×
08.02.2020
220.018.0077

Направленный ответвитель со слабой связью

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002713558
Дата охранного документа
05.02.2020
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к радиотехнике, и в частности к устройствам распределения мощности высокочастотных сигналов, выполненных на связанных длинных линиях и имеющих слабую связь - переходное ослабление между первичной и вторичной линиями передачи более 15…20 дБ. Технический результат - увеличение развязки и, соответственно, направленности ответвителя, уменьшение потерь в первичной линии передачи, а также габаритных размеров при одновременном упрощении конструкции ответвителя. Для этого ответвитель содержит две параллельные и электромагнитно связанные друг с другом линии передачи, имеющие область связи с зазором S и длиной L, причем длина области связи L выбирается не 0,25Λs, где Λs - длина волны в связанных линиях передачи, а не более 0,05Λ, где Λ - длина волны в подводящих и отводящих энергию входных линиях передачи, размеры L и S оптимизируют по критериям одновременного обеспечения заданного переходного ослабления и максимально возможной развязки, волновые сопротивления связанных линий передачи равны волновым сопротивлениям подводящих и отводящих энергию линий передачи. 6 ил.
Реферат Свернуть Развернуть

Направленный ответвитель со слабой связью (далее - НО) относится к устройствам направленной передачи энергии от основной (или первичной) линии к дополнительной (или вторичной) линии передачи, электромагнитно связанной с основной линией. К направленным ответвителям со слабой связью условно относят НО, имеющие переходное ослабление более 15…20 дБ. Такие ответвители широко применяются в контрольных цепях приемо-передающей аппаратуры, а также в измерительной технике. В приемниках ответвители с переходным ослаблением 20…30 дБ используются для подачи на их вход контрольных сигналов тестового генератора, в передатчиках - для контроля мощности выходного сигнала. В обоих указанных случаях ответвители должны иметь минимальные потери в первичной линии передачи для уменьшения потерь энергии принимаемого или излучаемого сигнала, максимальную развязку для уменьшения уровня паразитного излучения контрольного сигнала приемника в антенну, а также минимально возможные габариты.

Широко известны НО на связанных линиях передачи, содержащие первичную и вторичную линии передачи, выполненные на симметричных или несимметричных полосковых (микрополосковых) линиях [1, 2] и энергия к которым подводится через несвязанные между собой входные линии передачи. Во всех известных устройствах длина области связи L связанных линий выбирается равной нечетному количеству четвертей длины волны Λs в области связи, в частности L=0,25Λs.

Направленный ответвитель на микрополосковых линиях [3] является наиболее технологичной конструкцией из всех известных НО на связанных линиях и ближайшим аналогом заявляемому устройству, в связи с чем выбран за прототип.

На фигуре 1 приведен топологический чертеж прототипа;

на фигуре 2 - расчетные частотные характеристики переходного ослабления и развязки НО-прототипа, выполненного на подложке с относительной диэлектрической проницаемостью ~10,6 и толщиной 1,016 мм;

на фигуре 3 - топологический чертеж предлагаемого НО,

на фигуре 4 - частотные характеристики коэффициента стоячей волны (КСВН) входа предлагаемого НО, выполненного на подложке с относительной диэлектрической проницаемостью 3,76 и толщиной 0,762 мм для переходных ослаблений от 15 до 35 дБ;

на фигуре 5 - расчетные характеристики переходных ослаблений и развязок предлагаемого НО с переходными ослаблениями 20, 25, 30 и 35 дБ, выполненного на подложке с относительной диэлектрической проницаемостью 3,76 и толщиной 0,762 мм;

на фигуре 6 - экспериментальные характеристики предлагаемого НО с переходным ослаблением ~30 дБ, выполненного на подложке с относительной диэлектрической проницаемостью 3,76 и толщиной 0,762 мм.

Известное устройство (фигура 1) - содержит отрезок первичной микрополос-ковой линии передачи с портами 1 и 2 и электромагнитно связанный с ним отрезок вторичной микрополосковой линии передачи с портами 3 и 4. К портам 1, 2, 3, 4 присоединяются входные несвязанные между собой линии передачи 5, 6, 7, 8 соответственно, имеющие волновые сопротивления Zo и по которым подводится или отводится энергия высокочастотных колебаний. Характеристики НО: КСВН входов 1-4 и определяемые параметрами матрицы рассеяния потери в первичной линии передачи |S(2,1)|, переходное ослабление |S(3,1)| и развязка |S(4,1)| зависят от ширины проводников связанных микрополосковых линий, зазора S между ними и длины области связи L. Основной качественной характеристикой НО является его направленность, равная разности (в дБ) развязки и переходного ослабления:

Устройство работает следующим образом. Высокочастотное колебание, подаваемое, например, через линию 5 на порт 1 (фигура 1), возбуждает в сечении портов 1 и 3 первичной и связанной с ней вторичной линии два типа колебаний: четный и нечетный [2], которые далее распространяются вдоль области связи. Энергия четного типа колебаний в силу его структуры сосредотачивается в основном в области диэлектрика подложки, нечетного - как в диэлектрике подложки, так и над ней (в воздухе). Из-за различий структур полей волн четного и нечетного типов колебаний и отличия диэлектрической проницаемости подложки и воздуха волновые сопротивления и длины волн (фазовые скорости) для указанных типов колебаний существенно отличаются друг от друга.

Одним из условий полного согласования НО является выполнение равенства

где Zoe, Zoo - соответственно волновое сопротивление в области связи для четного и нечетного типов колебаний.

Длина области связи L НО выбирается, как

где Λое, Λоо - соответственно длина волны для четного и нечетного типов колебаний в области связи, Λ - длина волны во входных несвязанных между собой линиях 5-8.

Несмотря на то, что длины волн Λое и Λоо незначительно отличаются друг от друга (так же, как и от длины волны Λ), это отличие существенно влияет на характеристики НО из-за появления различия в набегах фаз на длине 0,25Λs волн четного и нечетного типов колебаний на выходных портах 2 и 4 НО. Появившееся из-за указанных фазовых набегов отличие фаз колебаний четного и нечетного типов, векторы которых суммируются на соответствующих выходах НО, в конечном итоге приводит к рассогласованию всех портов НО и ухудшению его характеристик, из которых наиболее чувствительной является направленность D.

Для уменьшения различий фазовых скоростей четного и нечетного типов колебаний в НО на микрополосковых линиях применяются различные способы [2]: использование дополнительного диэлектрического покрытия, в том числе с дополнительным проводником свободного потенциала, что приводит к усложнению и снижению технологичности конструкции.

Применение пилообразной структуры проводников в области связи НО-прототипа [3] усложняет конструкцию НО в меньшей степени. Пилообразная структура области связи первичной и вторичной линий передачи создает условия, при которых токи, протекающие в области связи для нечетного типа колебаний претерпевают большие искривления траектории и, следовательно, большую фазовую задержку, чем токи для четного типа колебаний, приводя тем самым к выравниванию фазовых скоростей для этих колебаний и увеличению развязки НО.

Использование пилообразной структуры НО-прототипа эффективно при |S(3,1)|≤15 дБ [3]. Приведенные на фигуре 2 расчетные частотные характеристики НО с пилообразной структурой (здесь и далее расчет проводился с помощью системы автоматизированного проектирования (САПР) AWR Design Environment), геометрия которой оптимизирована для получения максимальной направленности, показывают, что при переходном ослаблении ~18,5 дБ развязка НО может составить |S(4,1)| ≈ 38 дБ, а расчетная направленность D ≈ 19,5 дБ. Экспериментально же удалось получить направленность не более 15 дБ.

При увеличении переходного ослабления НО-прототипа его развязка увеличивается заметно медленнее, чем переходное ослабление, что приводит к уменьшению направленности. Так например, для НО с переходным ослаблением 25…30 дБ для получения типовой направленности D не менее 25 дБ требуется иметь развязку не менее 50…55 дБ, что реализовать в прототипе практически невозможно.

Таким образом, основным недостатком прототипа при необходимости обеспечения переходных ослаблений более 15…20 дБ является недостаточная направленность, уменьшающаяся при увеличении заданного переходного ослабления. Кроме того, прототип имеет заметные потери в первичной линии передачи из-за использования области связи первичной и вторичной линий передачи как минимум четвертьволновой длины, большие габариты при использовании НО в диапазоне метровых и дециметровых волн, а также сложность конструкции, приводящую к большой трудоемкости моделирования и экспериментальной отработки НО. Указанные недостатки присущи всем НО на связанных линиях передачи, в том числе построенным на связанных линиях, имеющих сплошное диэлектрическое заполнение (симметричная полосковая линия), так как и в таких линиях имеется различие волновых сопротивлений и длин волн четного и нечетного типов колебаний из-за различия структур полей четного и нечетного типов колебаний.

Указанные недостатки НО-прототипа с переходным ослаблением более 15…20 дБ снижают возможности его применения в приемопередающих и измерительных устройствах, в которых требуется высокая направленность, минимально возможные потери и габариты, а также простота конструкции.

Целью изобретения является увеличение развязки ответвителя со слабой связью и, соответственно, направленности, уменьшение потерь в первичной линии передачи и габаритных размеров при одновременном упрощении конструкции ответвителя.

Указанная цель достигается тем, что в направленном ответвителе со слабой связью, содержащем две параллельные и электромагнитно связанные друг с другом линии передачи, длина области связи L выбирается не четвертьволновой длины волны в области связи, как в прототипе, а не более 0,05 длины волны во входных линиях передачи, при этом размеры L и S оптимизируют по критериям одновременного обеспечения заданного переходного ослабления между портами 1 и 3 и максимально возможной развязки между портами 1 и 4, волновые сопротивления каждой из связанных линий передачи выбирают равными волновым сопротивлениям присоединенных к портам 1-4 внешних линий передачи.

На фигуре 1 представлен топологический чертеж НО-прототипа, на фигуре 3 - топологический чертеж предлагаемого устройства.

Предлагаемое устройство (фигура 3) содержит параллельно расположенные и электромагнитно связанные друг с другом первичную линию передачи с портами 1 и 2 и вторичную линию передачи с портами 3 и 4, имеющие длину L и зазор S между ними, четыре входные несвязанные между собой линии передачи, каждая из которых подсоединена к одному из портов 1-4 и имеет волновое сопротивление Z0, длина L выбирается из соотношения

L≤0,05Λ,

при этом размеры L и S оптимизируют по критериям одновременного обеспечения заданного переходного ослабления между портами 1 и 3 и максимально возможной развязки между портами 1 и 4, волновые сопротивления первичной и вторичной линий передачи равны Z0.

Предлагаемое устройство работает следующим образом. Высокочастотное колебание, подаваемое, например, через входную линию 5 на порт 1 (фигура 3), возбуждает в сечении портов 1 и 3 первичной и связанной с ней вторичной линии два типа колебаний: четный и нечетный, которые далее распространяются вдоль области связи. Вследствие того, что длина области связи выбирается существенно меньше четверти длины волны в первичной и вторичной линиях передачи (эквивалентный фазовый сдвиг на участке 0,05Λ составляет всего 360°⋅0,05=18°, тогда как в известных НО фазовый сдвиг на участке 0,25As составляет 360°⋅0,25=90°), различие в набегах фаз волн четного и нечетного типов колебаний на выходных портах 2 и 4 НО также уменьшается более, чем в пять раз, что в конечном итоге приводит к увеличению развязки портов 1 и 4 и, следовательно, направленности НО.

При расчете НО начальная величина зазора S для получения заданного переходного ослабления выбирается при значении L=0,05Λ. Далее размеры L и S оптимизируются по критериям одновременного получения заданного переходного ослабления и максимально возможной развязки, при этом величина L остается меньше 0,05Λ. Подбор величин L и S целесообразно проводить с помощью машинной оптимизации с помощью известных САПР.

Из-за слабой связи между первичной и вторичной линиями передачи условие согласования всех входов НО выполняется при волновом сопротивлении связанных линий, равном Z0. При этом не требуется никаких усложнений конструкции НО для увеличения его направленности.

Таким образом, за счет существенного уменьшения длины области связи НО достигается заявленная цель изобретения: увеличивается развязка и направленность, а также не менее, чем в пять раз уменьшаются потери в первичной линии и размеры НО, упрощается конструкция НО.

Необходимо отметить, что предлагаемое решение распространяется только на НО с переходными ослаблениями |S(3,1)|≥15…20 дБ, при которых, как показывают расчеты (фигура 4), КСВН входов ответвителя не превышает 1,15 и уменьшается с увеличением переходного ослабления.

В качестве примеров проводился расчет частотных характеристик предлагаемого НО с переходными ослаблениями 20, 25, 30 и 35 дБ в диапазоне рабочих частот 900…1250 МГц, выполненного на подложке с относительной диэлектрической проницаемостью 3,76 и толщиной 0,762 мм. При этом длина волны в 50-омной линии передачи на средней частоте составляла ~176 мм (0,25Λ=44 мм). Оптимизация НО проводилась в среде САПР AWR Design Environment (Schematic) путем изменения длины L и зазора S по двум одновременно выполняемым критериям - получение заданного переходного ослабления и максимально возможной развязки. Полученные значения L и S далее использовались при моделировании и оптимизации электромагнитной структуры (ЕМ Structure) с помощью указанной САПР (при этом возможности подстройки величин L и S ограничивались шагом сетки, разбивающей топологию НО на элементарные участки). Результаты электромагнитных расчетов, приблизительно совпавшие с результатами схемотехнических расчетов, представлены на фигуре 5, из которой видно, что для НО с переходными ослаблениями от 20 до 35 дБ размеры L составили от 7,5 мм до 1,4 мм (от 0,042Λ до 0,008Λ), а размер S - от 0,1 мм до 0,25 мм. Направленность НО при различных переходных ослаблениях составила от 25 до 35 дБ, причем, в отличие от НО-прототипа, при увеличении переходного ослабления величина направленности не уменьшается, а увеличивается.

Для экспериментального подтверждения работоспособности и характеристик предлагаемого устройства был изготовлен макет НО с величиной переходного ослабления |S(3,1)| ≈ 30 дБ. Длина области связи составляла L ≈ 2,5 мм (~ 0,015Λ на частоте 1 ГГц) и зазор S ≈ 0,2 мм. Экспериментальные частотные характеристики НО (фигура 6) показывают, что на частоте 1 ГГц прямые потери НО (фигура 6, а), измеренные вместе с подводящими энергию входными линиями, не превышают 0,13 дБ, переходное затухание (фигура 6, б) составляет 29 дБ, а развязка (фигура 6, в) - 54 дБ, что соответствует направленности 25 дБ.

Предлагаемое устройство можно реализовать не только на микрополосковых или полосковых линиях, лежащих в одной плоскости, но и на микрополосковых или полосковых линиях, лежащих на противоположных сторонах подложки, когда осуществляется лицевая связь между полосковыми проводниками [4]. Реализация предлагаемого решения в НО с лицевой связью (при больших переходных ослаблениях) также основывается на выборе длины области связи не более 0,05Л и оптимального зазора S, в качестве которого может выступать, например, величина смещения осей связанных линий.

Технический эффект от использования предлагаемого решения заключается в увеличении развязки на 10…20 дБ, уменьшении не менее, чем в пять раз, как потерь (в дБ), так и продольных размеров НО, что имеет большое значение при работе в дециметровом и метровом диапазонах волн, а также в упрощении конструкции.

ЛИТЕРАТУРА

1. Справочник по элементам полосковой техники. Под ред. А.Л. Фельдштейна. М., «Связь», 1979 г., с. 233.

2. Малорацкий Л.Г. Микроминиатюризация элементов и устройств СВЧ. М., «Советское радио», 1976 г., с. 50, 154

3. Стародубровский Р.К. и др. Расчет пилообразной структуры области связи мик-рополоскового направленного ответвителя. «Техника средств связи», сер. «Радиоизмерительная техника», 1976 г., вып. 1, с. 56-62.

4. Конструирование и расчет полосковых устройств. Под ред. И.С. Ковалева. Москва, «Советское радио», 1974 г., с. 152

Направленный ответвитель со слабой связью, имеющий переходное ослабление более 15…20 дБ, содержащий параллельные и электромагнитно связанные друг с другом первичную линию передачи с портами 1 и 2 и вторичную линию передачи с портами 3 и 4, имеющие длину L и зазор S между ними, четыре входные не связанные между собой линии передачи, каждая из которых подсоединена к одному из портов 1-4 и имеет волновое сопротивление Z, отличающийся тем, что, с целью увеличения развязки между портами 1 и 4 и, соответственно, направленности ответвителя, уменьшения потерь между портами 1 и 2 и габаритных размеров при одновременном упрощении конструкции ответвителя, длина L выбирается из соотношения L≤0,05Λ, где Λ - длина волны во входных линиях передачи, при этом размеры L и S оптимизируют по критериям одновременного обеспечения заданного переходного ослабления между портами 1 и 3 и максимально возможной развязки между портами 1 и 4, волновые сопротивления первичной и вторичной линий передачи равны Z.
Направленный ответвитель со слабой связью
Направленный ответвитель со слабой связью
Направленный ответвитель со слабой связью
Направленный ответвитель со слабой связью
Направленный ответвитель со слабой связью
Направленный ответвитель со слабой связью
Направленный ответвитель со слабой связью
Источник поступления информации: Роспатент

Показаны записи 11-18 из 18.
28.11.2018
№218.016.a146

Высоковольтное измерительное устройство

Изобретение относится к высоковольтной технике и может быть использовано при проведении ремонтных или профилактических работ для контроля за состоянием высоковольтных цепей постоянного и переменного тока напряжением до 30 кВ, в лабораторных либо полевых условиях. Высоковольтное измерительное...
Тип: Изобретение
Номер охранного документа: 0002673430
Дата охранного документа: 26.11.2018
18.01.2019
№219.016.b16e

Соединитель высоковольтный

Изобретение относится к высоковольтной технике и может быть использовано для соединения высоковольтных устройств, например высоковольтных выпрямителей с нагрузкой. Техническим результатом является улучшение массогабаритных характеристик и повышение надежности соединителя высоковольтного,...
Тип: Изобретение
Номер охранного документа: 0002677227
Дата охранного документа: 16.01.2019
24.01.2019
№219.016.b37d

Антенное устройство наземной станции автоматического зависимого наблюдения вещательного типа

Изобретение относится к антенной технике и может быть использовано для приема наземными станциями сигналов автоматического зависимого наблюдения вещательного типа. Поставленная задача достигается введением в схему антенного устройства дополнительной секторной антенны, имеющей ширину диаграммы...
Тип: Изобретение
Номер охранного документа: 0002677823
Дата охранного документа: 21.01.2019
06.02.2020
№220.017.fee9

Устройство доплеровской обработки и сжатия фазоманипулированных радиолокационных сигналов

Устройство доплеровской обработки и сжатия фазоманипулированных радиолокационных сигналов относится к радиолокации и может быть использовано для разработки и совершенствования устройств обработки фазоманипулированных радиолокационных сигналов. Достигаемый технический результат - повышение...
Тип: Изобретение
Номер охранного документа: 0002713501
Дата охранного документа: 05.02.2020
23.05.2020
№220.018.20c8

Посадочный радиолокатор

Изобретение относится к области радиолокации и может быть использовано в качестве посадочного радиолокатора в современных системах управления воздушным движением для обнаружения и контроля за полетом воздушного судна на траектории захода на посадку на взлетно-посадочную полосу аэродрома....
Тип: Изобретение
Номер охранного документа: 0002721785
Дата охранного документа: 22.05.2020
07.06.2020
№220.018.2529

Устройство контроля мощности и ксвн свч трактов передатчиков

Изобретение относится к технике СВЧ и может быть использовано при контроле параметров СВЧ трактов различного назначения, в том числе СВЧ трактов передатчиков. Техническим результатом является реализация контроля КСВН с помощью устройства обработки сигналов и контроля мощности за счет...
Тип: Изобретение
Номер охранного документа: 0002722973
Дата охранного документа: 05.06.2020
06.07.2020
№220.018.2fe7

Способ противодействия беспилотным летательным аппаратам

Изобретение относится к способу противодействия беспилотным летательным аппаратам (БЛА). Для реализации способа обнаруживают БЛА, определяют его пространственные координаты, получают метеоданные, соответствующие определенным пространственным координатам, производят совместную обработку...
Тип: Изобретение
Номер охранного документа: 0002725662
Дата охранного документа: 03.07.2020
31.05.2023
№223.018.746c

Устройство и способ уменьшения вероятности завязки ложных трасс и автоматической адаптации вторичного радиолокатора к месту установки

Изобретение относится к области управления воздушным движением и может быть использовано во вторичной радиолокации для уменьшения вероятности инициализации ложных трасс. Техническим результатом является повышение безопасности полетов, благодаря увеличению защищенности к переотраженным сигналам....
Тип: Изобретение
Номер охранного документа: 0002796428
Дата охранного документа: 23.05.2023
Показаны записи 1-4 из 4.
23.11.2018
№218.016.a00d

Способ производства мягкого сыра

Изобретение относится к молочной промышленности, в частности к сыродельной отрасли, и может быть использовано в производстве сыра. Способ предусматривает пастеризацию нормализованной смеси, охлаждение до температуры свертывания, внесение в смесь закваски молочнокислых бактерий, хлористого...
Тип: Изобретение
Номер охранного документа: 0002673134
Дата охранного документа: 22.11.2018
29.04.2019
№219.017.45e6

Способ подавления опухолевого роста

Изобретение относится к медицине, онкологии, и может быть использовано для подавления опухолевого роста. Для этого вводят в опухолевую ткань цитостатик. После введения цитостатика вводят бикарбонат натрия в количестве 0,2-1,5 г/кг. Через 1-3 минуты локально воздействуют на опухолевую ткань...
Тип: Изобретение
Номер охранного документа: 0002446844
Дата охранного документа: 10.04.2012
29.04.2019
№219.017.4604

Способ подавления опухолевого роста

Изобретение относится к медицине, онкологии, и может быть использовано для подавления опухолевого роста. Для этого в опухолевую ткань в качестве соносенсибилизатора вводят бикарбонат натрия в количестве 0,4-2,0 г/кг. Через 2-5 минут локально воздействуют на опухолевую ткань ультразвуковым...
Тип: Изобретение
Номер охранного документа: 0002447916
Дата охранного документа: 20.04.2012
13.06.2019
№219.017.8207

Способ подавления опухолевого роста

Изобретение относится к медицине, а именно к онкологии, и может быть использовано для лечения опухолей. Способ включает введение в опухолевую ткань октакарбоксифталоцианина металла - октанатриевой соли октакарбоксифталоцианина цинка при дозе 10-150 мг/кг за 1-3 часа до ультразвукового...
Тип: Изобретение
Номер охранного документа: 0002375090
Дата охранного документа: 10.12.2009
+ добавить свой РИД