×
06.02.2020
220.017.ff5d

Результат интеллектуальной деятельности: Устройство и способ передачи электрической энергии

Вид РИД

Изобретение

№ охранного документа
0002713208
Дата охранного документа
04.02.2020
Аннотация: Изобретение относится к области электротехники, в частности к устройству и способу передачи электрической энергии. Технический результат заключается в обеспечении одинаковой освещённости всех фотопреобразователей и в снижении внутреннего сопротивления и коммутационных потерь в фотоприёмнике лазерного излучения. Технический результат достигается тем, что в устройстве для передачи электрической энергии фотоприёмник выполнен в виде цилиндра, на основании которого со стороны, противоположной входу монохроматического излучения, установлен конусный отражатель, диаметр основания которого равен диаметру цилиндрического фотоприёмника, вершина которого расположена на оси цилиндрического фотоприёмника со стороны входа монохроматического излучения, плоскости диодных n-p-p (p-n-n) структур и контактов перпендикулярны поверхности цилиндрического фотоприёмника и параллельны оси симметрии конусного отражателя, а высота цилиндрического фотоприёмника и диаметр основания конусного отражателя связаны соотношением h = (ctgα – ctg2α), где h – высота цилиндрического фотоприёмника; D – диаметр основания конусного отражателя; 2α – угол при вершине конусного отражателя; α – угол между образующей и осью конусного отражателя. Технический результат достигается также тем, что в способе передачи электрической энергии монохроматическое излучение со средней плотностью потока 1,0-10 Вт/см направляют на конусный отражатель, конусный отражатель ориентируют вершиной конуса встречно по оси потока монохроматического излучения, отражают осесимметрично монохроматическое излучение под углом 80-100º к направлению монохроматического излучения на цилиндрический фотоприёмник, направляют монохроматическое излучение параллельно плоскости контактов и n-p-p (p-n-n) диодных структур скоммутированных фотопреобразователей цилиндрического фотоприёмника и преобразуют энергию монохроматического излучения в электрическую энергию. 2 н.п. ф-лы, 6 ил.

Изобретение относится к области электротехники, в частности, к устройству и способу передачи электрической энергии.

Известен способ передачи электрической энергии, отличающееся тем, что между источником и приемником электрической энергии формируют проводящий канал методом фотоионизации и ударной ионизации с помощью генератора излучения, например, на основе оптического лазера, указанный проводящий канал электрически изолируют то генератора излучения с помощью прозрачного для излучения электроизоляционного экрана, соединяют проводящий канал с источником электрической энергии через высоковольтный высокочастотный трансформатор Тесла и с приемником электрической энергии через понижающий высокочастотный трансформатор Тесла или диодно-конденсаторный блок, увеличивают электрическую проводимость канала путем формирования поверхностного заряда и увеличения напряженности электрического поля и осуществляют под действием кулоновских сил перемещение электрических зарядов вдоль проводящего канала.

Устройство, реализующее данный способ передачи электрической энергии, содержит генератор излучения, например, на основе оптического или рентгеновского лазера, для формирования проводящего канала между источником и приемником электрической энергии, и установленный соосно генератору излучения формирователь проводящего канала и электроизолирующий экран, прозрачный для излучения генератора, размещенный между формирователем проводящего канала и генератором излучения, источник электрической энергии соединен с формирователем проводящего канала через высоковольтный высокочастотный трансформатор Тесла, с противоположной стороны проводящего канала установлен приемник проводящего канала, изолированный от корпуса приемника электрической энергии, указанный приемник электрической энергии соединен с приемником проводящего канала через понижающий высокочастотный трансформатор Тесла или диодно-конденсаторный блок. (Пат. РФ № 2143775, опубл. 27.12.1999. Заявка № 991054 от 25.03.1999)

Недостатком известного способа и устройства является невозможность его использование за пределами атмосферы Земли для передачи электрической энергии на космические аппараты.

Известен способ и устройство для передачи электрической энергии с использованием лазера и преобразователя лазерного излучения в электрическую с помощью фотопреобразователей. (Беспроводная передача электричества. https://ru.wikipedia.org/w/index.php)

Недостатком известного способа и устройства является небольшая мощность 500 Вт и малое расстояние 1 км передачи электрической энергии.

Другим недостатком является низкий КПД передачи электроэнергии 10% из-за неравномерного распределения энергии в пучке лазера и коммутационных потерь при неравномерном освещении фотоприёмника излучения.

Задачей предлагаемого изобретения является создание устройства и способа передачи электрической энергии большой мощности и с высоким КПД.

Технический результат заключается в обеспечении одинаковой освещённости всех фотопреобразователей и в снижении внутреннего сопротивления и коммутационных потерь в фотоприёмнике лазерного излучения.

В результате передаваемая электрическая мощность увеличивается до 10-100 кВт при КПД до 40% для фотоприёмников из кремния.

Технический результат достигается тем, что в устройстве для передачи электрической энергии, содержащем генератор монохроматического излучения и фотоприёмник на основе скоммутированных фотопреобразователей с диодными n+-p-p+ (p+-n-n+) структурами и контактами, согласно изобретению, фотоприёмник выполнен в виде цилиндра, на основании которого со стороны, противоположной входу монохроматического излучения, установлен конусный отражатель, диаметр основания которого равен диаметру цилиндрического фотоприёмника, вершина которого расположена на оси цилиндрического фотоприёмника со стороны входа монохроматического излучения, плоскости диодных n+-p-p+ (p+-n-n+) структур и контактов перпендикулярны поверхности цилиндрического фотоприёмника и параллельны оси симметрии конусного отражателя, а высота цилиндрического фотоприёмника и диаметр основания конусного отражателя связаны соотношением

h = (ctgα – ctg2α),

где h – высота цилиндрического фотоприёмника;

D – диаметр основания конусного отражателя;

2α – угол при вершине конусного отражателя;

α – угол между образующей и осью конусного отражателя.

Технический результат достигается также тем, что в способе передачи электрической энергии путем генерации монохроматического излучения в лазере, передачи энергии излучения по лазерному лучу и преобразования монохроматического излучения в электрическую энергию в фотоприёмнике на основе скоммутированных фотопреобразователей с диодными n+-p-p+ (p+-n-n+) структурами и контактами, согласно изобретению, монохроматическое излучение со средней плотностью потока 1,0-10 Вт/см2 направляют на конусный отражатель, конусный отражатель ориентируют вершиной конуса встречно по оси потока монохроматического излучения, отражают осесимметрично монохроматическое излучение под углом 80-100º к направлению монохроматического излучения на цилиндрический фотоприёмник, направляют монохроматическое излучение параллельно плоскости контактов и n+-p-p+ (p+-n-n+) диодных структур скоммутированных фотопреобразователей цилиндрического фотоприёмника и преобразуют энергию монохроматического излучения в электрическую энергию.

Устройство и способ передачи электрической энергии показаны на фиг.1, 2, 3, 4, 5, 6.

На фиг. 1 показана схема устройства и способа передачи электрической энергии на движущиеся объекты.

На фиг. 2 показана схема устройства для приёма и преобразования лазерного излучения в электрическую энергию (продольное сечение).

На фиг. 3 показана схема фотоприёмника (поперечное сечение).

На фиг. 4 показаны оптическая схема и ход лучей в фотоприёмнике при равенстве высоты фотоприёмника и конусного отражателя.

На фиг. 5 показан ход лучей в фотоприёмнике, высота которого меньше высоты конусного отражателя.

На фиг. 6 показан ход лучей в фотоприёмнике, высота которого больше высоты конусного отражателя.

Устройство для передачи электрической энергии на фиг. 1 содержит генератор монохроматического излучения 1 и фотоприёмник 2 на основе скоммутированных фотопреобразователей 3 с диодными n+-p-p+ (p+-n-n+) структурами 4 и контактами 5 (фиг. 2, 3). Фотоприёмник 2 выполнен в виде цилиндра 6, на основании 7 которого со стороны 8, противоположной входу монохроматического излучения 9, установлен конусный отражатель 10, диаметр D основания которого равен диаметру цилиндрического фотоприёмника 2. Вершина 11 конусного отражателя 10 расположена на оси 12 цилиндрического фотоприёмника 2 со стороны входа 13 монохроматического излучения 9. Плоскости 14 диодных n+-p-p+ (p+-n-n+) структур 4 и контактов 5 на фиг. 2 и 3 перпендикулярны боковой поверхности 15 цилиндрического фотоприёмника 2 и параллельны оси 16 симметрии конусного отражателя 10. Высота цилиндрического фотоприёмника 2 и диаметр основания конусного отражателя 10 связаны соотношением

h = (ctgα – ctg2α),

где h – высота цилиндрического фотоприёмника 2;

D – диаметр основания конусного отражателя 10;

2α – угол при вершине конусного отражателя 10;

α – угол между образующей и осью 16 конусного отражателя 10.

Генератор монохроматического излучения 1 имеет систему слежения 17 за фотоприёмником 2, установленного на движущемся объекте 18. Система слежения обеспечивает попадание монохроматического излучения 9 на вход 13фотоприёмника 2 при произвольном перемещении движущегося объекта 18.

Способ передачи электрической энергии реализуется следующим образом. Генератор 1 преобразует электрическую энергию от источника питания 19 в монохроматическое излучение 9. Монохроматическое излучение со средней плотностью потока 1,0-10 Вт/см2 направляют на конусный отражатель 10, конусный отражатель 10 ориентируют вершиной конуса встречно по оси потока монохроматического излучения 9, отражают осесимметрично монохроматическое излучение 9 под углом 80-100º к направлению оси 20 монохроматического излучения9 на цилиндрический фотоприёмник 2, направляют отражённое монохроматическое излучение параллельно плоскости 14 контактов 5 и n+-p-p+ (p+-n-n+) диодных структур4 скоммутированных фотопреобразователей3 цилиндрического фотоприёмника 2 и преобразуют энергию отражённого от конусного зеркального отражателя монохроматического лазерного излучения в электрическую энергию.

Электрическую энергию передают в систему электроснабжения 21 движущегося объекта 18 для питания электрической аппаратуры и электрических движителей. Скоммутированные фотопреобразователи 3 изолируют от системы охлаждения 22 фотоприёмника 2 с помощью теплопроводящей керамики 23, выполненной, например, из AlN (фиг. 2, 3).

Распределение плотности потока излучения в поперечном сечении при потоках монохроматического лазерного излучения описывается кривой нормального распределения Гаусса

E(r) = Emax,

где Emax - максимальная плотность потока излучения на оси 20 лазерного луча;

r - расстояние от оси 20;

С - постоянная, зависящая от параметров генератора монохроматического лазерного излучения.

Для получения заданных параметров системы электроснабжения по напряжению в фотоприёмнике 2 используется последовательная коммутация фотопреобразователей 3(фиг. 2, 3). В этом случае при неравномерном освещении ток фотоприёмника определяется током наименее освещённого фотопреобразователя, что снижает КПД преобразования энергии излучения в электрическую энергию.

Предлагаемое устройство и способ передачи электрической энергии обеспечивают одинаковую плотность излучения всех скоммутированных фотопреобразователей3 в фотоприёмнике 2 как при постоянном, так и при импульсном освещении фотоприёмника 2 со средней плотностью потока излучения 1,0-10 Вт/см2.

Направление отражённого от зеркального конусного отражателя 10 потока монохроматического излучения параллельно плоскости 14 контактов 5 и плоскости n+-p-p+ (p+-n-n+) диодных структур 4 позволяет отделить друг от друга области генерации неосновных носителей заряда (электронов в р и р+ области и дырок в n и n+ области) и области переходов n+-p, p+-n, где происходит разделение и собирание носителей заряда. При этом обеспечивают ортогональность векторов фототока через p+-n и n+-p переходы и потока излучения, что приводит к снижению до нуля сопротивления растекания легированного слоя в n+ и p+ области и снижение сопротивления базовой области с n(р) типом проводимости за счёт однородной функции генерации и модуляции фотопроводимости при высокой плотности потока излучения.

На фиг. 4 показаны оптическая схема и ход лучей в фотоприёмнике 2 при α =45º, h = H.

Площадь основания зеркального конусного отражателя 10

Sосн = .

Площадь цилиндрического фотоприёмника 2

Sфп = 2πD⋅h.

Высота конусного отражателя 10

H = ctgα.

При α =45º

h = H = ,

Sфп = πD2,

Sфп / Sосн = 4.

На фиг. 5 α<45º, h<H.

Обозначим n̅ - вектор нормали, перпендикулярной к боковой поверхности конусного отражателя 10 и Δ разность между высотой Н конусного отражателя и высотой h цилиндрического фотоприёмника 2:

Δ = Н – h.

Из фиг. 5 следует, что

Δ =ctg 2α,

H =ctgα,

h = Н–Δ = (ctgα - ctg 2α),

Sфп = 2πD⋅h = πD2(ctgα - ctg 2α),

= 4(ctgα - ctg 2α),

На фиг. 6 α > 45º, H<h. Обозначим δ разность между высотой h цилиндрического фотоприёмника 2 и высотой Н конусного отражателя 10:

δ = h – Н.

Из фиг. 6 следует, что

δ = ctg(180  - 2α) = - ctg2α.

Н = h + δ = (ctgα - ctg 2α),

= 4(ctgα - ctg 2α).

Найдем минимум функции

f(α) = = 4(ctgα - ctg 2α)/

= 4(- + = 0

(

1 - = 0

cosα =

α = 45º.

При α = 45º на фиг. 4 минимум функции f(α):

minf(α)│α = 45º =

Плотность потока излучения на фотоприёмнике 2 выбирают равной Ефп= 0,25 – 2,5 Вт/см2 из условий отвода тепла от фотоприёмника 2 с помощью пассивной или активной системы охлаждения 22. Тогда плотность потока монохроматического излучения составит Ел = 4Ефп= 1-10 Вт/см2.

Пример выполнения устройства и способа передачи электрической энергии. Плотность потока излучения равна 8 Вт/см2 = 80 кВт/м2при длине волны 915-975 нм и КПД фотоприёмника ηфп = 0,4 (фиг. 1, 2, 3, 4).

При диаметре фотоприёмника D = 1 м; h = H = 0,5; α = 45º

Sосн = м2,

Sфп = 4Sосн= π, м2.

Электрическая мощность фотоприёмника

Рфп = Еηоптηфп,

где ηопт – оптический КПД передачи излучения между генератором и фотоприёмником.

Принимая Е = 80 кВт/м2; ηопт = 0,9; ηфп = 0,4; Sфп = π, м2, получим

Для получения электрической мощности Рфп = 100 кВт площадь фотоприёмника 2 составит

Sосн = = 3,47 м2.

Dфп = = 2,1 м.

Высота фотоприёмника

h = = 1,05 м.

Необходимая мощность потока монохроматического излучения генератора составит

Устройство и способ передачи электрической энергии может быть использовано для беспроводного электроснабжения стационарных потребителей, беспилотных летательных аппаратов в атмосфере Земли, космических аппаратов и орбитальных станций.

При ширине диодных n+-p-p+ (p+-n-n+) структур 0,2 мм напряжение последовательно скоммутированных фотопреобразователей составит 30 В на 1 см длины окружности фотоприёмника 2. При диаметре фотоприёмника 100 см максимально возможное напряжение фотоприёмника составит Vфп = 30 π D = 9420 В.

Для фотоприёмника мощностью 100 кВт с диаметром фотоприёмника 2,1 м максимальное возможное напряжение составит 19782 В, что достаточно для питания электроракетных двигателей космических аппаратов.


Устройство и способ передачи электрической энергии
Устройство и способ передачи электрической энергии
Устройство и способ передачи электрической энергии
Устройство и способ передачи электрической энергии
Устройство и способ передачи электрической энергии
Устройство и способ передачи электрической энергии
Источник поступления информации: Роспатент

Показаны записи 141-150 из 272.
03.10.2019
№219.017.d1d7

Способ механизации автоматизации пастбищного животноводства на базе индивидуальных мобильных экзоскелетов

Изобретение относится к сельскому хозяйству, к области механизации и автоматизации животноводства, в частности к способам разведения и выращивания сельскохозяйственных животных, и может быть эффективно использовано для пастбищного содержания сельскохозяйственных животных. Способ механизации и...
Тип: Изобретение
Номер охранного документа: 0002701814
Дата охранного документа: 01.10.2019
12.10.2019
№219.017.d4fd

Рабочий орган для рыхления почвы

Рабочий орган для рыхления почвы содержит стойку и долото. С противоположной стороны долота жестко прикреплены к стойке с двух ее противоположных сторон два демпфирующих элемента, на которых выполнены по их длине по три отверстия на равном расстоянии друг от друга для крепления крыльев, которые...
Тип: Изобретение
Номер охранного документа: 0002702551
Дата охранного документа: 08.10.2019
15.10.2019
№219.017.d56c

Агрегат прецизионной обработки почвы

Изобретение относится к области сельскохозяйственного машиностроения. Почвообрабатывающий агрегат прецизионной обработки почвы содержит несущую раму и установленные на ней рабочие органы с воздушно-импульсным приводом, На раме с возможностью демонтажа жестко закреплены выполненные в виде двух...
Тип: Изобретение
Номер охранного документа: 0002702863
Дата охранного документа: 11.10.2019
15.10.2019
№219.017.d585

Бороздователь-уплотнитель

Изобретение относится к области сельскохозяйственного машиностроения. Бороздователь-уплотнитель содержит диск (5) с перемычко-образующим вырезом, установленный на валу подшипникового узла (4). На корпусе подшипникового узла (4) закреплена поворотная стойка (1) с пружинным поводком (9) с...
Тип: Изобретение
Номер охранного документа: 0002702856
Дата охранного документа: 11.10.2019
17.10.2019
№219.017.d627

Установка для приготовления гомогенной смеси лечебных кормов, витаминных термолабильных и минеральных премиксов

Изобретение относится к сельскому хозяйству, а именно к установке для приготовления гомогенной смеси лечебных кормов, витаминных термолабильных и минеральных премиксов. Установка включает измельчитель-смеситель для первичных премиксов и сообщающийся с ним измельчитель-смеситель кормовых...
Тип: Изобретение
Номер охранного документа: 0002703196
Дата охранного документа: 15.10.2019
17.10.2019
№219.017.d710

Вихревой эжектор

Изобретение относится к области ветроэнергетики. Эжектор содержит корпус, тангенциальные патрубки входа рабочего потока газа, тангенциальный патрубок выхода смешанного потока, патрубок входа инжектируемого потока, расположенный коаксиально корпусу аппарата. Корпус вихревого эжектора сформирован...
Тип: Изобретение
Номер охранного документа: 0002703119
Дата охранного документа: 15.10.2019
19.10.2019
№219.017.d853

Универсальное дозирующее устройство

Изобретение относится к сельскохозяйственному машиностроению, в частности к пневматическим высевающим аппаратам, которые могут быть использованы в сеялках, преимущественно для однозернового высева семян при совмещенных и пунктирных посевах. Универсальное дозирующее устройство содержит семенной...
Тип: Изобретение
Номер охранного документа: 0002703482
Дата охранного документа: 17.10.2019
22.10.2019
№219.017.d894

Система смазки двигателя газотурбинной установки с утилизацией отработанного моторного масла

Изобретение относится к газотурбостроению, а именно к системам смазки газотурбинных двигателей. Система смазки двигателя газотурбинной установки снабжена трёхходовым краном для подачи масла в нагнетающую магистраль или в магистраль откачки масла для его утилизации, датчиком давления масла,...
Тип: Изобретение
Номер охранного документа: 0002703596
Дата охранного документа: 21.10.2019
26.10.2019
№219.017.db44

Секция прерывистого бороздования

Изобретение относится к области сельскохозяйственного машиностроения. Секция прерывистого бороздования содержит рамку и бороздообразующие сферические диски, установленные на закрепленных на рамке поворотных стойках. Бороздообразующие сферические диски установлены симметрично относительно...
Тип: Изобретение
Номер охранного документа: 0002704272
Дата охранного документа: 25.10.2019
30.10.2019
№219.017.dbb7

Гелиоэлектрическая установка

Изобретение относится к гелиотехнике и конструкции преобразователя солнечной энергии в тепловую с использованием механического привода электрогенератора и может применяться кроме электрогенерации в широком диапазоне отраслей и различных видов работ, где необходим механический привод как...
Тип: Изобретение
Номер охранного документа: 0002704380
Дата охранного документа: 28.10.2019
Показаны записи 61-65 из 65.
09.10.2019
№219.017.d36c

Солнечная электростанция (варианты)

Изобретение относится к области преобразования солнечной энергии в электрическую, в первую очередь к конструкции солнечных электростанций. В солнечной электростанции двухсторонние солнечные модули установлены на горизонтальной поверхности в экваториальной области от 30° ю. ш. до 30° с. ш. в...
Тип: Изобретение
Номер охранного документа: 0002702311
Дата охранного документа: 07.10.2019
06.02.2020
№220.017.ff0f

Солнечный магнитный генератор (варианты)

Изобретение относится к области электротехники и может быть использовано в электрических машинах с постоянными магнитами и солнечными модулями. Технический результат заключается в более полном использовании энергии солнечных модулей и увеличении их мощности, в снижении ЭДС самоиндукции и...
Тип: Изобретение
Номер охранного документа: 0002713465
Дата охранного документа: 05.02.2020
23.02.2020
№220.018.0540

Устройство и способ преобразования ультрафиолетового излучения в электрическую энергию

Изобретение относится к гелиотехнике, в частности к устройству и способу преобразования ультрафиолетового излучения в электрическую энергию. Устройство для преобразования ультрафиолетового излучения содержит оптический фильтр и фотоэлектрический преобразователь, между оптическим фильтром и...
Тип: Изобретение
Номер охранного документа: 0002714838
Дата охранного документа: 19.02.2020
15.05.2023
№223.018.5b2f

Гибридный солнечный модуль

Изобретение относится к гелиотехнике, в частности к солнечным энергетическим модулям для получения тепла. Технический результат заключается в увеличении КПД, увеличении среднегодовой выработки тепловой энергии, снижении массогабаритных показателей. Технический результат достигается тем, что в...
Тип: Изобретение
Номер охранного документа: 0002763781
Дата охранного документа: 11.01.2022
05.06.2023
№223.018.774e

Солнечный энергетический модуль, встроенный в фасад здания

Изобретение относится к областям электротехники и гелиотехники, в частности к встроенным в здания солнечным энергетическим модулям. Технический результат заключается в повышении коэффициента использования установленной мощности, увеличении эффективности преобразования солнечной энергии,...
Тип: Изобретение
Номер охранного документа: 0002762310
Дата охранного документа: 17.12.2021
+ добавить свой РИД