×
17.02.2020
220.018.0329

Результат интеллектуальной деятельности: Способ огнезащиты чугунной опоры здания

Вид РИД

Изобретение

Аннотация: Изобретение относится к области пожарной безопасности зданий и касается способа конструктивной огнезащиты чугунной опоры здания. Элементы конструктивной огнезащиты прикрепляют вплотную к несущему стержню опоры. Выявляют марку серого чугуна, интенсивность силовых напряжений в сечении несущего стержня чугунной опоры и критическую температуру нагрева чугуна по признаку термопрочностного разрушения опоры здания. Толщину конструктивной огнезащиты заранее определяют с учетом теплофизических свойств ее материалов и условий нагрева несущего стержня чугунной опоры при пожаре заданной продолжительности. Техническим результатом изобретения является повышение надежности крепления конструктивной огнезащиты, повышение предела огнестойкости чугунной опоры, снижение риска обрушения чугунных опор здания в начальной стадии пожара. 7 з.п. ф-лы, 2 ил.

Изобретение относится к области пожарной защиты зданий и касается способа конструктивной огнезащиты несущего стержня чугунной опоры, выполненного в виде цилиндра, с использованием огнезащитного покрытия.

Незащищенные чугунные опоры здания при действии огня в условиях пожара быстро (спустя 1,5÷2,0 мин) утрачивают свою несущую способность, разрушаются сами и способствуют обрушению других конструкций здания, что приводит к катастрофе со значительным материальным убытком.

Известен способ конструктивной огнезащиты металлической колонны здания, включающий огнезащиту несущего стержня плитами из ячеистых бетонов, гипсовыми плитами или пластинами, вермикулитовыми плитами и асбестоцементными листами/ Бартеллеми Б., Крюпа Ж. Огнестойкость строительных конструкций / пер. с франц. - М.: Стройиздат, 1985, - 216 с. (гл. 4; п. 4.2 Материалы и способы защиты, рис. 4.2; 4.4-4.6; с. 94÷98)/[1].

К причинам, препятствующим достижению указанного ниже технического результата при использовании известного способа конструктивной огнезащиты металлической колонны здания, относится то, что в известном способе применяют значительное число элементов каркаса и, вследствие этого, повышают расход материала огнезащиты и металла на изготовление каркаса для конструктивной огнезащиты; при проектировании пустот и зазоров между несущими стержнями опоры и плитами конструктивной огнезащиты увеличивают размеры поперечного сечения огнезащищенной конструкции (площадь сечения возрастает на 75÷85%), снижая проектный предел огнестойкости конструкции на 25÷30%; при этом снижается надежность крепления элементов крупноразмерной листовой и плитной облицовки; снижается ремонтопригодность огнезащищенной колонны.

Известен способ конструктивной огнезащиты металлической колонны здания, содержащей стальной стержень и огнезащитное покрытие из крупноразмерных листов и плит, установленных с зазором между конструктивной огнезащитой и гранями защищаемого стального несущего стержня (принимают не менее 25 мм); каркас конструктивной огнезащиты выполняют в виде рамы, состоящей из стальных продольных и поперечных элементов, высотой 40÷75 мм; / Романенков И.Г., Левитес Ф.А. Огнезащита строительных конструкций. - М.: Стройиздат, 1991. - 320 с. (гл. 4 Конструктивные способы огнезащиты; рис. 8, с. 131-133) / [2].

К причинам, препятствующим достижению указанного ниже технического результата при использовании известного способа конструктивной огнезащиты металлической колонны здания, относится то, что в известном способе применяют значительное число элементов каркаса и, вследствие этого, повышается расход металла на изготовление каркаса для конструктивной огнезащиты; при проектировании пустот и зазоров между несущим стержнем и плитами конструктивной огнезащиты увеличивается поперечное сечение колонны (площадь сечения возрастает на 80÷95%; расход материалов огнезащиты - на 45÷50%), снижается ремонтопригодность огнезащиты колонны.

В качестве прототипа принят способ огнезащиты двутавровой колонны здания, в котором металлический несущий стержень оборудуют конструктивной огнезащитой, несущий стержень выполняют в виде стального колонного двутавра и каждый торец стального несущего стержня снабжают крепежными гайками и установочными винтами; установочными винтами к элементам колонного двутавра прикрепляют контактно, вплотную элементы конструктивной огнезащиты; толщину элементов огнезащиты определяют с учетом показателей термодиффузии ее материалов, условий нагрева двутавра и требуемого предела огнестойкости несущей конструкции здания.

Недостатком прототипа является то, что огнезащищенная чугунная опора не рациональная с точки зрения экономических затрат; / Ильин Н.А., Славкин П.Н., Шепелев А.П., Ибатуллин P.P. Способ огнезащиты двутавровой колонны здания; патент RU 2518599, МПК Е04В 1/94; Е04С 3/32 / заяв. 25.10.2012, опубл. 10.06.2014. Бюл №16./ [3].

Сущность изобретения состоит в рациональном способе повышения огнестойкости и эксплуатационной надежности чугунной опоры здания, а также в улучшении пожарно-технических и экономических показателей конструктивной огнезащиты чугунных опор зданий.

Технический результат - повышение надежности крепления элементов конструктивной огнезащиты несущего стержня опоры; сокращение количества элементов каркаса для конструктивной огнезащиты; снижение массы металла и материалов огнезащиты; уменьшение площади поперечного сечения огнезащищенной чугунной опоры; повышение предела огнестойкости огнезащитной чугунной опоры; повышение безопасности конструкции здания при тушении пожара и проведении спасательных работ; снижение возможных потерь от пожара; повышение надежности работы огнезащищенной чугунной опоры в процессе нормальной эксплуатации здания и в условиях пожара; упрощение монтажа элементов конструктивной огнезащиты; повышение эффективности огнезащиты несущего стержня чугунной опоры; снижение трудоемкости монтажа элементов конструктивной огнезащиты; оптимизация толщины конструктивной огнезащиты чугунной опоры в зависимости от требуемого предела огнестойкости опоры здания и показателей термодиффузии огнезащитной штукатурки.

Указанный технический результат при использовании изобретения достигается тем, что в известном способе огнезащиты металлической опоры здания, в котором металлический несущий стержень конструкции оборудуют конструктивной огнезащитой, особенностью является то, что несущий стержень выполняют в виде круглого элемента из серого чугуна, а в качестве конструктивной огнезащиты используют огнезащитную штукатурку, армированную объемной арматурной сеткой, которую прикрепляют по всему периметру боковой поверхности несущего стержня, затем определяют величину интенсивности силовых напряжений в сечении несущего стержня чугунной опоры от испытательной нагрузки на огнестойкость; выявляют марку серого чугуна и критическую температуру его нагрева, определяют требуемую толщину огнезащитной штукатурки для несущего стержня чугунной опоры; толщину конструктивной огнезащиты несущего стержня чугунной опоры определяют с учетом величины термодиффузии огнезащитной штукатурки, критической температуры нагрева по термопрочностному разрушению чугунной опоры и требуемого предела огнестойкости несущей конструкции здания. Величину интенсивности силовых напряжений в сечении несущего стержня чугунной опоры от испытательной нагрузки на огнестойкость определяют по уравнению (1):

где: К3 - коэффициент запаса несущей способности чугунной опоры при испытательной нагрузке на огнестойкость.

Критическую температуру нагрева для серого чугуна по признаку термопрочностного разрушения (Тcr, °С) вычисляют по аналитическому уравнению (2):

где: - интенсивность силовых напряжений в сечении несущего стержня чугунной опоры от испытательной нагрузки на огнестойкость:

Требуемую толщину огнезащитной штукатурки для несущего стержня чугунной опоры (Sшт, мм) вычисляют по аналитическому уравнению (3):

где: Dшт - показатель термодиффузии огнезащитной штукатурки, мм2/мин;

Ru - требуемый предел огнестойкости, мин;

Тcr - критическая температура нагрева серого чугуна по признаку термопрочностного разрушения, °С.

Диаметр огнезащищенной чугунной опоры (Dст, мм) принимают по уравнению (4):

где: dст - диаметр несущего стержня чугунной опоры, мм;

Sшт - толщина огнезащитной штукатурки, мм.

В качестве объемной арматурной сетки для армирования огнезащитной штукатурки используют объемную арматурную сетку Рабица.

Соотношение компонентов огнезащитной штукатурки в сухой смеси по массе принимают равным 1:0,9:0,3 или 1:0,35:0,35 - портландцемент : вермикулит : керамзит.

Огнезащитную штукатурку наносят на несущий стержень при температуре в помещении здания не ниже +8°С и выдерживают, для набора прочности огнезащитной штукатурки, в течение 15 суток при температуре не ниже +10°С.

Причинно-следственная связь между совокупностью признаков и техническим результатом изобретения заключена в следующем: использование предлагаемого способа конструктивной огнезащиты чугунной опоры здания обеспечивает простоту и надежность ее крепления; снижение массы металла на изготовление косвенной арматуры огнезащитной штукатурки производят за счет снижения количества элементов каркаса; уменьшение площади поперечного сечения огнезащищенной чугунной опоры на 75%, вследствие отсутствия пустотного пространства между металлическим несущим стержнем и конструктивной огнезащиты; повышение безопасности при тушении пожара, при проведении аварийно-спасательных работ, а также снижение потерь от пожара, вследствие повышения фактических пределов огнестойкости несущих конструкций здания; повышение надежности работы огнезащищенной чугунной опоры при нормальной эксплуатации здания и в условиях пожара возможно вследствие проектирования толщины конструктивной огнезащиты в зависимости от требуемого предела огнестойкости опоры здания, показателей термодиффузии материалов огнезащиты и условий нагрева чугунной опоры при пожаре.

На фиг. 1 изображено продольное сечение огнезащищенной чугунной опоры: 1 - несущий стержень чугунной опоры; 2 - огнезащитная штукатурка; 3 - объемная арматурная сетка; Sшт - толщина огнезащитой штукатурки, мм; N0 - испытательная нагрузка на огнестойкость чугунной опоры.

На фиг. 2 изображено поперечное сечение огнезащищенной чугунной опоры: 1 - несущий стержень чугунной опоры; 2 - огнезащитная штукатурка; 3 - объемная арматурная сетка; Sшт - толщина огнезащитой штукатурки, мм; N0 - испытательная нагрузка на огнестойкость чугунной опоры, dст - диаметр несущего стержня чугунной опоры, мм.

Сведения, подтверждающие возможность применения изобретения с получением указанного выше технического результата.

При реконструкции учебного корпуса №1 АСА СамГТУ проектом предусмотрена конструктивная огнезащита чугунных опор круглого зала. Характеристика здания и его несущих колонн: класс функциональной пожароопасности - Ф 4.2; требуемая степень огнестойкости - I (первая); класс конструктивной пожароопасности - СО; число этажей - 6; требуемый предел огнестойкости Ru=120 мин (табл. 21, ФЗ РФ №123-2017); металлический несущий стержень - чугунная опора диаметром dcr=200 мм; площадь сечения чугунной опоры А=15,71 см2.

Пример 1.

Дано: несущая опора здания из серого чугуна марки СЧ 30, имеющего физические характеристики: предел прочности σb,cr=300 Н/мм2, коэффициент Пуассона ν=0,3; модуль упругости Еcr=98⋅10 Н/мм2; коэффициент линейного температурного расширения αл=12⋅10-6, 1/°С, запас прочности чугунной опоры при испытательной нагрузке на огнестойкость К=1,538. - интенсивность силовых напряжений в сечении.

Требуется вычислить критическую температуру по термопрочности серого чугуна марки СЧ 30.

Решение: Критическую температуру по термопрочности (Тcr, °С) для серого чугуна марки СЧ 30 вычисляют по аналитическому уравнению (2):

где: =0,65 - интенсивность силовых напряжений в сечении

Пример 2:

Дано: несущая опора здания из чугуна марки СЧ 25, диаметр опоры dcr=200 мм, высота опоры Н=4,2 м; требуемый предел огнестойкости Ru=120 мин [табл. 21 ФЗ №123 (2012 г)], огнезащита - армированная объемной сеткой огнезащитная перлито-керамзитовая штукатурка на цементе плотностью до 1000 кг/м3; показатель термодиффузии огнезащитной штукатурки: Dшт=19,7 мм2/мин. Критическая температура нагрева чугуна по термопрочностному разрушению Тcr=590°С

Решение: Толщину огнезащитной штукатурки (Sшт, мм) определяют по аналитическому уравнению (3):

где: Dшт=19,7 мм2/мин - показатель термодиффузии огнезащитной штукатурки; Ru=120 мин - требуемый предел огнестойкости; Тcr=590°С - критическая температура нагрева чугуна по термопрочностному разрушению.

В состав работ по возведению конструктивной огнезащиты чугунной опоры входят: подготовка поверхности несущего стержня чугунной опоры - 1; выбор материалов для конструктивной огнезащиты; расчет толщины огнезащитной штукатурки - 2 огнезащитного покрытия; установка объемной арматурной сетки - 3 и маяков, нанесение слоев штукатурки с тщательным выравниванием поверхности, соотношение компонентов огнезащитной штукатурки в сухой смеси по массе принимают равным 1:0,9:0,3 или 1:0,35:0,35 - портландцемент : вермикулит : керамзит.

Огнезащитную штукатурку наносят на несущий стержень при температуре в помещении здания не ниже +8°С и выдерживают, для набора прочности огнезащитной штукатурки, в течение 15 суток при температуре не ниже +10°С.

Предложенное изобретение для устройства огнезащищенной чугунной опоры здания применено при реконструкции учебного корпуса №1 Академии строительства и архитектуры СамГТУ (г. Самара, 2017/2018 гг.).

Использование предложенного изобретения позволяет уменьшить площадь поперечного сечения огнезащищенной чугунной опоры на 75-95%; повысить предел огнестойкости огнезащитной чугунной опоры на 25-30%; снизить возможные потери от пожара в 10 раз и более.

Источники информации

1. Бартеллеми Б., Крюппа Ж. Огнестойкость строительных конструкций / Пер. с франц. - М.: Стройиздат, 1985. - 216 с. (гл. 4, п. 4.2 Материалы и способы защиты; рис. 4.2; 4.4÷4.6; с. 94-98).

2. Романенков И.Г., Левитес Ф.А. Огнезащита строительных конструкций. - М.: Стройиздат, 1991. - 320 с. (гл. 4 Конструктивные способы огнезащиты; с. 131÷133).

3. Патент RU 2518599, МПК Е04В 1/94; Е04С 3/32 Способ огнезащиты двутавровой колонны здания / Ильин Н.А., Славкин П.Н., Шепелев А.П., Ибатуллин P.P.; заяв. 25.10.2012, опубл. 10.06.2014. Бюл №16.


Способ огнезащиты чугунной опоры здания
Способ огнезащиты чугунной опоры здания
Способ огнезащиты чугунной опоры здания
Способ огнезащиты чугунной опоры здания
Способ огнезащиты чугунной опоры здания
Способ огнезащиты чугунной опоры здания
Способ огнезащиты чугунной опоры здания
Способ огнезащиты чугунной опоры здания
Источник поступления информации: Роспатент

Показаны записи 61-70 из 191.
16.06.2018
№218.016.6309

Способ генерирования диоксида хлора

Изобретение относится к области медицины, конкретно к дезинфекции, и может быть применено для дезинфекции изделий медицинского назначения, помещений, предметов ухода за больными, лабораторной посуды при инфекциях бактериальной, вирусной и грибковой этиологии в учреждениях лечебного профиля, на...
Тип: Изобретение
Номер охранного документа: 0002657432
Дата охранного документа: 13.06.2018
28.06.2018
№218.016.6864

Применение гетероциклических гидразонов в качестве средств, обладающих антигликирующей активностью

Изобретение относится к применению гетероциклических гидразонов указанной ниже общей формулы в качестве средств, обладающих антигликирующей активностью. Данные гидразоны подавляют реакцию гликирования белков и могут найти применение в медицине для лечения и предотвращения развития осложнений...
Тип: Изобретение
Номер охранного документа: 0002658819
Дата охранного документа: 25.06.2018
29.06.2018
№218.016.68bf

Способ ремонта футеровки теплового агрегата

Изобретение относится к технологии ремонта футеровок тепловых агрегатов. Техническим результатом изобретения является повышение адгезионной прочности ремонтного покрытия из мелкозернистого жаростойкого бетона к огнеупорной футеровке, упрощение технологического процесса производства ремонтных...
Тип: Изобретение
Номер охранного документа: 0002659104
Дата охранного документа: 28.06.2018
06.07.2018
№218.016.6ca0

Способ безэталонного дифференциального термического анализа

Изобретение относится к физико-химическому анализу и может быть использовано при фазовом и химическом анализе в разнообразных областях науки и техники: геологии, металлургии, медицине, пищевой промышленности и т.д. Предложено устройство для дифференциального термического анализа, в котором...
Тип: Изобретение
Номер охранного документа: 0002660211
Дата охранного документа: 05.07.2018
06.07.2018
№218.016.6d13

Устройство безэталонного дифференциального термического анализа с управляемым ходом дифференциальной записи при настройке

Изобретение относится к физико-химическому анализу и может быть использовано при фазовом и химическом анализе в разнообразных областях науки и техники: геологии, металлургии, медицине, пищевой промышленности и т.д. Предложено устройство для дифференциального термического анализа, содержащее...
Тип: Изобретение
Номер охранного документа: 0002660217
Дата охранного документа: 05.07.2018
28.07.2018
№218.016.7674

Способ получения 1-(1н-бензохромен-2-ил)-2,2,2-трифторэтанонов

Изобретение относится к способу получения 1H-бензо[ƒ]хроменов из 1-[(диметиламино)метил]-2-нафтолов и 1,1,1-трифтор-4-морфолинобутен-3-она-2 в среде кипящей уксусной кислоты в мольном соотношении (1:1), которые являются перспективными исходными соединениями для синтеза фармакологически...
Тип: Изобретение
Номер охранного документа: 0002662439
Дата охранного документа: 26.07.2018
09.08.2018
№218.016.7891

Двигатель внутреннего сгорания двустороннего действия с регенерацией теплоты

Изобретение относится к машиностроению, в частности к двигателестроению. Техническим результатом изобретения является: значительное повышение его КПД за счет применения регенерации теплоты и реверса газов; значительное снижение массы и габаритов двигателя за счет выполнения рабочего хода в...
Тип: Изобретение
Номер охранного документа: 0002663369
Дата охранного документа: 03.08.2018
19.08.2018
№218.016.7e15

Способ гидроочистки углеводородного сырья

Изобретение относится к области гидроочистки нефтяных фракций. Описан способ гидрообработки, который ведут путем контактирования сырья с системой катализаторов, на первой ступени с катализатором при содержании компонентов, мас.%: оксид кобальта - 3,5-6,0; оксид молибдена 14,0-20,0; оксид...
Тип: Изобретение
Номер охранного документа: 0002664325
Дата охранного документа: 16.08.2018
13.09.2018
№218.016.8716

Способ получения (s)-3-(аминометил)-5-метилгексановой кислоты из хлоргидрата

Изобретение относится к способу получения (S)-3-(аминометил)-5-метилгексановой кислоты формулы I из ее хлоргидрата. Способ осуществляют в соответствии с приведенной ниже схемой путем растворения хлоргидрата II в изопропаноле с последующей обработкой полученного раствора эквивалентным...
Тип: Изобретение
Номер охранного документа: 0002666737
Дата охранного документа: 12.09.2018
13.10.2018
№218.016.915a

Дезинфицирующая композиция

Изобретение относится к области медицины, а именно к дезинфектологии, и предназначено для дезинфекции высокого уровня эндоскопов, а также изделий медицинского назначения и поверхностей при инфекциях бактериальной, вирусной и грибковой этиологии в учреждениях лечебного профиля. Жидкую...
Тип: Изобретение
Номер охранного документа: 0002669343
Дата охранного документа: 10.10.2018
Показаны записи 41-42 из 42.
22.05.2023
№223.018.6b86

Способ определения огнестойкости монолитной сталежелезобетонной плиты перекрытия здания

Изобретение относится к области оценки и обеспечения пожарной безопасности сталежелезобетонных элементов и строительных конструкций зданий и сооружений и может быть использовано для анализа методов и средств неразрушающего контроля элементов строительных конструкций. Заявлен способ определения...
Тип: Изобретение
Номер охранного документа: 0002795798
Дата охранного документа: 11.05.2023
16.06.2023
№223.018.7b54

Фундамент стаканного типа под колонну

Изобретение относится к области строительства железобетонного фундамента стаканного типа под сборную колонну здания. Фундамент под колонну включает железобетонный подколонник стаканного типа, армированный пространственным каркасом, и сопряженную с ним фундаментную плиту. Подколонник выполнен из...
Тип: Изобретение
Номер охранного документа: 0002751106
Дата охранного документа: 08.07.2021
+ добавить свой РИД