×
06.02.2020
220.017.ff7c

Результат интеллектуальной деятельности: Способ формирования композиционного материала методом селективного лазерного плавления порошка жаропрочного никелевого сплава на подложке из титанового сплава

Вид РИД

Изобретение

Аннотация: Изобретение относится к формированию композиционного материала в виде покрытия на поверхности изделия из титанового сплава. Способ включает нанесение на поверхность изделия порошковой композиции, содержащей следующие компоненты, вес.%: Аl - 3,91, Со - 15,6, Сr - 11,1, Fe - 0,06, Mo - 4,48, Nb - 3,38, Ti - 2,73, V - 0,52, W - 3,19, С - 0,049, Ni - 54,981. Покрытый участок вводят в зону воздействия лазера, проводят послойное лазерное плавление металлического порошка. Сканирование ведут при следующих параметрах: мощность лазерного излучения - 325 Вт, скорость сканирования - 760 мм/с, толщина слоя - 50 мкм, шаг сканирования - 120 мкм, защитная среда – аргон. Первый слой наносят под углом 135°, а второй - под углом 90° к первому слою. Обеспечивается формирование жаропрочных покрытий, обладающих высокой микротвердостью, механическими и триботехническими свойствами. 1 ил., 1 пр.

Изобретение относится к области нанесения покрытий методом селективного лазерного плавления и может быть использовано для увеличения износостойкости и жаропрочности изделий из титановых сплавов, применяемых в авиационной и автомобильной промышленностях.

Известен способ формирования антифрикционных покрытий из порошковых материалов посредством их лазерного спекания на металлической поверхности (Патент 2652335, МПК B22F 3/105, С23 26/00, Опубликовано 25.04.2018), включающий нанесение слоя порошковой композиции на поверхность стального изделия, содержащей следующие компоненты, мас. %: баббит Б83 дисперсностью 5-50 мкм - основа, медь дисперсностью 0,5-1,5 мкм - 10-30, дисульфид молибдена дисперсностью 1,5-2,4 мкм - до 5, введение покрытого участка в зону лазерного излучения, его спекание в контролируемой среде защитного газа аргона и осуществление калибровки спеченной порошковой композиции по толщине.

Недостатком данного способа является необходимость калибровки спеченной порошковой композиции по толщине, связанная с неравномерностью нанесения покрытия, а также невозможность применения данного способа для формирования жаропрочных покрытий.

Известен способ изготовления металлического изделия из порошкового материала цикличным послойным лазерным синтезом (Патент 2526909, МПК B22F 3/105, Опубликовано 27.08.2014), включающий нанесение слоя керамического порошка, проведение селективного спекания на заданных участках слоя и удаление указанного материала из неспеченных участков. Между спеченными участками керамического слоя наносят слой порошка металла или сплава той же толщины и проводят селективное спекание на этих участках. Цикл повторяют до осуществления полного формирования изделия. При этом керамика образует при спекании оболочку формируемого изделия. После каждого спекания слоя металла или сплава проводят его расплавление и/или расплавление всего объема металла или сплава, а после полного формирования изделия и кристаллизации расплавленного металла или сплава производят удаление керамики.

Недостатком данного метода является необходимость расплавления всего объема металла в процессе формирования изделия, что делает процесс экономически не эффективным и затратным.

Наиболее близким к предлагаемому техническому решению является способ изготовления покрытия на изделии методом послойного лазерного синтеза (Патент 2443506, МПК B22F 3/105, Опубликовано 27.02.2012). Изобретение относится к порошковой металлургии, в частности к технологии селективного лазерного спекания трехмерных объектов. После вакуумирования рабочего пространства осуществляют послойное лазерное спекание механоактивированного металлического порошка или механоактивированного металлического порошка и порошковой смеси металл-металл, температуры плавления которых отличаются менее чем на 40%. Спекание осуществляют импульсным лазером с частотой генерации импульсов от 20000 до 100000 Гц и временем действия импульса 100 наносекунд. Скорость кристаллизации расплавленной части порошковой частицы от 0,5 м/с до 10 м/с.Полученный материал обладает высокими механическими, триботехническими свойствами и коррозионной стойкостью.

Недостатком прототипа является то, что значительная часть порошка не плавится (до 95%), что приводит не только к наноструктурному метастабильному состоянию, но и к низкому качеству полученных покрытий, а именно высокой шероховатости и пористости.

Задачей изобретения является формирование жаропрочных покрытий, обладающих высокой микротвердостью, механическими и триботехническими свойствами.

В основе предлагаемого изобретения лежит решение задачи по формированию покрытия, состоящего из отдельных слоев жаропрочного сплава, в результате чего достигается расширение технологических возможностей повышения износостойкости и жаропрочности изделий из титана и титановых сплавов.

Технический результат предлагаемого изобретения заключается в получении композиционного покрытия с повышенными значениями твердости. Эти значения могут быть необходимы при возникновении повышенных контактных статических и динамических нагрузках на изделиях. Эффект от применения изобретения состоит в расширении возможностей использования титановых сплавов, увеличении срока их активной работы.

Технический результат изобретения достигается за счет того, что способ, включающий нанесение на поверхность титанового изделия порошковую композицию, содержащую следующие компоненты, вес.%: Аl 3,91%, Со 15,6%, Сr 11,1%, Fe 0,06%, Mo 4,48%, Nb 3,38%, Ti 2,73%, V 0,52%, W 3,19%, С 0,049%, Ni 54,981% (основа), затем вводят покрытый участок в зону воздействия лазера и проводят сканирование при следующих параметрах: мощность лазерного излучения - 325 Вт, скорость сканирования - 760 мм/с, толщина слоя - 50 мкм, шаг сканирования - 120 мкм, защитная среда - аргон, стратегия сканирования - нанесение первого слоя под углом 135°, второго - под углом 90° к первому слою.

Способ реализуют следующим образом.

Покрытие формируется на подложке из титанового сплава, предварительно закрепленного в рабочей камере прибора. На заготовку размещают порошок жаропрочного никелевого сплава, уплотняют и выравнивают валиком. Затем лазерный луч сканирует обрабатываемую поверхность при следующих параметрах: мощность лазерного излучения -325 Вт, скорость сканирования - 760 мм/с, толщина слоя - 50 мкм, шаг сканирования - 120 мкм, защитная среда - аргон, стратегия сканирования -нанесение первого слоя под углом 135°, второго - под углом 90° к первому слою. Обеспечивается формирование покрытий, обладающих высокой микротвердостью, механическими и триботехническими свойствами.

Пример 1 использования изобретения

1. Закрепить в рабочей камере пластину из титанового сплава.

2. Разместить мелкодисперсный порошок жаропрочного никелевого сплава, выровнять и уплотнить валиком.

3. Селективное лазерное плавление осуществляют в защитной среде аргона.

4. Сканирование проводят со следующей стратегией движения лазера - нанесение первого слоя под углом 135°, второго - под углом 90° к первому слою.

С помощью металлографических исследований было установлено, что толщина покрытия жаропрочного никелевого сплава, сформированного на подложке из титанового сплава равна 57,1±3,7 мкм.

Исследование элементного состава композиционного материала, сформированного по данному способу, проводилось на поперечных шлифах в поверхностном слое покрытия, диффузионном слое и в подложке. Установлено, что поверхностный слой в основном состоит из титана (55,5%) и никеля (21,23%). В диффузионном слое содержание титана больше (75,05%), а никеля меньше (8,47%), чем в поверхностном слое. В подложке из титанового сплава преобладающим элементом является титан (89,96%), никель отсутствует.

Пример 2 использования изобретения

Режимы нанесения покрытия те же, что и в примере 1. После получения покрытий проведены испытания на микротвердость. Измерение микротвердости проводилось в покрытии, в зоне термического влияния и в подложке на расстояниях 5, 10 и 15 мкм от границы с покрытием. Микротвердость покрытия равна 881,8±15 HV, зоны термического влияния - 839,8±22 HV, подложки на расстоянии 5 мкм - 374,6±4 HV, 10 мкм - 359,8±11 HV, 15 мкм - 337,2±6 HV. Полученные данные позволяют установить, что покрытия из жаропрочного никелевого сплава имеют микротвердость в ≈2,6 раза выше, чем микротвердость подложки из титанового сплава. Уменьшение микротвердости происходит градиентно от покрытия к подложке. Это позволяет увеличить ресурс работы изделия в 2,0…2,5 раза в условиях больших контактных давлений.

Способ формирования композиционного материала методом селективного лазерного плавления порошка жаропрочного никелевого сплава на подложке из титанового сплава, включающий послойное лазерное плавление металлического порошка, отличающийся тем, что на поверхность изделия из титанового сплава наносят порошковую композицию, содержащую следующие компоненты, вес.%: Аl - 3,91, Со - 15,6, Сr - 11,1, Fe - 0,06, Mo - 4,48, Nb - 3,38, Ti - 2,73, V - 0,52, W - 3,19, С - 0,049, Ni - 54,981, затем вводят покрытый участок в зону воздействия лазера и проводят сканирование при следующих параметрах: мощность лазерного излучения - 325 Вт, скорость сканирования - 760 мм/с, толщина слоя - 50 мкм, шаг сканирования - 120 мкм, защитная среда - аргон, причем нанесение первого слоя осуществляют под углом 135°, а второго - под углом 90° к первому слою.
Способ формирования композиционного материала методом селективного лазерного плавления порошка жаропрочного никелевого сплава на подложке из титанового сплава
Источник поступления информации: Роспатент

Показаны записи 71-77 из 77.
15.07.2020
№220.018.3268

Способ получения композита пектиново-целлюлозной пленки на основе целлюлозы gluconacetobacter sucrofermentas и пектина

Изобретение относится к биотехнологии и может быть использовано в медицине, фармацевтической и пищевой промышленности. Предложен cпособ получения композита пектиново-целлюлозной пленки, заключающийся в культивировании целлюлозы Gluconacetobacter sucrofermentas в статических и динамических...
Тип: Изобретение
Номер охранного документа: 0002726359
Дата охранного документа: 13.07.2020
16.07.2020
№220.018.3300

Свариваемый термически не упрочняемый сплав на основе системы al-mg

Изобретение относится к области металлургии легких сплавов, предназначенных для изготовления деформированных полуфабрикатов в виде плит, листов, штамповок, профилей для использования в изделиях авиакосмической отрасли. Сплав на основе алюминия содержит, мас. %: магний 5,0-6,0, скандий...
Тип: Изобретение
Номер охранного документа: 0002726520
Дата охранного документа: 14.07.2020
18.07.2020
№220.018.33c8

Устройство для подгонки толстопленочных резисторов

Устройство для подгонки толстопленочных резисторов относится к области микроминиатюризации и технологии радиоэлектронной аппаратуры и может быть использовано для изготовления высокоточных и прецизионных пленочных резисторов. Устройство для подгонки толстопленочных резисторов содержит источник...
Тип: Изобретение
Номер охранного документа: 0002726849
Дата охранного документа: 16.07.2020
21.07.2020
№220.018.34fa

Длинная пустотелая широкохордая лопатка вентилятора авиационного трдд и способ ее изготовления

Группа изобретений относится к лопатке вентилятора авиационного ТРДД длиной 700÷1500 мм с демпфером для гашения вибраций. Предложена длинная пустотелая широкохордая лопатка вентилятора авиационного ТРДД, содержащая изготовленные из титанового сплава две половины лопатки, состоящие каждая из...
Тип: Изобретение
Номер охранного документа: 0002726955
Дата охранного документа: 17.07.2020
24.07.2020
№220.018.35fd

Средство, проявляющее антиагрегационную активность

Изобретение относится к химии и медицине, а именно к фармацевтической химии и фармакологии, и может быть использовано для создания новых лекарственных средств профилактики тромбоза и тромбоэмболических осложнений. Сущность изобретения: применение L-пролина (L-пролиния ацетилсалицилата) или...
Тип: Изобретение
Номер охранного документа: 0002727508
Дата охранного документа: 22.07.2020
24.07.2020
№220.018.369f

Ротор вентилятора авиационного трдд с длинными широкохордными пустотелыми лопатками с демпферами

Предложен ротор вентилятора авиационного ТРДД, содержащий втулку с фланцами для крепления кока и барабана ротора подпорных ступеней, задний кок, закрепленный на втулке, передний кок, закрепленный на заднем коке, длинные саблевидные широкохордые пустотелые лопатки, закрепленные в пазах обода...
Тип: Изобретение
Номер охранного документа: 0002727314
Дата охранного документа: 21.07.2020
31.07.2020
№220.018.39f7

Способ получения деталей из алюминиевых сплавов методом селективного лазерного сплавления

Изобретение относится к способу изготовления деталей из алюминиевых сплавов и может использоваться для производства деталей и узлов авиационных и ракетно-космических систем. Изготовление деталей технологией селективного лазерного сплавления выполняют при следующих технологических параметрах:...
Тип: Изобретение
Номер охранного документа: 0002728450
Дата охранного документа: 29.07.2020
Показаны записи 11-14 из 14.
27.12.2018
№218.016.ac15

Способ нанесения износостойких покрытий на основе алюминия и оксида иттрия на силумин

Изобретение относится к области поверхностного упрочнения алюминиевых сплавов электровзрывным напылением, в частности к поверхностному упрочнению силумина системой YO-Al, и может быть использовано при нанесении предлагаемым способом покрытий на детали и изделия, подверженные износу. Способ...
Тип: Изобретение
Номер охранного документа: 0002676122
Дата охранного документа: 26.12.2018
11.07.2019
№219.017.b254

Способ количественной оценки распределения дисперсных фаз листовых алюминиевых сплавов

Изобретение относится к области металлографических исследований и анализа материалов применительно к определению неоднородности распределения частиц дисперсных фаз в листовых металлах и сплавах. Способ включает получение металлографического шлифа, его травление для выявления фаз, затем с...
Тип: Изобретение
Номер охранного документа: 0002694212
Дата охранного документа: 09.07.2019
24.07.2020
№220.018.35fe

Способ нанесения износостойких покрытий на основе алюминия и оксида иттрия на силумин

Изобретение относится к области поверхностного упрочнения алюминиевых сплавов с помощью комбинированной обработки и может быть использовано при нанесении предлагаемым способом покрытий на детали и изделия, подверженные износу. Способ нанесения износостойких покрытий на основе алюминия и оксида...
Тип: Изобретение
Номер охранного документа: 0002727376
Дата охранного документа: 21.07.2020
31.07.2020
№220.018.39f7

Способ получения деталей из алюминиевых сплавов методом селективного лазерного сплавления

Изобретение относится к способу изготовления деталей из алюминиевых сплавов и может использоваться для производства деталей и узлов авиационных и ракетно-космических систем. Изготовление деталей технологией селективного лазерного сплавления выполняют при следующих технологических параметрах:...
Тип: Изобретение
Номер охранного документа: 0002728450
Дата охранного документа: 29.07.2020
+ добавить свой РИД