элементов для нанесения пенных материалов, средств в интересах маскировки наземных объектов, в частности, для нанесения пены для маскировки наземных объектов от систем радиолокационного и оптико-электронного наблюдения. Пистолет-распылитель состоит из...
Тип: Изобретение
Номер охранного документа: 0002729082
Дата охранного документа: 04.08.2020
20.04.2023
№223.018.4acb

Способ помехозащиты оптико-электронных средств от мощных лазерных комплексов

Изобретение относится к радиолокации и может использоваться для защиты оптико-электронных средств (ОЭС) от мощных оптических излучений. Технический результат состоит в повышении эффективности защиты ОЭС от поражения оптическим излучением. Для этого принимают оптические излучения ОЭС,...
Тип: Изобретение
Номер охранного документа: 0002777049
Дата охранного документа: 01.08.2022
Показаны записи 21-21 из 21.
26.03.2020
№220.018.1001

Способ радиосвязи с пространственным разделением каналов

Изобретение относится к радиотехнике и может быть использовано в системах наземной радиосвязи по принципу «каждый с каждым». Технический результат - сокращение потребного частотного ресурса и повышение надежности связи. В способе радиосвязи с пространственным разделением каналов передача...
Тип: Изобретение
Номер охранного документа: 0002717551
Дата охранного документа: 24.03.2020
+ добавить свой РИД