×
06.02.2020
220.017.ff0f

Результат интеллектуальной деятельности: СОЛНЕЧНЫЙ МАГНИТНЫЙ ГЕНЕРАТОР (ВАРИАНТЫ)

Вид РИД

Изобретение

№ охранного документа
0002713465
Дата охранного документа
05.02.2020
Аннотация: Изобретение относится к области электротехники и может быть использовано в электрических машинах с постоянными магнитами и солнечными модулями. Технический результат заключается в более полном использовании энергии солнечных модулей и увеличении их мощности, в снижении ЭДС самоиндукции и реакции торможения ротора при взаимодействии с магнитным полем статора. Солнечный модуль закреплён тыльной поверхностью осесимметрично через изолирующую прокладку на торце токопроводящей оси ротора. Ротор выполнен в виде проводящего диска, закреплённого осесимметрично на оси ротора под солнечным модулем с зазором на расстоянии от тыльной поверхности солнечного модуля. Токовывод от тыльной поверхности солнечного модуля соединён c электрической обмоткой в виде беличьей клетки, которая соединена с ободом проводящего диска ротора. Основной постоянный магнит статора установлен осесимметрично с зазором под проводящим диском ротора, изолирован от оси ротора и имеет площадь поверхности, соизмеримую с площадью проводящего диска ротора. По окружности беличьей клетки солнечного магнитного генератора установлены неподвижно в виде цилиндра соосно с осью ротора одноимёнными полюсами к оси ротора дополнительные постоянные магниты статора, плоскости которых перпендикулярны плоскости основного постоянного магнита статора. Один токовывод солнечного магнитного генератора выполнен в виде скользящего контакта к токовыводу на рабочей поверхности в центре солнечного модуля; второй токовывод солнечного магнитного генератора выполнен в виде скользящего контакта к оси вращения ротора. 3 н. и 6 з.п. ф-лы, 4 ил.

Изобретение относится к электротехнике, в частности, к электрическим машинам с постоянными магнитами и солнечными модулями.

Известен магнитный генератор Фарадея, содержащий медный диск, который приводится во вращение между полюсами подковообразного магнита и двух скользящих контактов, которые расположены у края диска и около оси вращения. Магнитный генератор Фарадея является обратимой электрической машиной, при подаче напряжения на скользящие контакты магнитный генератор превращается в магнитный двигатель Фарадея (Суханов Л.А., Сафиуллина Р.К., Бобков Ю.А. Электрические униполярные машины. М., ВНИИЭМ, 1964, С. 8-12). Известный магнитный генератор имеет равномерное не изменяющееся во время работы магнитное поле в роторе, что снижает потери на вихревые токи и ЭДС самоиндукции.

Недостатком известного магнитного генератора являются низкая мощность и невозможность его использования в качестве солнечного генератора электрической энергии.

Другим недостатком являются большой ток и низкое напряжение генератора, что приводит к потерям электрической энергии в скользящих контактах и проводах.

Известен солнечный магнитный двигатель Мендосино, содержащий ротор с осью вращения, подшипниками и электрической обмоткой, соединенной с токовыводами солнечного модуля из скоммутированных солнечных элементов с p-n переходами, размещенных на боковой поверхности ротора, а также неподвижный постоянный магнит, плоскость которого параллельна оси ротора. Мотор состоит из ротора многоугольного (обычно квадратного) сечения, насаженного на вал. Ротор имеет два набора обмоток с питанием от солнечных модулей. Вал расположен горизонтально, на каждом его конце находится постоянный кольцевой магнит. Магниты на валу обеспечивают левитацию, так как они находятся над отталкивающими магнитами, расположенными в основании. Дополнительный магнит, находящийся под ротором, создает магнитное поле для обмоток ротора. Когда свет падает на один из солнечных модулей, она генерирует электрический ток, который течет по обмотке ротора. Этот ток создает магнитное поле, которое взаимодействует с полем магнита под ротором. Это взаимодействие приводит ротор во вращение. При вращении ротора следующий солнечный модуль перемещается к свету и возбуждает ток во второй обмотке. Процесс повторяется до тех пор, пока на модули падает солнечный свет. Можно провести аналогию с работой коллекторного двигателя постоянного тока: вместо щеточного электрического коллектора в данном двигателе используется «световой коллектор». (Larry Spring's Magnetic Levitation Mendocino Brushless Solar Motorwww.larryspring.com/sub06_motors.html)

В известном солнечном магнитном генераторе для вращения ротора используется закон электромагнитной индукции Фарадея, электрическая энергия для питания обмоток ротора поступает от солнечного модуля.

Недостатком известного солнечного двигателя является невозможность его использования в качестве генератора электрической энергии.

Другим недостатком известного солнечного магнитного двигателя является низкая мощность из-за затенения ротором 75% площади солнечных модулей, установленных на неосвещаемой поверхности ротора.

Еще одним недостатком является низкий электрический КПД солнечного магнитного двигателя из-за явления самоиндукции в обмотке ротора, которая приводит к торможению ротора при взаимодействии с магнитным полем статора.

Задачей предлагаемого изобретения является повышение мощности, напряжения и эффективности преобразования солнечной энергии в электрическую энергию в солнечном магнитном генераторе.

Технический результат заключается в более полном использовании энергии солнечных модулей и увеличении их мощности, а также в снижении ЭДС самоиндукции и реакции торможения ротора при взаимодействии с магнитным полем статора.

Технический результат достигается тем, что в солнечном магнитном генераторе, содержащем ротор с осью вращения с установленным на роторе солнечным модулем с рабочей поверхностью, на которую падает излучение, и тыльной поверхностью, электрическую обмотку, соединенную с токовыводами солнечного модуля, а также неподвижный постоянный магнит статора, согласно изобретению, солнечный модуль закреплен тыльной поверхностью осесимметрично через изолирующую прокладку на торце токопроводящей оси ротора, ротор выполнен в виде проводящего диска, закрепленного осесимметрично на оси ротора под солнечным модулем с зазором на расстоянии от тыльной поверхности солнечного модуля, токовывод от тыльной поверхности солнечного модуля соединен с электрической обмоткой в виде беличьей клетки, которая соединена с ободом проводящего диска ротора, основной постоянный магнит статора установлен осесимметрично с зазором 0,5-5 мм под проводящим диском ротора, изолирован от оси ротора и имеет площадь поверхности, соизмеримую с площадью проводящего диска ротора, по окружности беличьей клетки солнечного магнитного генератора установлены неподвижно в виде цилиндра соосно с осью ротора одноименными полюсами к оси ротора дополнительные постоянные магниты статора, плоскости которых перпендикулярны плоскости основного постоянного магнита статора, один токовывод солнечного магнитного генератора выполнен в виде скользящего контакта к токовыводу на рабочей поверхности в центре солнечного модуля, второй токовывод солнечного магнитного генератора выполнен в виде скользящего контакта к оси вращения ротора, а размеры дополнительных магнитов статора связаны с размерами проводящего диска ротора и расстоянием между ротором и тыльной поверхностью солнечного модуля соотношениями

H≥h, мм

D>d, мм,

где H и D высота и внутренний диаметр цилиндрической поверхности дополнительных постоянных магнитов статора;

h - расстоянием между проводящим диском ротора и тыльной поверхностью солнечного модуля;

d - диаметр проводящего диска ротора.

В варианте солнечного магнитного генератора проводящий диск ротора выполнен из немагнитного материала, например, из алюминия или меди.

В другом варианте солнечного магнитного генератора проводящий диск состоит из изолированных криволинейных сегментов, соединенных между собой параллельно на оси и на ободе диска, границы между сегментами выполнены в виде логарифмической золотой спирали с координатами

,

где r и θ - радиус вектор и угол радиуса вектора в полярной системе координат;

- параметр золотого сечения;

α - постоянная, определяющая размер спирали и диска,

направления ветвей спирали совпадают с направлением вращения ротора.

Технический результат достигается также тем, что в солнечном магнитном генераторе, содержащем ротор с осью вращения с установленным на роторе солнечным модулем с рабочей поверхностью, на которую падает излучение, и тыльной поверхностью, электрическую обмотку, соединенную с токовыводами солнечного модуля, а также неподвижный постоянный магнит статора, согласно изобретению, солнечный модуль закреплен тыльной поверхностью осесимметрично через изолирующую прокладку на торце токопроводящей оси ротора, ротор выполнен в виде проводящего диска, закрепленного осесимметрично на оси ротора под изолирующей прокладкой и солнечным модулем с зазором на расстоянии от изолирующей прокладки на тыльной поверхности солнечного модуля, токовыводы солнечного модуля соединены с нагрузкой и с выводами электрической обмотки, выполненной в виде тороидальной катушки на каркасе из электроизоляционного материала и закрепленной под изолирующей прокладкой солнечного модуля осесимметрично на оси ротора, основной постоянный магнит статора установлен осесимметрично с зазором под проводящим диском ротора, изолирован от оси ротора и имеет площадь поверхности, соизмеримую с площадью проводящего диска ротора, по окружности тороидальной катушки установлены неподвижно в виде цилиндра соосно с осью ротора одноименными полюсами к оси ротора дополнительные постоянные магниты статора, плоскости которых перпендикулярны плоскости основного постоянного магнита статора, один токовывод солнечного магнитного генератора выполнен в виде скользящего контакта к ободу проводящего диска ротора, который соединен с нагрузкой и через разделительный диод с токовыводом солнечного модуля, второй токовывод солнечного магнитного генератора выполнен в виде скользящего контакта к оси вращения ротора, а размеры дополнительных магнитов статора связаны с размерами тороидальной катушки соотношениями

H≥hk, мм

D>dk, мм,

где H и D высота и внутренний диаметр цилиндрической поверхности дополнительных постоянных магнитов статора;

hk - высота тороидальной катушки;

dk - диаметр тороидальной катушки.

Еще в одном варианте солнечного магнитного генератора проводящий диск ротора выполнен из немагнитного материала, например, из алюминия или меди.

В другом варианте солнечного магнитного генератора проводящий диск состоит из изолированных криволинейных сегментов, соединенных между собой параллельно на оси и на ободе диска, границы между сегментами выполнены в виде логарифмической золотой спирали с координатами

,

где r и θ - радиус вектор и угол радиуса вектора в полярной системе координат;

- параметр золотого сечения;

α - постоянная, определяющая размер спирали и диска,

направления ветвей спирали совпадают с направлением вращения ротора.

Технический результат достигается также тем, что , содержащий ротор с осью вращения с установленным на роторе солнечным модулем с рабочей поверхностью, на которую падает излучение, и тыльной поверхностью, электрическую обмотку, соединенную с токовыводами солнечного модуля, а также неподвижный постоянный магнит статора, согласно изобретению, солнечный модуль закреплен тыльной поверхностью осесимметрично через изолирующую прокладку на торце токопроводящей оси ротора, ротор выполнен в виде проводящего диска, закрепленного осесимметрично на оси ротора под изолирующей прокладкой и солнечным модулем с зазором на расстоянии от изолирующей прокладки на тыльной поверхности солнечного модуля, токовыводы солнечного модуля соединены с нагрузкой и с выводами электрической обмотки, выполненной в виде тороидальной катушки на каркасе из электроизоляционного материала и закрепленной под изолирующей прокладкой солнечного модуля осесимметрично на оси ротора, основной постоянный магнит статора установлен осесимметрично с зазором под проводящим диском ротора, изолирован от оси ротора и имеет площадь поверхности, соизмеримую с площадью проводящего диска ротора, по окружности тороидальной катушки установлены неподвижно в виде цилиндра соосно с осью ротора одноименными полюсами к оси ротора дополнительные постоянные магниты статора, плоскости которых перпендикулярны плоскости основного постоянного магнита статора, один токовывод солнечного магнитного генератора выполнен в виде скользящего контакта к ободу проводящего диска ротора, который соединен с нагрузкой и через разделительный диод с токовыводом солнечного модуля, второй токовывод солнечного магнитного генератора выполнен в виде скользящего контакта к оси вращения ротора, соединен с другим токовыводом нагрузки и со вторым токовыводом солнечного модуля, а размеры дополнительных магнитов статора связаны с размерами тороидальной катушки соотношениями

H≥hk, мм

D>dk, мм,

где H и D - высота и внутренний диаметр цилиндрической поверхности дополнительных постоянных магнитов статора;

hk - высота тороидальной катушки;

dk - диаметр тороидальной катушки.

В другом варианте солнечного магнитного генератора проводящий диск ротора выполнен из немагнитного материала, например, из алюминия или меди.

Еще в одном варианте солнечного магнитного генератора проводящий диск состоит из изолированных криволинейных сегментов, соединенных между собой параллельно на оси и на ободе диска, границы между сегментами выполнены в виде логарифмической золотой спирали с координатами

,

где r и θ - радиус вектор и угол радиуса вектора в полярной системе координат;

- параметр золотого сечения;

α - постоянная, определяющая размер спирали и диска,

направления ветвей спирали совпадают с направлением вращения ротора.

Солнечный магнитный генератор иллюстрируется чертежами, где на фиг. 1 представлена конструкция солнечного магнитного генератора с электрической обмоткой в виде беличьей клетки; на фиг. 2 - солнечный магнитный генератор с электрической обмоткой в виде тороидальной катушки; на фиг. 3 - солнечный магнитный генератор с параллельным соединением электрических цепей солнечного модуля и дискового ротора; на фиг. 4 - вид в плане дискового ротора с четырьмя сегментами, границы которых выполнены в виде золотой логарифмической спирали.

Солнечный магнитный генератор на фиг. 1 содержит ротор 1 с осью вращения 2 с установленным на роторе солнечным модулем 3 с рабочей поверхностью 4, на которую падает излучение, и тыльной поверхностью 5, электрическую обмотку 6, соединенную с токовыводами 7 и 8 солнечного модуля 3, а также неподвижный постоянный магнит 9 статора. Солнечный модуль 3 закреплен тыльной поверхностью 5 осесимметрично через изолирующую прокладку 10 на торце 11 токопроводящей оси 2 ротора. Ротор 1 выполнен в виде проводящего диска 12, закрепленного осесимметрично на оси 2 ротора под солнечным модулем 3 с зазором на расстоянии h от тыльной поверхности5 солнечного модуля 3. Токовывод 8 от тыльной поверхности 5 солнечного модуля 3 соединен c электрической обмоткой в виде беличьей клетки 13 с ободом 14 проводящего диска 12 ротора. Основной постоянный магнит 9 статора установлен осесимметрично с зазором под проводящим диском 12 ротора, изолирован от оси 2 ротора и имеет площадь поверхности, соизмеримую с площадью проводящего диска 12 ротора, по окружности электрической обмотки в виде беличьей клетки 13 солнечного магнитного генератора

установлены неподвижно в виде цилиндра соосно с осью 2 ротора одноименными полюсами к оси 2 ротора дополнительные постоянные магниты15 статора, плоскости 16 которых перпендикулярны плоскости 17 основного постоянного магнита 9 статора, один токовывод 18 солнечного магнитного генератора выполнен в виде скользящего контакта 19 к токовыводу 7 на рабочей поверхности 4 в центре солнечного модуля 3, второй токовывод 20 солнечного магнитного генератора выполнен в виде скользящего контакта 21 к оси вращения 2 ротора, а размеры дополнительных магнитов 15 статора связаны с размерами проводящего диска 12 ротора и расстоянием между ротором 1 и тыльной поверхностью 5 солнечного модуля 3 соотношениями

H≥h, мм

D>d, мм,

где H и D - высота и внутренний диаметр цилиндрической поверхности 22 дополнительных постоянных магнитов 15 статора;

h - расстоянием между проводящим диском 12 ротора 1 и тыльной поверхностью 5 солнечного модуля 3;

d - диаметр проводящего диска 12 ротора 1.

Проводящий диск 12 ротора 1 выполнен из немагнитного материала, например, из алюминия или меди.

На фиг. 2 токовывод 8 от тыльной поверхности 5 солнечного модуля 3 соединен с одним выводом 23 электрической обмотки 24, выполненной в виде тороидальной катушки 25 на каркасе 26 из электроизоляционного материала и закрепленной под изолирующей прокладкой 27 солнечного модуля 3 осесимметрично на оси 2 ротора 1, второй вывод 28 электрической обмотки 24 соединен с ободом 14 проводящего диска 12 ротора 1, по окружности тороидальной катушки 25 установлены неподвижно в виде цилиндра 29 соосно с осью 2 ротора 1 одноименными полюсами к оси 2 ротора дополнительные постоянные магниты 15 статора, плоскости 16 которых перпендикулярны плоскости 17 основного постоянного магнита 9 статора, а размеры дополнительных магнитов 15 статора связаны с размерами тороидальной катушки 25 соотношениями

H≥hk, мм

D>dk, мм,

где H и D - высота и внутренний диаметр цилиндрической поверхности дополнительных постоянных магнитов статора;

hk - высота тороидальной катушки ротора;

dk - диаметр тороидальной катушки.

На фиг. 3 токовыводы 7 и 8 солнечного модуля соединены с нагрузкой Rн и с выводами 23 и 28 электрической обмотки 24, выполненной в виде тороидальной катушки 25 на каркасе 26 из электроизоляционного материала и закрепленной под изолирующей прокладкой 27 солнечного модуля 3 осесимметрично на оси 2 ротора 1. Один токовывод 30 ротора 1 выполнен в виде скользящего контакта 31 к ободу 14 проводящего диска 12 ротора 1. Токовывод 30 ротора соединен с одним токовыводом нагрузки Rн и через разделительный диод 32 соединен с токовыводом 7 солнечного модуля 3. Второй токовывод 32 ротора 1 выполнен в виде скользящего контакта 33 к оси вращения 2 ротора 1 и соединен с другим токовыводом нагрузки Rн. Второй вывод 32 соединен с токовыводом 8 солнечного модуля 3 проводниками 34 и 35.

На фиг. 4 проводящий диск 36 ротора 1 состоит из четырех изолированных друг от друга криволинейных сегментов 37, соединенных между собой параллельно на оси 2 и на ободе 14 проводящего диска 12 ротора 1, границы 38 между сегментами 37 выполнены в виде логарифмической золотой спирали 39 с координатами

,

где r и θ - радиус вектор и угол радиуса вектора в полярной системе координат;

- параметр золотого сечения;

α - постоянная, определяющая размер спирали 39 и проводящего диска 12. Направления ветвей спирали 39 совпадают с направлением вращения ротора 1. Сегменты 37 соединены между собой параллельно в центре у оси 2 проводящего диска 12 и на ободе 14 диска 12 за счет того, что границы 38 между сегментами 37 начинаются на некотором расстоянии от оси 2 и центра проводящего диска 12, где R - радиус оси ротора, и заканчиваются на расстоянии δ от обода 14 проводящего диска 12.

Солнечный магнитный генератор работает следующим образом (фиг. 1).

При освещении солнечного модуля 3 при наличии внешней нагрузки Rн вольтамперная характеристика (BАХ) солнечного модуля 3 имеет вид:

,

где V, I - напряжение и ток солнечного модуля при сопротивлении нагрузки Rн;

Iф - фототок;

Iкз - ток короткого замыкания генератора при Rн=0;

Is - темновой ток насыщения;

Rш - сопротивление, шунтирующее p-n переход;

k - постоянная Больцмана;

Т - температура, К;

А - коэффициент, учитывающий отклонение ВАХ от идеальной;

Rн - последовательное сопротивление, включающее внутреннее сопротивление солнечного модуля 3, сопротивление скользящих контактов 19 и 21 проводящего диска 12 и внешних проводников 37 и 38.

При Rn = 0, V = 0 ток короткого замыкания Iкз=Iф.

В солнечном модуле 3 при малом Rn максимальный ток I при оптимальной нагрузке Rн незначительно, но отличается от тока Iкз:

Это позволяет использовать солнечный модуль 3 для питания внешней нагрузки 39.

При освещении солнечного модуля 3 солнечным излучением через электрическую обмотку 6, а также между ободом 14 и центром проводящего диска 12 через внешние неподвижные проводники 37 и 38 и сопротивление нагрузки протекает ток I.

Взаимодействие магнитных полей дополнительных постоянных магнитов 15 статора и тока в электрической обмотке 6 приводит к вращению обмотки 6 и ротора 1 вокруг оси 2.

При вращении ротора 1 в магнитном поле постоянного магнита 9 возникает эффект униполярной индукции, и в проводящем диске 12 возникает напряжение между центром и ободом 14 проводящего диска 12, которое пропорционально произведению числа оборотов на магнитный поток (Электрические униполярные машины. Под ред. Л.А. Суханова. - М.: ВНИЭМ, 1964. - 136 с.)

При вращении проводящего диска 12 между центром и ободом проводящего диска 12 возникают токи, которые своим магнитным полем усиливают внешнее магнитное поле постоянного магнита 9. Этот результат совершенно противоположен тому, который проявляется в солнечном магнитном двигателе Мендосино, в котором ток в обмотке ротора из-за явления самоиндукции противодействует внешнему магнитному полю.

Направление вращения проводящего диска 12 изменяют путем изменения полярности полюсов дополнительных постоянных магнитов 9 или изменением полярности выводов электрической обмотки 6.

Напряжение солнечного модуля 3 и напряжение на проводящем диске 12 на фиг. 1 и 2 складываются при последовательном соединении токовыводов солнечного модуля 3 с контактами проводящего диска 12, что приводит к увеличению мощности солнечного магнитного генератора. Ток I солнечного модуля 3 при последовательном соединении равен току в проводящем диске 12 ротора 1 и току, протекающему через солнечный модуль 3, нагрузку Rн и скользящие контакты 19 и 21.

На фиг. 4 токи через нагрузку солнечного модуля 3 и ток в проводящем диске 12 складываются при параллельном соединении цепи солнечного модуля и магнитного генератора, что также приводит к увеличению мощности солнечного магнитного генератора.

На фиг. 4 разделение проводящего диска 12 на сегменты 37производят путем фрезерования границ 38 сегментов 37 или путем удаления части медного покрытия на границах 38 сегментов 37 при использовании в качестве проводящего диска 12 фольгированного стеклотекстолита с медным покрытием.

Разделение проводящего диска 12 на криволинейные изолированные сегменты 37 с границами 38 в виде логарифмических спиралей золотого сечения увеличивает длину пути носителей тока электронов в направлении движения диска в 5-10 раз по сравнению с радиальным движением тока в неразделенном проводящем диске 12, что значительно усиливает внешнее магнитное поле за счет магнитного поля тока в сегментах 37 ротора 1 и приводит к увеличению напряжения и мощности солнечного магнитного генератора.

Пример выполнения солнечного магнитного генератора.

На горизонтальный медный диск 12 диаметром d = 100 мм толщиной 1 мм (фиг. 2) через слой стеклоткани приклеен солнечный модуль 3 из двух скоммутированных последовательно солнечных элементов из кремния, выполненных из половины диска диаметром 100 мм. Токовывод 8 солнечного модуля 3 с тыльной поверхности 5 соединен с выводом 23 электрической обмотки 24, выполненной в виде тороидальной катушки 25 из 60 витков, расположенных на пластиковом каркасе высотой h = 30 мм. Второй вывод 28 электрической обмотки 24 соединен с ободом проводящего диска 12. Токовывод солнечного модуля 3 на рабочей освещаемой поверхности и соединен в центре солнечного модуля 3 со скользящим контактом 19. Проводящий диск 12 в центре соединен с осью 2 из латуни диаметром 6 мм. Постоянный Nd магнит 9 диаметром 100 мм и толщиной 5 мм с центральным отверстием 8 мм закреплен неподвижно осесимметрично под проводящим диском 12.

По окружности диаметром D = 110 мм вокруг тороидальной катушки 25 с зазором 5 мм установлены постоянные магниты 15 размером 30 × 20 × 5 мм, Н = 30 мм, обращенных северным полюсом к оси 2 ротора 1.

Ось вращения 2 закреплена на подшипнике 40, установленном на раме 41. При стандартном солнечном освещении плотностью потока 1000 Вт/м2 рабочий ток солнечного модуля 3 составляет 2 А, напряжение солнечного модуля 1 В, электрическая мощность 2 Вт, скорость вращения 500 об/мин, напряжение на нагрузке 1,5 В, электрическая мощность солнечного магнитного генератора на нагрузке 3 Вт. В качестве нагрузки использована аккумуляторная батарея.

Преимуществом предлагаемого солнечного магнитного генератора являются круговая симметрия магнитного поля в проводящем диске 12 и отсутствие потерь от вихревых токов при вращении ротора 1 в осесимметричном магнитном поле, так как напряженность магнитного поля в роторе, в отличие от прототипа, не изменяется во времени.

По сравнению с прототипом солнечный магнитный генератор создает при взаимодействии магнитных полей ротора и статора вращающий момент на валу и вырабатывает электрическую энергию на нагрузке, то есть выполняет функции двигателя и генератора. При вращении проводящего диска 12 между центром и ободом 14 проводящего диска 12 появляется напряжение, которое суммируется с напряжением солнечного модуля при надлежащем выборе полярности полюсов магнитов 9 и 15,полярности напряжения на электрической обмотке и направления вращения. В результате увеличиваются электрическая мощность солнечного магнитного генератора и эффективность преобразования солнечной энергии.


СОЛНЕЧНЫЙ МАГНИТНЫЙ ГЕНЕРАТОР (ВАРИАНТЫ)
СОЛНЕЧНЫЙ МАГНИТНЫЙ ГЕНЕРАТОР (ВАРИАНТЫ)
СОЛНЕЧНЫЙ МАГНИТНЫЙ ГЕНЕРАТОР (ВАРИАНТЫ)
СОЛНЕЧНЫЙ МАГНИТНЫЙ ГЕНЕРАТОР (ВАРИАНТЫ)
СОЛНЕЧНЫЙ МАГНИТНЫЙ ГЕНЕРАТОР (ВАРИАНТЫ)
Источник поступления информации: Роспатент

Показаны записи 31-40 из 272.
25.08.2017
№217.015.b842

Высаживающий аппарат картофелесажалки

Высаживающий аппарат картофелесажалки содержит бункер 1, ленточный элеваторный высаживающий аппарат 2, вычерпывающие ложечки 3. Ленточный элеватор высаживающего аппарата 2 снабжен жестко закрепленными на нем транспортирующими ложечками 4. По форме транспортирующие ложечки 4 аналогичны...
Тип: Изобретение
Номер охранного документа: 0002615345
Дата охранного документа: 04.04.2017
25.08.2017
№217.015.b858

Лемех плуга

Изобретение относится к области сельскохозяйственного машиностроения. Лемех плуга содержит остов с полевым и бороздным обрезами, спинку, режущую часть с лезвием и накладное долото. Накладное долото выполнено в виде параллелограмма. Накладное долото установлено под углом к спинке, при этом угол...
Тип: Изобретение
Номер охранного документа: 0002615355
Дата охранного документа: 04.04.2017
25.08.2017
№217.015.b891

Однодисково-анкерный сошник

Изобретение относится к сельскохозяйственному машиностроению. Однодисково-анкерный сошник содержит корпус с узлом крепления его к поводку, плоский диск, устанавленный под углом к направлению движения, семятуконаправитель, анкер-ложеобразователь, наружняя боковина которого выполнена в виде...
Тип: Изобретение
Номер охранного документа: 0002615347
Дата охранного документа: 04.04.2017
25.08.2017
№217.015.b90e

Борона противоэрозионная

Изобретение относится к области сельского хозяйства. Борона противоэрозионная содержит ряды дисковых секций с подшипниковым узлом и стойкой, а также размещенные между дисками секции с регулируемым углом атаки. Диски секций заднего ряда размещены в междуследии дисков секций переднего ряда....
Тип: Изобретение
Номер охранного документа: 0002615341
Дата охранного документа: 04.04.2017
25.08.2017
№217.015.b911

Вычесыватель-измельчитель

Изобретение относится к области сельского хозяйства. Вычесыватель-измельчитель содержит раму с присоединительным устройством, механизмы привода, вычесывающий барабан с валом и С-образными зубьями, закрепленными на фланцах. Дисковые ножи размещены перед барабаном. Сзади барабана установлены...
Тип: Изобретение
Номер охранного документа: 0002615340
Дата охранного документа: 04.04.2017
25.08.2017
№217.015.b917

Устройство для снятия плодов

Изобретение относится к устройствам для сбора фруктов с деревьев. Включает рукоятку и закрепленный на ней нож. Снабжено корпусом с крышкой, мини-электроприводом с блоком питания, выключателем, кожухом, кольцом с приемным мешком, установленным сверху. Нож размещен в корпусе и выполнен в виде...
Тип: Изобретение
Номер охранного документа: 0002615339
Дата охранного документа: 04.04.2017
25.08.2017
№217.015.b924

Способ безопасной сушки семян в плотном слое

Изобретение относится к сушке семян преимущественно ценных сортов и может быть применено в сельском хозяйстве и в системе заготовок. В процессе сушки семена загружают неподвижным слоем высотой 0,4-0,5 м в сушилку, воздействуют агентом сушки с расходом 1800-1900 м/(м⋅ч), охлаждают и разгружают....
Тип: Изобретение
Номер охранного документа: 0002615350
Дата охранного документа: 04.04.2017
25.08.2017
№217.015.b929

Способ раздельного возделывания топинамбура

Изобретение относится к области сельского хозяйства. Способ заключается в обработке почвы, посадке клубней, проведении междурядных обработок и уборке. При этом на одной части поля размещают топинамбур на клубни, а на другой - на зеленую массу. Перед уборкой на клубни зеленую массу скашивают и...
Тип: Изобретение
Номер охранного документа: 0002615342
Дата охранного документа: 04.04.2017
25.08.2017
№217.015.bd45

Станок для искусственного осеменения телок и коров

Изобретение относится к животноводству и может использоваться для фиксации коров для проведения искусственного осеменения. Станок состоит из соединенных аркой боковых стоек с опорами, несущими подвижные перекрывающие передние створки, являющиеся выходными, с закрепленным на арке рычагом...
Тип: Изобретение
Номер охранного документа: 0002616360
Дата охранного документа: 14.04.2017
25.08.2017
№217.015.bf11

Система питания газодизеля

Изобретение относится к машиностроению. Система питания газодизеля содержит линию подачи газа, связывающую источник газового топлива с впускным коллектором двигателя, и линию питания жидким топливом с насосом высокого давления. Система снабжена электронным блоком управления, управляющим...
Тип: Изобретение
Номер охранного документа: 0002617017
Дата охранного документа: 19.04.2017
Показаны записи 31-40 из 65.
12.01.2017
№217.015.5d0d

Способ и сетевая система обеспечения безопасности производства с применением интеллектуальных графических описаний нештатных ситуаций

Изобретение относится к средствам организации безопасного производства. Технический результат - повышение эффективности систем обеспечения безопасности производства и систем электронного обучения. Система содержит блок автоматизированных рабочих мест, компьютерные и телекоммуникационные системы...
Тип: Изобретение
Номер охранного документа: 0002591008
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.762e

Параметрический резонансный генератор

Изобретение относится к электротехнике, в частности к резонансным преобразователям электрической энергии на основе параметрических резонансных генераторов. Задачей предлагаемого изобретения является увеличение мощности и снижение зависимости вырабатываемой электроэнергии параметрического...
Тип: Изобретение
Номер охранного документа: 0002598688
Дата охранного документа: 27.09.2016
13.01.2017
№217.015.7a38

Солнечный модуль с концентратором

Изобретение относится к гелиотехнике, в частности к солнечным модулям с концентраторами солнечного излучения для получения электричества и тепла. В солнечном модуле, содержащем концентратор и приемник излучения и имеющем рабочую поверхность, на которую падает солнечное излучение и на которой...
Тип: Изобретение
Номер охранного документа: 0002599076
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7e34

Устройство и способ усиления электрических сигналов (варианты)

Изобретение относится к электротехнике и может использоваться в усилителях мощности. Достигаемый технический результат - увеличение коэффициента усиления и снижение зависимости параметров усиления электрических сигналов от величины нагрузки. Устройство усиления электрических сигналов содержит...
Тип: Изобретение
Номер охранного документа: 0002601144
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.826f

Кремниевый двухсторонний солнечный элемент и способ его изготовления

Изобретение относится к электронной технике, а именно к приборам, преобразующим энергию электромагнитного излучения в электрическую, в частности к кремниевым солнечным элементам и технологии их изготовления. В кремниевом двухстороннем солнечном элементе, выполненном в виде матрицы из...
Тип: Изобретение
Номер охранного документа: 0002601732
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.9237

Параметрический резонансный генератор и способ возбуждения в генераторе электрических колебаний

Изобретение относится к электротехнике, к резонансным преобразователям электрической энергии на основе параметрических резонансных генераторов. Технический результат состоит в повышении мощности и снижении зависимости вырабатываемой электроэнергии параметрического резонансного генератора от...
Тип: Изобретение
Номер охранного документа: 0002605764
Дата охранного документа: 27.12.2016
24.08.2017
№217.015.9616

Солнечный модуль с концентратором (варианты)

Изобретение относится к гелиотехнике, в частности к солнечным модулям с концентраторами солнечного излучения для получения электричества и тепла. В солнечном модуле с концентратором, имеющем рабочую поверхность, на которую падает солнечное излучение, концентратор и приемник излучения, на...
Тип: Изобретение
Номер охранного документа: 0002608797
Дата охранного документа: 24.01.2017
25.08.2017
№217.015.ad4d

Гибридная кровельная солнечная панель

Изобретение относится к устройству кровельных панелей для крыш зданий и сооружений со встроенными солнечными модулями. Гибридная кровельная солнечная панель, установленная на крыше здания, нормаль к поверхности крыши находится в меридиональной плоскости, содержит корпус и защитное покрытие на...
Тип: Изобретение
Номер охранного документа: 0002612725
Дата охранного документа: 13.03.2017
25.08.2017
№217.015.ad73

Солнечная электростанция

Изобретение относится к области преобразования солнечной энергии в электрическую и тепловую, к конструкции солнечных электростанций с концентраторами. Солнечная электростанция содержит концентраторы, систему слежения и фотоприемники в фокальной области каждого концентратора, установленные в...
Тип: Изобретение
Номер охранного документа: 0002612670
Дата охранного документа: 13.03.2017
25.08.2017
№217.015.b820

Устройство и способ передачи электрической энергии (варианты)

Изобретение относится к области электротехники, в частности к беспроводной передачи электрической энергии. Задачей настоящего изобретения является устройства для беспроводной передача электрической энергии в атмосфере. Технический результат заключается в повышении эффективности и надежности...
Тип: Изобретение
Номер охранного документа: 0002614987
Дата охранного документа: 03.04.2017
+ добавить свой РИД