×
17.02.2020
220.018.0379

Результат интеллектуальной деятельности: Способ активации микродезинтеграции высокоглинистой полиминеральной составляющей гидросмеси

Вид РИД

Изобретение

Аннотация: Изобретение относится к горнодобывающей отрасли и может быть использовано при освоении природных и техногенных высокоглинистых россыпных месторождений полезных ископаемых с повышенным содержанием мелкого и тонкого золота. Способ активации микродезинтеграции высокоглинистой полиминеральной составляющей гидросмеси включает скоростную подачу струи, обработку гидросмеси в условиях активных гидродинамических воздействий посредством влияния профилированных сужающихся и расширяющихся каналов, образующих корпус гидродинамического генератора, а также - последовательно установленных стационарных кавитационных элементов в виде балок-уголков, разделение с обеспечением глубокой дезинтеграции полиминеральной составляющей гидросмеси до микроуровня посредством преобразования кинетической энергии потока жидкости в энергию акустических колебаний. Для усиления полей акустических колебаний на выходе из верхнего диффузора создают турбулентность, переходящую в разреженность посредством жестко вплотную закрепленных вдоль стенки конфузора по всей высоте - до нижней крестовины - удлиненных балок-уголков, кромки прямого угла которых повернуты вверх навстречу потоку, и образующих зону кавитации в нижней части конфузора. В сегментах - между удлиненными балками-уголками - с противоположным наклоном по вертикали по отношению к удлиненным балкам-уголкам установлены короткие балки-уголки, кромки прямого угла которых повернуты вверх навстречу потоку. Верхние концы коротких балок-уголков жестко фиксируются на верхней крестовине, а нижние концы - на средней крестовине конфузора. Последующий турбулентный режим осуществляется с помощью ребер жесткости, установленных с наклоном в нижней части корпуса - нижнем диффузоре гидродинамического генератора. Профилированные сужающиеся и расширяющиеся каналы корпуса гидродинамического генератора выполнены составными. Технический результат - повышение эффективности процесса микродезинтеграции. 3 ил.

Изобретение относится к горнодобывающей отрасли и может быть использовано при освоении природных и техногенных высокоглинистых россыпных месторождений полезных ископаемых с повышенным содержанием мелкого и тонкого золота.

Известен способ газоструйной дезинтеграции материала и устройство для его осуществления на основе принципа струйно-акустического воздействия на материал [1].

Недостатком данного способа является использование энергозатратных систем подачи струи газа и регулировки перемещения струйно-акустического генератора.

Установлены также способы и устройства, осуществляющие генерацию акустических колебаний ультразвукового диапазона в жидкотекучих средах посредством возбуждения потоком жидкости стержней, пластин, мембран или в результате модуляции струи жидкости [2-4].

Основным недостатком данных устройств является соотношения между геометрическими размерами элементов гидродинамических генераторов колебаний и гидродинамическими параметрами прокачиваемой дисперсионной среды, которые сужают диапазон плотности прокачиваемой гидросмеси. Это не позволит эффективно обработать минеральную составляющую гидросмеси глинистых песков россыпей с включениями твердых частиц размером от 10 мм. Данным обстоятельством определяется ограничение по технологическим показателям, максимальной развиваемой мощности и производительности систем.

Известны различные системы роторного типа, использующие принцип струйной генерации акустических потоков [5, 6] и различные системы кавитационно-струйной диспергации [7].

Использование этих устройств ограничено пропускной способностью обрабатываемой среды, дисперсностью твердой фракции и не пригодно для дезинтеграции гидросмеси с повышенным содержанием глин.

Известен гидродинамический генератор акустических колебаний ультразвукового диапазона и способ создания акустических колебаний ультразвукового диапазона, включающий корпус в виде конусно-цилиндрический трубы с входным и выходным отверстиями и размещенное внутри него препятствие для потока жидкости, которое представляет из себя систему, состоящую из последовательно соединенных плохо обтекаемого тела, стержня и диска, установленных соосно с трубой [8].

Данный способ основан на создании резонансных акустических явлений в гидропотоке посредством системы стационарных кавитационных элементов, однако конструктивное выполнение стационарных излучателей не выдержит давления потока песково-глинистых гидросмесей и не обеспечит дезинтеграцию минеральных составляющих в пульпе.

Известен способ струйно-акустической дезинтеграции минеральной составляющей гидросмеси, включающий скоростную подачу струи в гидродинамический генератор, обработку материала в условиях активных гидродинамических воздействий посредством влияния, размещенных внутри корпуса и последовательно установленных стационарных элементов, в том числе пластинчатых кавитационных элементов, с обеспечением глубокой дезинтеграции минеральной составляющей гидросмеси до микроуровня посредством преобразования кинетической энергии потока жидкости в энергию акустических колебаний в гидродинамическом генераторе, на входе которого создают высокоскоростную струю [9].

Данный способ основан на создании резонансных акустических явлений в гидропотоке посредством системы кавитационных элементов, однако в основе управления процессом направленного изменения свойств песчано-глинистых пород лежит задача формирования более устойчивого состояния высокодисперсных детерминированных систем, содержащих минеральные частицы, поэтому для обеспечения при дезинтеграции устойчивости системы данный фактор подлежит совершенствованию.

Известны способ активизации кавитационно-гидродинамической микродезинтеграции минеральной составляющей гидросмеси [10] и способ инициирования кавитационно-гидродинамической микродезинтеграции минеральной составляющей гидросмеси [11], включающие подвижные гибкие кавитационные элементы, которые под действием гидродинамических явлений в гидропотоке совершают дополнительные колебательные движения.

Использование этих способов ограничено пропускной способностью обрабатываемой среды, дисперсностью твердой фракции и не обеспечит надежность конструкции при попадании прочных кусков глинистой породы.

Наиболее близким по технической сущности является способ активизации кавитационно-гидродинамической микродезинтеграции минеральной составляющей гидросмеси [12], включающий кавитационные элементы в виде балок-уголков, обеспечивающих надежность конструкции.

Данный способ обеспечивает создание гидродинамических течений, создающих разрушающий эффект, способный воздействовать на элементы твердого в гидросмеси в узком диапазоне размерного ряда частиц. Способ требует усовершенствования, направленного на усиление кавитационного эффекта и обеспечения надежности конструкции.

Технический результат предлагаемого способа заключается в повышении эффективности процесса микродезинтеграции путем создания условий для устойчивости процесса разрушения элементов глинистых песков россыпей в широком размерном диапазоне, повышенной прочности, на основе дополнительного усиления кавитационно-акустического воздействия на минеральную составляющую гидросмеси, с обеспечением надежности конструкции, и увеличением максимальной развиваемой мощности и производительности системы.

Технический результат достигается за счет того, что в способе активации микродезинтеграции высокоглинистой полиминеральной составляющей гидросмеси, включающем скоростную подачу струи, обработку гидросмеси в условиях активных гидродинамических воздействий посредством влияния профилированных сужающихся и расширяющихся каналов, образующих корпус гидродинамического генератора, а также - последовательно установленных стационарных кавитационных элементов в виде балок-уголков, разделение с обеспечением глубокой дезинтеграции полиминеральной составляющей гидросмеси до микроуровня посредством преобразования кинетической энергии потока жидкости в энергию акустических колебаний, для усиления полей акустических колебаний на выходе из верхнего диффузора создают турбулентность, переходящую в разреженность посредством жестко вплотную закрепленных вдоль стенки конфузора по всей высоте - до нижней крестовины - удлиненных балок-уголков, кромки прямого угла которых повернуты вверх на встречу потоку, и образующим зону кавитации в нижней части конфузора, при этом в сегментах - между удлиненными балками-уголками - с противоположным наклоном по вертикали - по отношению к удлиненным балкам-уголкам - установлены короткие балки-уголки, кромки прямого угла которых повернуты вверх на встречу потоку, при этом верхние концы коротких балок-уголков жестко фиксируются на верхней крестовине, а нижние концы - на средней крестовине конфузора, при этом последующий турбулентный режим осуществляется с помощью ребер жесткости, установленных с наклоном в нижней части корпуса - нижнем диффузоре гидродинамического генератора, а профилированные сужающиеся и расширяющиеся каналы корпуса гидродинамического генератора выполнены составными.

Возможность формирования требуемой последовательности выполняемых действий предложенными средствами позволяет решить поставленную задачу, определяет новизну, промышленную применимость и изобретательский уровень разработки.

На фиг. 1 - общий вид гидродинамического генератора; на фиг. 2 - разрез А-А на фиг. 1, вид сверху на удлиненные балки-уголки и короткие балки-уголки конфузора; на фиг. 3 - разрез Б-Б на фиг. 2 удлиненной балки-уголка.

Способ выполняется с помощью гидродинамического генератора 1 с профилированными сужающимися и расширяющимися каналами 2, образующими корпус 3 гидродинамического генератора 1, а также - последовательно установленных стационарных кавитационных элементов 4 в виде балок-уголков 5, выполненных в виде удлиненных балок-уголков 6 и коротких балок-уголков 7. Профилированные сужающиеся и расширяющиеся каналы 2 корпуса 3 гидродинамического генератора 1 выполнены составными для удобства технологической сборки и разборки при ремонте. На выходе 8 из верхнего диффузора 9 жестко вплотную вдоль стенки 10 конфузора 11 закреплены по всей высоте 12 - до нижней крестовины 13 - удлиненные балки-уголки 6, кромки 14 прямого угла 15 которых повернуты вверх 16 на встречу потоку. Удлиненные балки-уголки 6 образуют зону кавитации 17 в нижней части 18 конфузора 11. В сегментах 19 - между удлиненными балками-уголками 6 - с противоположным наклоном по вертикали 20 - по отношению к удлиненным балкам-уголкам 6 - установлены короткие балки-уголки 7. Кромки 21 прямого угла 22 коротких балок-уголков 7 повернуты вверх 23 навстречу потоку. Верхние концы 24 коротких балок-уголков 7 жестко фиксируются на верхней крестовине 25, а нижние концы 26 - на средней крестовине 27 конфузора 11. В нижней части 28 корпуса 3 - нижнем диффузоре 29 гидродинамического генератора 1 выполнены с наклоном 30 ребра жесткости 31. Средняя крестовина 27 имеет опоры 32 для жесткости конструкции.

Способ активации микродезинтеграции высокоглинистой полиминеральной составляющей гидросмеси выполняется следующим образом.

Способ включает скоростную подачу струи, обработку гидросмеси в условиях активных гидродинамических воздействий посредством влияния профилированных сужающихся и расширяющихся каналов 2, образующих корпус 3 гидродинамического генератора 1, а также - последовательно установленных стационарных кавитационных элементов 4 в виде балок-уголков 5. Разделение с обеспечением глубокой дезинтеграции полиминеральной составляющей гидросмеси до микроуровня посредством преобразования кинетической энергии потока жидкости в энергию акустических колебаний усиливается путем формирования полей акустических колебаний в зоне кавитации 17 в нижней части 18 конфузора 11. На выходе 8 из верхнего диффузора 9 создают турбулентность, переходящую в разреженность посредством жестко вплотную закрепленных вдоль стенки 10 конфузора 11 по всей высоте 12 - до нижней крестовины 13 - удлиненных балок-уголков 6. За счет удлиненных балок-уголков 6, кромки 14 прямого угла 15 которых повернуты вверх 16 на встречу потоку, усиливается процесс дезинтеграции в зоне кавитации 17 в нижней части 18 конфузора 11. Интенсификация процесса усиливается посредством коротких балок-уголков 7, установленных в сегментах 19 - между удлиненными балками-уголками 6 - с противоположным наклоном по вертикали 20 - по отношению к удлиненным балкам-уголкам 6. Кромки 21 прямого угла 22 коротких балок-уголков 7 повернуты вверх 23 на встречу потоку для усиливающего эффекта. Верхние концы 24 коротких балок-уголков 7 жестко фиксируются на верхней крестовине 25, а нижние концы 26 - на средней крестовине 27 конфузора 11, установленной с опорами 32. Последующий турбулентный режим осуществляется с помощью ребер жесткости 31, установленных с наклоном 30 в нижней части 28 корпуса 3 - нижнем диффузоре 29 гидродинамического генератора 1.

Способ повышает эффективность процесса микродезинтеграции путем создания условий для устойчивости процесса разрушения элементов твердой составляющей гидросмеси повышенной прочности в широком размерном диапазоне. На основе дополнительного усиления кавитационно-акустического воздействия на минеральную составляющую гидросмеси увеличивается максимальная развиваемая мощность и производительность с обеспечением надежности выполнения способа.

Источники информации

1. Патент №2425719 RU, МПК В03В 5/02. Способ газоструйной дезинтеграции материала и устройство для его осуществления. - опубл. 10.08.2011. Бюл. №22.

2. Агранат Б.А. Основы физики и техники ультразвука / Б.А. Агранат, М.Н. Дубровин, Н.Н. Хавский, Г.И. Эскин. - М.: Высш. шк., 1987. - 352 с.

3. Патент №2015749 RU, МПК В06В 1/20, F15B 21/12. Гидродинамический генератор колебаний. - опубл. 15.07.1994.

4. Патент №2229947 RU, МПК В06В 1/20. Способ глубокой обработки жидких и газообразных сред и генератор резонансных колебаний для его осуществления. - опубл. 10.06.2004.

5. Промтов М.А. Пульсационные аппараты роторного типа: теория и практика: Монография. М.: Машиностроение - 1, 2001. - 260 с. ISBN 5-99275-006-8.

6. Балабышко A.M., Юдаев В.Ф. Роторные аппараты с модуляцией потока и их применение в промышленности. - М.: Недра, 1992. - с.: 176 ил. ISBN 5-247-02380-3.

7. Федоткин И.М., Немчин А.Ф. Использование кавитации в технологических процессах. - Киев.: Вища школа. Изд-во Киев. Ун-те, 1984, - 68 с. с. 52, рис. 22

8. Дудко М.П., Тагиев М.М., Люкшин Е.Г. Патент №2325959 RU, МПК В06В 1/18. Гидродинамический генератор акустических колебаний ультразвукового диапазона и способ создания акустических колебаний ультразвукового диапазона. - опубл. 10.06.2008. Бюл. №16.

9. Хрунина Н.П. Патент №2506127 RU, МПК В03В 5/00. Способ струйно-акустической дезинтеграции минеральной составляющей гидросмеси и гидродинамический генератор акустических колебаний. - опубл. 10.02.2014, Бюл. №4.

10. Хрунина Н.П. Патент №2687680 RU, МПК В03В 5/02. Способ активизации кавитационно-гидродинамической микродезинтеграции минеральной составляющей гидросмеси. - опубл. 15.05.2019, Бюл. №14.

11. Хрунина Н.П. Патент №2688709 RU, МПК В03В 5/02. Способ инициирования кавитационно-гидродинамической микродезинтеграции минеральной составляющей гидросмеси. - опубл. 22.05.2019, Бюл. №15.

12. Хрунина Н.П. Патент №2652517 RU, МПК В03В 5/00, В02С 19/18. Способ активизации кавитационно-гидродинамической микродезинтеграции минеральной составляющей гидросмеси. - опубл. 26.04.2018, Бюл. №12.

Способ активации микродезинтеграции высокоглинистой полиминеральной составляющей гидросмеси, включающий скоростную подачу струи, обработку гидросмеси в условиях активных гидродинамических воздействий посредством влияния профилированных сужающихся и расширяющихся каналов, образующих корпус гидродинамического генератора, а также - последовательно установленных стационарных кавитационных элементов в виде балок-уголков, разделение с обеспечением глубокой дезинтеграции полиминеральной составляющей гидросмеси до микроуровня посредством преобразования кинетической энергии потока жидкости в энергию акустических колебаний, отличающийся тем, что для усиления полей акустических колебаний на выходе из верхнего диффузора создают турбулентность, переходящую в разреженность посредством жестко вплотную закрепленных вдоль стенки конфузора по всей высоте - до нижней крестовины - удлиненных балок-уголков, кромки прямого угла которых повернуты вверх навстречу потоку, и образующих зону кавитации в нижней части конфузора, при этом в сегментах - между удлиненными балками-уголками - с противоположным наклоном по вертикали по отношению к удлиненным балкам-уголкам установлены короткие балки-уголки, кромки прямого угла которых повернуты вверх навстречу потоку, при этом верхние концы коротких балок-уголков жестко фиксируются на верхней крестовине, а нижние концы - на средней крестовине конфузора, при этом последующий турбулентный режим осуществляется с помощью ребер жесткости, установленных с наклоном в нижней части корпуса - нижнем диффузоре гидродинамического генератора, а профилированные сужающиеся и расширяющиеся каналы корпуса гидродинамического генератора выполнены составными.
Способ активации микродезинтеграции высокоглинистой полиминеральной составляющей гидросмеси
Способ активации микродезинтеграции высокоглинистой полиминеральной составляющей гидросмеси
Источник поступления информации: Роспатент

Показаны записи 11-12 из 12.
12.04.2023
№223.018.4a0b

Способ выщелачивания золота из хвостов гравитационного обогащения упорных золотосодержащих руд

Изобретение относится к горной промышленности и охране окружающей среды и может быть использовано для переработки упорных золотосодержащих руд и техногенного сырья. Способ выщелачивания золота из хвостов гравитационного обогащения упорных золотосодержащих руд включает стадии дробления руды,...
Тип: Изобретение
Номер охранного документа: 0002793892
Дата охранного документа: 07.04.2023
16.05.2023
№223.018.5df2

Способ освоения месторождения штокверкового типа

Изобретение относится к горной промышленности и может быть использовано для разработки сложноструктурных месторождений штокверкового типа, содержащих руды различных сортов и типов. Способ включает выделение зон с разным содержанием полезного компонента, обуривание рудного массива, размещение...
Тип: Изобретение
Номер охранного документа: 0002758312
Дата охранного документа: 28.10.2021
Показаны записи 21-30 из 41.
04.04.2018
№218.016.3634

Способ обогащения техногенных золотосодержащих образований

Изобретение относится к горнодобывающей отрасли и может быть использовано для повышения эффективности процесса гравитационного обогащения техногенных золотосодержащих образований с тонким золотом за счет раскрытия минеральных зерен и очистки поверхности минералов от пленок и загрязнений...
Тип: Изобретение
Номер охранного документа: 0002646269
Дата охранного документа: 02.03.2018
04.04.2018
№218.016.3639

Способ инициирования кавитационно-гидродинамической микродезинтеграции минеральной составляющей гидросмеси

Изобретение относится к горнодобывающей отрасли и может быть использовано при освоении природных и техногенных высокоглинистых россыпных месторождений полезных ископаемых с повышенным содержанием мелкого и тонкого золота. Способ инициирования кавитационно-гидродинамической микродезинтеграции...
Тип: Изобретение
Номер охранного документа: 0002646270
Дата охранного документа: 02.03.2018
10.05.2018
№218.016.4d8b

Способ активизации кавитационно-гидродинамической микродезинтеграции минеральной составляющей гидросмеси

Изобретение относится к горнодобывающей отрасли и может быть использовано при освоении природных и техногенных высокоглинистых россыпных месторождений полезных ископаемых с повышенным содержанием мелкого и тонкого золота. Способ активизации кавитационно-гидродинамической микродезинтеграции...
Тип: Изобретение
Номер охранного документа: 0002652517
Дата охранного документа: 26.04.2018
18.05.2018
№218.016.50da

Способ комбинированной разработки месторождений твердых полезных ископаемых

Изобретение относится к горной промышленности и может быть использовано при выполнении вскрышных и добычных работ на месторождениях, сложенных из плотных и полускальных пород, с применением землеройно-фрезерных машин и комбинированного карьерного транспорта. Технический результат заключается в...
Тип: Изобретение
Номер охранного документа: 0002653213
Дата охранного документа: 07.05.2018
19.08.2018
№218.016.7d74

Способ разработки кимберлитовых месторождений

Изобретение относится к горной промышленности и может быть использовано при разработке месторождений полезных ископаемых, преимущественно кимберлитовых трубок, при их доработке после выемки запасов из верхней части открытым способом. Производят механическим способом селективную выемку руд,...
Тип: Изобретение
Номер охранного документа: 0002664281
Дата охранного документа: 16.08.2018
19.08.2018
№218.016.7d89

Способ разработки рудных месторождений алмазов с применением селективной подготовки горных пород к выемке

Изобретение относится к горной промышленности и может быть использовано при добыче алмазов высокой ценности с обеспечением безопасности и кристаллосбережения щадящей выемкой участков с повышенным содержанием алмазов высокой ценности, в том числе ювелирных алмазов. Бурят скважину малого диаметра...
Тип: Изобретение
Номер охранного документа: 0002664283
Дата охранного документа: 16.08.2018
30.03.2019
№219.016.f902

Способ послойной разработки сложноструктурных месторождений твердых полезных ископаемых

Изобретение относится к горной промышленности и может быть использовано для открытой разработки месторождений полезных ископаемых с неравномерным распределением и сложной конфигурацией рудных тел. Технический результат заключается в повышении производительности, надежности и расширении...
Тип: Изобретение
Номер охранного документа: 0002683293
Дата охранного документа: 27.03.2019
19.04.2019
№219.017.1cb5

Способ разработки месторождений полезных ископаемых

Изобретение относится к горнодобывающей промышленности и может быть использовано при подземной разработке рудных месторождений. Одновременно с отработкой добычных блоков кондиционной без вредных примесей руды осуществляют отработку и сортировку по кондиционности рудной массы добычных блоков...
Тип: Изобретение
Номер охранного документа: 0002685009
Дата охранного документа: 16.04.2019
29.04.2019
№219.017.40b3

Способ разупрочнения и дезинтеграции глинистых песков мелкозалегающих россыпей

Изобретение относится к горнодобывающей отрасли и может быть использовано при освоении природных и техногенных высокоглинистых россыпных месторождений полезных ископаемых с повышенным содержанием мелкого и тонкого золота. Способ разупрочнения и дезинтеграции глинистых песков мелкозалегающих...
Тип: Изобретение
Номер охранного документа: 0002392054
Дата охранного документа: 20.06.2010
17.05.2019
№219.017.52fd

Способ активизации кавитационно-гидродинамической микродезинтеграции минеральной составляющей гидросмеси

Изобретение относится к горнодобывающей отрасли и может быть использовано при освоении природных и техногенных высокоглинистых россыпных месторождений полезных ископаемых с повышенным содержанием мелкого и тонкого золота, а также при переработке золошлаковых отходов, содержащих самородное...
Тип: Изобретение
Номер охранного документа: 0002687680
Дата охранного документа: 15.05.2019
+ добавить свой РИД