×
06.02.2020
220.017.fff4

Результат интеллектуальной деятельности: Способ измерения массы газа при работе ракетного двигателя малой тяги в режиме одиночных включений, в импульсных режимах и устройство для его реализации

Вид РИД

Изобретение

Аннотация: Способ измерения массы газа при работе ракетного двигателя малой тяги в режиме одиночных включений, в импульсных режимах и устройство для его реализации. Предложены способ и устройство для измерения массы газов (водорода Н и кислорода O) при огневых испытаниях ракетных двигателей малых тяг при работе в режиме одиночных включений и в импульсных режимах. Устройство состоит из по меньшей мере одной рабочей и эталонной емкостей, электропневмоклапанов, датчика перепада давлений, датчиков давления и температуры, причем оно включает как минимум две емкости с рабочим телом - эталонную и по меньшей мере одну рабочую, каждая из которых изолирована от общей пневмогидравлической системы с помощью электропневмоклапанов. После проведения одиночного включения или импульсного режима при условии стабилизации параметров в емкостях измеряют перепад давлений между по меньшей мере одной рабочей и эталонной емкостями, затем определяют массу газа по соотношению Δm=(μVΔp)/(RT), где μ - молярная масса газа, V - объем по меньшей мере одной рабочей емкости, Δр - перепад давлений между по меньшей мере одной рабочей и эталонной емкостями, R - универсальная газовая постоянная, Т - температура рабочего тела. Изобретение позволяет увеличить точность определения параметров в режиме одиночных включений и в импульсных режимах работы ракетного двигателя малой тяги. 2 н.п. ф-лы, 1 ил.

Настоящее изобретение относится к области измерения газообразных водорода Н2 и кислорода O2 при огневых испытаниях на стендах ракетных двигателей малых тяг (РДМТ), которые применяются в качестве исполнительных органов систем управления объектов ракетно-космической техники и которые работают большую часть времени либо в режимах одиночных включений, либо в импульсных режимах. При этом длительность минимального импульса РДМТ составляет примерно 0,05 с, а максимальная частота включений двигателя по порядку величины может составлять примерно 20 Гц.

Особенно эффективны такие РДМТ в составе двигательных установок космических аппаратов с применением электролиза воды, который позволяет получать на борту газообразные водород и кислород и использовать их в качестве топлива для двигателей малых тяг.

Известны расходомеры, работающие на различных физических принципах, применяемых, в основном, для измерений массы газообразных компонентов топлива на длительных непрерывных режимах (В.И. Монахов. Измерение расхода и количества жидкости, газа и пара. Госэнергоиздат, Москва, Ленинград, 1962 г. Стр. 4-7). Такие расходомеры не пригодны для измерений массы газообразных компонентов топлива при работе РДМТ в импульсных режимах.

Наиболее близким к заявляемому техническому решению являются расходомеры, принцип действия которых основан на измерении перепада давлений, создаваемого при течении газа на каком-либо сужающемся устройстве, установленном внутри канала (В.И. Монахов. Измерение расхода и количества жидкости, газа и пара. Госэнергоиздат, Москва, Ленинград, 1962 г. Стр. 4-7. Кремлевский, П.П. Расходомеры [текст] / П.П. Кремлевский; Машгиз - М.-Л., 1964. - 656 с. Стр. 75-83).

Недостатком этого устройства является необходимость измерять перепад давлений в течение короткого времени, соизмеримого с длительностью импульса РДМТ, что технически практически невыполнимо.

Задачей, на решение которой направлено заявляемое изобретение, является разработка способа и устройства для измерения массы газов при огневых испытаниях ракетных двигателей малых тяг при работе в режиме одиночных включений и импульсных режимах.

Техническим результатом является перевод процесса импульсных измерений в стационарные, что приводит к увеличению точности определения параметров в режиме одиночных включений и импульсных режимах работы РДМТ.

Данная задача решается за счет того, что способ измерения массы газа при работе ракетного двигателя малой тяги в режиме одиночных включений и в импульсных режимах, заключающийся в измерении перепада давлений, само измерение перепада давлений осуществляют между изолированными от общей пневмогидравлической системы эталонной и, по меньшей мере, одной рабочей емкостями, причем перед испытанием двигателя открывают все электропневмоклапаны, кроме электропневмоклапана двигателя и заправляют емкости, затем все электропневмоклапаны закрывают, перед пуском двигателя открывают электропневмоклапаны, связывающие, по меньшей мере, одну рабочую емкость с двигателем, запускают двигатель, после проведения одиночного включения или импульсного режима при условии стабилизации параметров в, по меньшей мере, одной рабочей емкости, измеряют перепад давлений между, по меньшей мере, одной рабочей и эталонной емкостями, затем определяют массу газа по соотношению Δm=(μVΔp)/(RT), где μ - молярная масса газа, V - объем, по меньшей мере, одной рабочей емкостей, Δр - перепад давлений между, по меньшей мере, одной рабочей и эталонной емкостями, R - универсальная газовая постоянная, Т - температура рабочего тела.

Также задача решается и за счет того, что устройство для измерения массы газа при работе ракетного двигателя малой тяги в режиме одиночных включений и в импульсных режимах, состоящее из датчика перепада давлений, электропневмоклапанов, датчика давления и термопар, включает, как минимум, две емкости с рабочим телом - эталонную и, по меньшей мере, одну рабочую, каждая из которых установлена с возможностью изоляции от общей пневмогидравлической системы с помощью электропневмоклапанов, причем в каждой из них установлена термопара, а датчик перепада давлений установлен между эталонной и рабочей, по меньшей мере, одной емкостями.

Сущность изобретения поясняется чертежом, на котором изображены: электропневмоклапан 1, эталонная емкость 2, электропневмоклапан 3, электропневмоклапан 4, датчик перепада давлений 5, рабочая емкость 6, электропневмоклапан 7, электропневмоклапан 8, термопара 9, рабочая емкость 10, электропневмоклапан 11, термопара 12, электропневмоклапан 13, датчик давления на входе в двигатель 14, термопара на входе в двигатель 15, электропневмоклапан двигателя 16, ракетный двигатель 17.

На чертеже приводится схема только для одного компонента топлива, для другого компонента топлива схема аналогичная. Количество рабочих емкостей может быть любым, их число определяется диапазоном измеряемых масс газа.

Работает устройство следующим образом. Перед испытанием ракетного двигателя малой тяги осуществляется заправка устройства соответствующим количеством топлива через электропневмоклапан 1 при открытых электрогшевмоклапанах 1, 3, 4, 7, 8, 11, 13. Контроль давления осуществляется датчиком давления 14. Контроль температуры осуществляется термопарами 9 и 12. После заправки топливом электропневмоклапаны закрываются.

Для пуска двигателя открываются электропневмоклапаны 4 и 7, 8 (при необходимости открывается электропневмоклапан 11 и другие - по числу рабочих емкостей), открывается также электропневмоклапан двигателя 16. После выключения двигателя 17 закрываются электропневмоклапаны 8, 11, 16. Затем следует выдержка, длительность которой определяется стабилизацией температуры в емкостях 6, 10 по показаниям термопар 9, 12 (измеренные значения температуры в каждой из емкостей не должны отличаться на величину Δt≤1°С). После этого снимают показания датчика перепада давлений 5 и определяют массу газообразного компонента, прошедшего через двигатель за импульс или серию импульсов, время которого определяют по компьютерной записи. Массовый расход газообразного компонента топлива за импульс в серии импульсов рассчитывают.


Способ измерения массы газа при работе ракетного двигателя малой тяги в режиме одиночных включений, в импульсных режимах и устройство для его реализации
Источник поступления информации: Роспатент

Показаны записи 41-50 из 77.
24.05.2019
№219.017.5eec

Волоконно-оптический датчик угла поворота

Изобретение относится к средствам измерения угловых перемещений. Волоконно-оптический датчик угла поворота состоит из лазерного диода, микроконтроллера, оптического делителя мощности, двух фотодетекторов и двух отрезков оптического волокна. Отрезки оптического волокна свернуты в полукольца...
Тип: Изобретение
Номер охранного документа: 0002688596
Дата охранного документа: 21.05.2019
09.06.2019
№219.017.7663

Автоматическое устройство термомеханического управления радиальным зазором между концами рабочих лопаток ротора и статора компрессора или турбины газотурбинного двигателя

Группа изобретений относится к газотурбинным двигателям и газотурбинным установкам, в том числе к авиационным ТРД и ТРДД, а именно к устройствам регулирования радиального зазора между концами рабочих лопаток ступени ротора компрессора или турбины и статора газотурбинного двигателя. Предложено...
Тип: Изобретение
Номер охранного документа: 0002691000
Дата охранного документа: 07.06.2019
19.06.2019
№219.017.83d4

Устройство контроля герметичности элементов конструкции космического аппарата (ка)

Изобретение относится к области космической техники, предназначенной, в частности, для регистрации микрометеороидов и заряженных частиц ионосферы. Сущность изобретения заключается в том, что устройство контроля герметичности элементов конструкции космического аппарата дополнительно содержит...
Тип: Изобретение
Номер охранного документа: 0002691657
Дата охранного документа: 17.06.2019
20.06.2019
№219.017.8cf0

Способ определения деформаций на основе спекл-фотографии

Способ относится к бесконтактным оптическим методам исследования деформаций. Способ измерения деформаций заключается в том, что объект освещают когерентным светом, регистрируют спекл-фотографию объекта до и после его деформирования, сканируют полученную совмещенную спекл-фотографию и...
Тип: Изобретение
Номер охранного документа: 0002691765
Дата охранного документа: 18.06.2019
20.06.2019
№219.017.8d8a

Устройство для измерения массы жидких компонентов топлива при работе ракетных двигателей малой тяги в режиме одиночных включений и в импульсных режимах

Изобретение относится к испытаниям жидкостных ракетных двигателей малой тяги. Устройство для измерения массы жидких компонентов топлива при работе ракетного двигателя малой тяги в режиме одиночных включений и в импульсных режимах, состоящее из электропневмоклапана, градуированных стеклянных...
Тип: Изобретение
Номер охранного документа: 0002691873
Дата охранного документа: 18.06.2019
26.06.2019
№219.017.92a1

Ускоритель высокоскоростных твердых частиц

Изобретение относится к ускорителю высокоскоростных твердых частиц. Ускоритель содержит инжектор 1, индукционные датчики 2, усилители 3, линейный ускоритель 4, источник фиксированного высокого напряжения 5, цилиндрические электроды 6, селектор скоростей 7, селектор удельных зарядов 8, генератор...
Тип: Изобретение
Номер охранного документа: 0002692236
Дата охранного документа: 24.06.2019
27.06.2019
№219.017.986b

Тягоизмерительное устройство для испытаний жидкостных ракетных двигателей малой тяги в стационарном режиме работы

Изобретение относится к испытаниям жидкостных ракетных двигателей малой тяги. Устройство состоит из упругой балки с двумя силоизмерительными датчиками (весоизмерительным и задающим), на которой крепится испытуемое изделие и измерительный датчик, узла подвеса, силозадающего устройства...
Тип: Изобретение
Номер охранного документа: 0002692591
Дата охранного документа: 25.06.2019
28.06.2019
№219.017.997d

Устройство контроля параметров углового движения космического аппарата по данным бортовых измерений состояния геомагнитного поля

Изобретение относится к магнитным средствам управления параметрами движением вокруг центра масс космического аппарата (КА) научно-технологического назначения, особенностью которого является обеспечение ориентированного режима полета с невысокими требованиями к точности угловой ориентации....
Тип: Изобретение
Номер охранного документа: 0002692741
Дата охранного документа: 26.06.2019
10.07.2019
№219.017.a966

Устройство для гидродинамического эмульгирования и активации жидкого топлива

Изобретение относится к области энергетики и машиностроения. Устройство для гидродинамического эмульгирования и активации жидкого топлива содержит гидродинамический кавитационный аппарат эмульгатора, состоящий из трубопровода обрабатываемого жидкого топлива, трубопровода добавляемой жидкости,...
Тип: Изобретение
Номер охранного документа: 0002693942
Дата охранного документа: 08.07.2019
11.07.2019
№219.017.b254

Способ количественной оценки распределения дисперсных фаз листовых алюминиевых сплавов

Изобретение относится к области металлографических исследований и анализа материалов применительно к определению неоднородности распределения частиц дисперсных фаз в листовых металлах и сплавах. Способ включает получение металлографического шлифа, его травление для выявления фаз, затем с...
Тип: Изобретение
Номер охранного документа: 0002694212
Дата охранного документа: 09.07.2019
Показаны записи 11-13 из 13.
27.06.2019
№219.017.986b

Тягоизмерительное устройство для испытаний жидкостных ракетных двигателей малой тяги в стационарном режиме работы

Изобретение относится к испытаниям жидкостных ракетных двигателей малой тяги. Устройство состоит из упругой балки с двумя силоизмерительными датчиками (весоизмерительным и задающим), на которой крепится испытуемое изделие и измерительный датчик, узла подвеса, силозадающего устройства...
Тип: Изобретение
Номер охранного документа: 0002692591
Дата охранного документа: 25.06.2019
25.01.2020
№220.017.f9ef

Тягоизмерительное устройство для испытаний жидкостных ракетных двигателей малой тяги в импульсных режимах работы

Изобретение относится к испытательным стендам для жидкостных ракетных двигателей малой тяги (ЖРДМТ). Тягоизмерительное устройство состоит из корпуса, выполненного в виде круговой балки, упругих элементов, представляющих собой радиально ориентированные лепестки прямоугольного сечения,...
Тип: Изобретение
Номер охранного документа: 0002711813
Дата охранного документа: 23.01.2020
24.06.2020
№220.018.29f1

Ракетный двигатель малой тяги на несамовоспламеняющихся жидком горючем и газообразном окислителе

Изобретение относится к области ракетно-космической техники, а именно к ракетным двигателям малой тяги на несамовоспламеняющихся газообразном окислителе и жидком горючем. Ракетный двигатель содержит агрегат зажигания и свечу, электропневмоклапаны окислителя «О» и горючего «Г», смесительную...
Тип: Изобретение
Номер охранного документа: 0002724069
Дата охранного документа: 19.06.2020
+ добавить свой РИД