×
06.02.2020
220.017.fef2

Результат интеллектуальной деятельности: Способ и устройство для локального механического воздействия на биохимические системы, содержащие магнитные наночастицы

Вид РИД

Изобретение

Аннотация: Группа изобретений относится к области биомедицины и биомедицинской техники и может быть использована как в исследовательских, так и прикладных задачах биомедицины: разработка новых технологий в области адресной доставки лекарств, исследование наномеханического воздействия на макромолекулярные и клеточные структуры с целью управления их функционированием, онкотерапии и др. Способ оказания локального воздействия переменного магнитного поля на биохимические системы с предварительно введенными в них функционализированными магнитными наночастицами заключается в управлении магнитными наночастицами с помощью комбинации постоянного градиентного магнитного поля напряженностью и переменного магнитного поля с амплитудой , согласно изобретению для локализации воздействия в области радиусом R* осуществляют периодическую переориентацию магнитных наночастиц в низкочастотном переменном магнитном поле с амплитудой и угловой частотой меньше любой (или меньшей) из двух величин - 1000 с и (где μ - магнитный момент магнитной наночастицы, V - ее гидродинамический объем, μ - магнитная проницаемость вакуума, η - вязкость окружающей среды). Устройство для локального наномеханического воздействия на биохимические системы, содержащие магнитные наночастицы, состоящее из узла, генерирующего градиентное магнитное поле H, узла катушек, создающих однородное магнитное поле H, которое изменяет положение области воздействия переменного магнитного поля, узла катушек, создающих переменное поле, которое управляет движением магнитных наночастиц, и управляемых источников постоянного и переменного тока для питания соответствующих катушек. Узел катушек, создающих переменное магнитное поле, генерирует магнитное поле с угловой частотой меньше любой из двух величин – 1000 си ω=μμH/(6ηV) (где μ - магнитный момент магнитной наночастицы, V - ее гидродинамический объем, μ - магнитная проницаемость вакуума, η - вязкость окружающей среды), обеспечивая периодическую механическую переориентацию магнитных наночастиц. Способ и устройство обеспечивают наномеханическое воздействие на отдельные молекулы и молекулярные структуры или клетки в выбранном ограниченном объёме биохимической системы с введёнными в неё магнитными наночастицами за счёт периодической переориентации магнитных наночастиц в низкочастотное переменное магнитное поле. 2 н. и 7 з.п. ф-лы, 4 ил.

Группа изобретений относится к области биомедицины и биомедицинской техники и может быть использовано как в исследовательских, так и прикладных задачах биомедицины: разработка новых технологий нанобиомедицины в области адресной доставки лекарств, исследование наномеханического воздействия на макромолекулярные и клеточные структуры, в том числе с целью управления их функционированием, в частности, в интересах онкотерапии и др.

Далее в описании используются следующие термины, которые, хотя и являются общепринятыми для специалистов в данной области техники, однако, требуют уточнения в контексте заявляемого изобретения.

ПМП - переменное магнитное поле;

НЧ - низкая частота;

ВЧ - высокая частота;

МНЧ -магнитные наночастицы;

МП - магнитное поле;

MPI - способ и устройство визуализации магнитных наночастиц (англ. magneticparticleimaging);

Группа изобретений предназначена для обеспечения локального воздействия переменного магнитного поля (ПМП) низкой частоты (НЧ) на биохимические системы, например, биоактивные молекулы и их комплексы, микроорганизмы, клеточные культуры, ткани, лабораторных животных, человека. При этом в биохимическую систему должны быть предварительно введены однодоменные магнитные наночастицы (МНЧ) преобразующие энергию НЧ МП в энергию вращательно - колебательных движений. Предлагаемые способ и устройство позволяют оказывать наномеханическое воздействие на отдельные биомакромолекулы и молекулярные структуры через конъюгированные с ними МНЧ или микроустройства на их основе без существенного разогрева в заранее намеченной (выбранной) области биохимической системы, не оказывая при этом воздействия в остальном объеме этой системы. При этом, можно управлять положением области воздействия и ее размерами для обеспечения 3D сканирования заранее намеченного объема (например, опухоли), не затрагивая окружающие ткани.

Из существующего уровня техники известны способы (US 4674481 A, US 5441532 A, US 5097844 А) локализации воздействия высокочастотного (ВЧ) ПМП на МНЧ, которые могут быть использованы для воздействия на биохимические системы путем преобразования энергии ПМП в тепловую энергию (магнитная гипертермия).

В патенте US 4674481 А описано устройство и способ локализации теплового воздействия ВЧ магнитного поля, основанные на изменении взаимной пространственной ориентации двух колец индуктивности.

В патенте US 5441532 А описывается устройство для проведения локальной терапии методом гипертермии с помощью набора катушек индуктивности, расположенных вокруг пациента и специфических алгоритмов, заложенных в управляющей системе. Такая система позволяет создать и управлять положением области с повышенной, по сравнению с остальной частью рабочего пространства, напряженностью высокочастотного (ВЧ) магнитного поля.

В патенте US 5097844 А описано устройство для локализации гипертермии в пространстве с помощью нескольких групп электромагнитных катушек, составленных из трех каждая, которые в совокупности создают поле с повышенной напряженностью ВЧ магнитного поля в определенной области организма человека по сравнению с окружающими тканями.

Недостатками упомянутых способов и соответствующих устройств является то, что локализация основана на создании области с повышенной напряженностью ПМП, что, во-первых, усложняет создание и применение устройств из-за большой мощности генераторов, во-вторых, создаваемое поле влияет на МНЧ, находящиеся вне интересующей зоны. Заявляемый способ и устройство основаны не на фокусировке управляющего ПМП в определенной области пространства, а на создании дополнительного градиентного поля, обеспечивающего блокировку движения МНЧ под действием внешнего НЧ ПМП за счет магнитного насыщения повсюду, кроме небольшой области, положение которой может регулироваться за счет смещающих магнитных полей.

В научной литературе, например, Tasci, Т.О., Vargel, I., Arat, A., Guzel, Е., Korkusuz, P., &Atalar, E. (2009). Focused RF hyperthermiausingmagneticfluids. Medicalphysics, 56(5), 1906-1912 описывается способ локализации области воздействия ВЧ магнитного поля, аналогичный предлагаемому и основанный на создании градиентного поля, создаваемого электромагнитными катушками. Из другого литературного источника (Jian, L., Shi, Y., Liang, J., Liu, С., &Xu, G. (2013). A novel targeted magnetic fluid hyperthermia system using HTS coil array for tumor treatment. IEEETransactionsonAppliedSuperconductivity, 23(3), 4400104-4400104) известен способ локализации гипертермии с помощью шести сверхпроводящих катушек, создающих экранирующее постоянное поле вокруг области воздействия ВЧ ПМП, с низкой напряженностью поля в рабочей области (области интереса), где МНЧ вызывают локальный нагрев тканей при включении высокочастотного поля.

Из существующего уровня техники известно устройство (RU 2593238) для исследования воздействия низкочастотного магнитного поля на кинетику биохимических процессов в биологических системах, содержащих магнитные наночастицы. Это устройство позволяет оказывать воздействие низкочастотным магнитным полем на магнитные наночастицы с целью управления функционированием биохимических систем.

Недостатком этого устройства является невозможность оказания локального воздействия ПМП на МНЧ в выбранной области, воздействие магнитного поля охватывает всю рабочую область устройства.

Из существующего уровня техники известен способ и устройство визуализации магнитных наночастиц (англ. magneticparticleimaging (MPI)), закрепленный патентами WO 2011116229 А2, WO 2008/078246 А2 и описанный в научной литературе, например, Weizenecker, J., Gleich, В., Rahmer, J., Dahnke, H., &Borgert, J. (2009). Three-dimensional real-time in vivo magnetic particle imaging. Physics in medicine and biology, 54(5), L1. и Т. Knopp, T.M. Buzug. (2012) Magnetic Particle Imaging: An Introduction to Imaging Principles and Scanner Instrumentation. SpringerScience&BusinessMedia. 204 p.Упомянутый способ основан на создании двух областей: 1) с низкой напряженностью поля, где МНЧ находятся в ненасыщенном состоянии и 2) области с высокой напряженностью поля, где МНЧ находятся в насыщенном состоянии. Способ и устройства, описанные в указанных источниках, позволяют, используя систему, состоящую из выбирающего узла (selectionmeans), сдвигающего узла (drivemeans) и узла регистрации сигнала (receivingmeans), которые строятся, как правило, на основе электромагнитных катушек, визуализировать пространственную плотность распределения МНЧ в исследуемом объекте в реальном времени.

На базе принципов, положенных в основу MPI, запатентован способ локального нагрева с помощью магнитных частиц, (заявка WO 2004018039 А1, МПК A61H 1/40, A61N 2/00; A61N 1/40, 2004), который принят в качестве прототипа заявляемого способа. Общими признаками заявляемого способа и известного являются последовательность действий для локализации действия ПМП путем создания градиентного магнитного поля.

Недостатком известного способа является невозможность локализации нагрева, создаваемого МНЧ, в живых тканях в объеме менее 1 см3 в результате теплопроводности окружающих тканей, что ослабляет или сводит к нулю преимущества локализации воздействия ВЧ ПМП.

Заявляемый способ позволяет преодолеть этот недостаток за счет принципиально иного механизма действия, так как создает наномеханическое воздействие на биохимические системы с помощью периодической переориентации МНЧ без их значимого нагрева во внешнем НЧ ПМП. В этом заключается принципиальное отличие от прототипа, поскольку наномеханическое воздействие может быть локализовано на уровне отдельных биоактивных макромолекул и клеток.

Техническим результатом по объекту «способ» является локализация и изменение положения области конечного наномеханического воздействия МНЧ на молекулярные объекты биохимической системы за счет создания дополнительного градиентного поля с нулевой точкой и применения НЧ ПМП, вызывающего переориентацию МНЧ, что в свою очередь создает наномеханическое воздействие на отдельные биомакромолекулы или клетки и не распространяется самопроизвольно в объем всей биохимической системы.

Технический результат достигается способом оказания локального воздействия переменного магнитного поля на биохимические системы с предварительно введенными в них функционализированными магнитными наночастицами, заключающемся в управлении магнитными наночастицами с помощью комбинации постоянного градиентного магнитного поля напряженностью и переменного магнитного поля с амплитудой и перемещении области воздействия с помощью регулируемого по напряженности однородного магнитного поля Hb, согласно изобретению, для локализации воздействия в области радиусом R* осуществляют периодическую переориентацию магнитных наночастиц в низкочастотном переменном магнитном поле с амплитудой и угловой частотой меньше любой (или меньшей) из двух величин - 1000 с-1 и (где μ - магнитный момент магнитной наночастицы, VHD - ее гидродинамический объем, μ0 - магнитная проницаемость вакуума, η - вязкость окружающей среды).

Перед включением переменного и градиентного магнитных полей предварительно включают постоянное однородное магнитное поле напряженностью H0, способствующее агрегации магнитных наночастиц, что в свою очередь, усиливает наномеханической воздействие или позволяет снизить напряженность всех магнитных полей, используемых при реализации.

Переменное магнитное поле генерируют в виде последовательных пакетов и пауз с регулируемой длительностью te и tp соответственно, что позволяет увеличить эффективность наномеханического воздействия.

Размер области локализации увеличивают или уменьшают путем увеличения или уменьшения величины градиента локализирующего постоянного магнитного поля соответственно.

Переменное магнитное поле может иметь вращающийся вектор напряженности что увеличивает возможные деформации в конъюгированных биомакромолекулах.

Переменное магнитноеполе с напряженностью может генерироваться во времени как меандр, путем периодического переключения его направления на противоположное, что упрощает и удешевляет способ и устройство для его реализации.

Переменное магнитное поле может иметь вид затухающих во времени колебаний, разделенных паузами, что позволяет увеличить мгновенные значения напряженности переменного магнитного поля без увеличения средней мощности генератора.

Направление градиента может периодически изменятся, причем длительность фронта изменения направления градиента магнитного поля устанавливают меньше, чем продолжительность изменения направления вектора намагниченности магнитных наночастиц, что вызывает полезное повышение концентрации магнитных частиц вблизи точки с нулевым значением градиентного магнитного поля и уменьшение их концентрации на периферии.

В качестве прототипа устройства выбрано устройство, описанное в заявке WO 2004018039 А1, МПК A61N 1/40, A61N 2/00; A61N 1/40, 2004. Общими признаками заявляемого устройства и известного являются узел, генерирующий градиентное магнитное поле, узел смещающих катушек, изменяющих положение области воздействия переменного магнитного поля, узел управляющих катушек, создающих переменное поле, управляемые источники постоянного и переменного тока.

Техническим результатом по объекту «устройство» также является локализация конечного наномеханического воздействия МНЧ на молекулярные объекты биохимической системы за счет создания дополнительного градиентного поля с нулевой точкой и применения НЧ ПМП, вызывающего переориентацию МНЧ, что в свою очередь создает наномеханическое воздействие на отдельные биомакромолекулы или клетки и не распространяется самопроизвольно в объем всей биохимической системы. Изобретение включает возможность изменения размера области локализации воздействия.

Технический результат достигается тем, что устройство, состоящее из узла, генерирующего градиентное магнитное поле узла катушек, создающих магнитное поле Hb, которое изменяет положение области воздействия переменного магнитного поля, узла катушек, создающих переменное поле, управляющее движением магнитных наночастиц, управляемых источников постоянного и переменного тока низкой частоты для питания соответствующих катушек, согласно изобретению, что узел катушек, создающих переменное магнитное поле, генерирует магнитное поле с угловой частотой меньше любой из двух величин – 1000 с-1 и ωc=μμ0Ha/(6ηVHD). (где μ - магнитный момент магнитной наночастицы, VHD - ее гидродинамический объем, μ0 - магнитная проницаемость вакуума, η - вязкость окружающей среды), обеспечивая периодическую механическую переориентацию магнитных наночастиц.

Сущность изобретения поясняется прилагаемыми схемами, которые отражают возможный вариант осуществления способа и устройства, но не ограничивают всю полноту данной заявки.

Фиг. 1. Блок-схема одного из возможных вариантов исполнения устройства для осуществления заявляемого способа.

Фиг. 2. Результаты моделирования методом конечных элементов градиентного магнитного поля, создаваемого системой магнитов (1), изображенной на фиг. 1.

Фиг. 3. График изменения магнитного поля вдоль оси z, соединяющей центры магнитов.

Фиг. 4. График изменения магнитного поля вдоль оси х перпендикулярной оси, соединяющей центры магнитов.

Один из вариантов реализации заявляемого устройства для обеспечения выполнения способа локализации воздействия НЧ ПМП представлен на фиг. 1, который, между тем, не ограничивает всю полноту заявки. Указанные далее обозначения относятся к фиг. 1.

Основными компонентами заявляемого устройства являются: узел 1, создающий градиентное поле с точкой нулевого поля, узел 2, состоящий из нескольких пар катушек Гельмгольца, расположенных вдоль одной, двух или трех осей и создающих магнитное поле Hb, которое изменяет положение нулевой точки градиентного поля, и узел 3, создающий НЧ ПМП с амплитудой которое управляет движением МНЧ.

Узел 1, создающий градиентное магнитное поле с нулевой точкой может располагаться таким образом, чтобы направление максимального градиента как совпадало с осью, соединяющей одну пару катушек смещающего узла 2 для обеспечения легкого доступа в рабочую область, так и перпендикулярно к осям, соединяющим обе пары катушек узла 2. В зависимости от технической задачи управляющий магнитный узел 3 может помещаться в смещающий магнитный узел 2 и наоборот. Для обеспечения наибольшей локализации, т.е. для максимального уменьшения области воздействия ПМП, узел 1, создающий градиентное магнитное поле, может помещаться внутрь узлов 2 и 3.

Узел 1, создающий градиентное поле может быть реализован как с помощью постоянных магнитов, расположенных одноименными полюсами навстречу друг другу, так и с помощью электромагнитных катушек с противоположным направлением тока в них. Узел 1 может быть реализован с помощью электромагнитных катушек, подключенных к регулируемому источнику постоянного тока, что позволит изменять размеры области локализации воздействия ПМП за счет изменения тока в них, влекущего изменение градиента магнитного поля. Магнитное поле такой системы, реализованной, например, на постоянных магнитах, имеет такое распределение (фиг. 2-4), что в центре системы поверхности постоянной напряженности представляют собой эллипсоиды вращения, окружающие область пониженной, по сравнению с остальной системой, напряженности поля. Центром этой области и является точка нулевого поля.

Узел 2, изменяющий положение нулевой точки градиентного поля состоит из пар катушек Гельмгольца с взаимно ортогональными осями, которые создают перпендикулярно направленные внутри устройства однородные магнитные поля, изменяющие положение нулевой точки относительно ее положения, когда узел 2 отключен от источника питания. Катушки узла 2 подключаются последовательно к источникам постоянного тока (Источники питания 4 и 5), управляемых программно или вручную. Каждая пара катушек Гельмгольца смещающего узла 2 отвечает за смещение области воздействия ПМП вдоль определенной оси и подключаются к независимому источнику питания.

Узел 3 состоит из пары катушек, также расположенных в системе Гельмгольца, которые запитаны от регулируемого источника переменного тока (Источник питания 6). Причем угловая частота переменного тока, генерируемого источником питания 6, устанавливается ниже (где μ - магнитный момент магнитной наночастицы, VHD - ее гидродинамический объем, μ0 - магнитная проницаемость вакуума, η - вязкость окружающей среды), таким образом, создаваемое узлом 3 НЧ ПМП не вызывает нагрева МНЧ, что позволяет оказывать чисто наномеханическое воздействие, а также использовать разрезанный ферромагнитный сердечник, соединяющий между собой катушки узла 3 и усиливающий НЧ ПМП. Предельная частота ωс зависит от соотношения вращающего момента со стороны НЧ ПМП и вязкого сопротивления со стороны окружающей жидкости. При увеличении частоты выше ωс возрастает роль вязкости и МНЧ начинают совершать стесненные колебания на угол меньший 180°.

Описанное устройство позволяет создавать локально действующее на магнитные наночастицы НЧ ПМП, что позволяет оказывать наномеханическое воздействие на отдельные биомакромолекулы, молекулярные структуры и клетки в выбранном ограниченном объеме биохимической системы или организме с введенными в нее МНЧ за счет периодической переориентации МНЧ в НЧ ПМП, создаваемом узлом 3. Узел 2 позволяет выбирать область воздействия внутри рабочего пространства и производить последовательный обход всей биохимической системы при соответствующем программном управлении. Управление всеми источниками питания может быть реализовано при помощи персонального компьютера.

Заявляемый способ реализуют следующим образом:

1. Создают устройство, состоящее, как минимум, из: магнитного узла 1, создающего градиентное поле с нулевой точкой с помощью постоянных магнитов или электромагнитных катушек в системе Максвелла с изменяемой величиной тока в них и узла 3, создающего НЧ ПМП, которое управляет движением МНЧ.

2. Вводят в объект (например, в микроорганизмы, клеточные культуры, лабораторное животное или в человека), искусственно синтезированные функционализованные МНЧ, микроустройства на их основе или магниточувсвительные объекты природного происхождения.

3. Помещают объект в область действия управляющего движением магнитных наночастиц НЧ ПМП, создаваемого узлом 3 устройства, построенного согласно п. 1.

4. Включают генерацию узлом 3 управляющего движением магнитных наночастиц НЧ ПМП с амплитудой , при этом МНЧ, находящиеся в области пространства радиусом R* с напряженностью меньше амплитуды управляющего поля будут совершать вращательно-колебательные движения, оказывая локальное наномеханическое воздействие на конъюгированные с ними молекулы и молекулярные структуры объекта (Golovin Y.I., Gribanovsky S.L., Golovin D.Y., Klyachko N.L., Majouga A.G., Master A.M., Sokolsky M., Kabanov A.V. (2015). Towards nanomedicines of the future: Remote magneto-mechanical actuation of nanomedicines by alternating magnetic fields. JournalofControlledRelease, 219, 43-60), а МНЧ расположенные вне этой области, будут находиться в «замороженном» состоянии (поляризованы постоянным полем ), соответственно не оказывая никакого воздействия биохимическую систему. При этом амплитуда НЧ ПМП имеет амплитуду и угловую частоту меньше любой (или меньшей) из двух величин - 1000 с-1 и (где μ - магнитный момент магнитной наночастицы, VHD - ее гидродинамический объем, μ0 - магнитная проницаемость вакуума, η - вязкость окружающей среды).

Выполнение пунктов 1-4 обеспечивает наномеханическое воздействие на отдельные молекулы и молекулярные структуры или клетки в выбранном ограниченном объеме биохимической системы с введенными в нее МНЧ за счет периодической переориентации МНЧ в НЧ ПМП.

Способ направлен на создание условий и осуществление локального воздействия ПМП на систему с введенными в нее МНЧ. В частности, такая задача важна для перспективных технологий нанобиобиомедицины. В качестве целевых областей можно выделить регенеративную медицину, адресную доставку и выпуск лекарственных средств, безлекарственную терапию раковых заболеваний с помощью функционализированных МНЧ, действующих локально механически на механочувствительные клеточные структуры, изменяя их функционирование или разрушая мембраны искусственных контейнеров, содержащих терапевтические агенты. Все перечисленные направления подразумевают введение в организм в том или ином виде функционализованных МНЧ, которые имеют тенденцию равномерно распределяться в случае относительно однородной ткани либо скапливаться в определенных органах в случае с живым организмом. Описанная комбинация магнитных полей и последовательность их включения позволяет добиться макролокализации их действия на МНЧ в области с размерами от 1 до 100 мм (в зависимости от устанавливаемых параметров этих полей), а функционализация МНЧ дает возможность действовать селективно на избранные молекулярные мишени, т.е. локализовать действие в объеме порядка 1 нм, что принципиально невозможно в стратегии магнитной гипертермии в высокочастотном магнитном поле.


Способ и устройство для локального механического воздействия на биохимические системы, содержащие магнитные наночастицы
Способ и устройство для локального механического воздействия на биохимические системы, содержащие магнитные наночастицы
Способ и устройство для локального механического воздействия на биохимические системы, содержащие магнитные наночастицы
Способ и устройство для локального механического воздействия на биохимические системы, содержащие магнитные наночастицы
Способ и устройство для локального механического воздействия на биохимические системы, содержащие магнитные наночастицы
Способ и устройство для локального механического воздействия на биохимические системы, содержащие магнитные наночастицы
Способ и устройство для локального механического воздействия на биохимические системы, содержащие магнитные наночастицы
Способ и устройство для локального механического воздействия на биохимические системы, содержащие магнитные наночастицы
Источник поступления информации: Роспатент

Показаны записи 11-20 из 23.
02.09.2019
№219.017.c5ee

Способ изготовления керамики на основе диоксида циркония

Изобретение относится к способу получения керамики на основе диоксида циркония с трансформируемой тетрагональной кристаллической фазой и может быть использовано для изготовления износостойких деталей сферической формы, например, в качестве мелющего бисера. Согласно изобретению в качестве основы...
Тип: Изобретение
Номер охранного документа: 0002698880
Дата охранного документа: 30.08.2019
03.10.2019
№219.017.d1a8

Способ получения наноструктурированной композиционной керамики на основе оксидов циркония, алюминия и кремния

Изобретение относится к способам получения высокопрочных материалов, а именно композиционной керамики на основе стабилизированного диоксида циркония и корунда с добавлением диоксида кремния. Изобретение может быть использовано при производстве прочных и износостойких деталей для различных...
Тип: Изобретение
Номер охранного документа: 0002701765
Дата охранного документа: 01.10.2019
06.02.2020
№220.017.ffdb

Способ получения коллоидного раствора трисульфида титана с противомикробными свойствами

Изобретение может быть использовано при обработке почв, пористых структур и сточных вод с целью подавления активности патогенных микроорганизмов. Для получения коллоидных растворов трисульфида титана в деионизированной воде, обладающих противомикробной активностью, проводят синтез трисульфида...
Тип: Изобретение
Номер охранного документа: 0002713367
Дата охранного документа: 04.02.2020
25.04.2020
№220.018.1942

Метод расчета максимальной допустимой нагрузки на конечность после остеосинтеза

Изобретение относится к медицине, а именно к травматологии и ортопедии, и может быть использовано для восстановительного лечения при переломах бедренной кости. Предложен метод расчета максимальной допустимой нагрузки на бедренную кость после проведения остеосинтеза. До начала консолидации...
Тип: Изобретение
Номер охранного документа: 0002719916
Дата охранного документа: 23.04.2020
01.05.2020
№220.018.1a99

Электрофизический способ повышения прочности и механической устойчивости листовых заготовок из алюминий-магниевых сплавов

Изобретение относится к металлургии, а именно к обработке давлением сплавов системы Аl-Mg, проявляющих прерывистую деформацию и локализацию деформации в полосах, негативно влияющих на качество поверхности и коррозионные свойства этих сплавов. Способ обработки листовых заготовок промышленных...
Тип: Изобретение
Номер охранного документа: 0002720289
Дата охранного документа: 28.04.2020
06.07.2020
№220.018.2fac

Электрохимический способ раннего выявления повреждений в титановых сплавах, деформируемых в водной среде

Использование: для бесконтактного высокоскоростного мониторинга состояния деформируемой металлической поверхности и ранней диагностики повреждаемости конструкций из титановых сплавов, эксплуатируемых в водных средах. Сущность изобретения заключается в том, что способ включает установку...
Тип: Изобретение
Номер охранного документа: 0002725692
Дата охранного документа: 03.07.2020
24.07.2020
№220.018.35d9

Способ проведения эпидурального катетера в подкожном канале при проведении двухсегментарной спинально-эпидуральной анестезии

Изобретение относится к медицине, а именно к анестезиологии, и может быть использовано для постановки катетера в подкожном канале при проведении двухсегментарной спинально-эпидуральной анестезии. Для этого проводят модификацию спинномозговой иглы путем захвата иглы зажимом типа «москит»...
Тип: Изобретение
Номер охранного документа: 0002727234
Дата охранного документа: 21.07.2020
12.04.2023
№223.018.4500

Комплекс аппаратный программируемый соматометрический для оценки физического развития, пищевого статуса, выбора специализированного продукта энтерального питания и подсчета его суточного количества

Изобретение относится к медицине, а именно к диетологии, и может быть использовано для диагностики и лечения пациентов с нарушениями пищевого статуса Диагностику проводят с использованием специально разработанных весоизмерительных платформ для измерения массы тела постельных больных,...
Тип: Изобретение
Номер охранного документа: 0002761721
Дата охранного документа: 13.12.2021
12.04.2023
№223.018.45d9

Способ остеосинтеза шейки плеча

Изобретение относится к медицине, а именно к травматологии и ортопедии, и может применяться для остеосинтеза переломов хирургической шейки плеча. Выполняют репозицию отломков плечевой кости. Накладывают Т-образную пластину. Формируют два канала в головке плечевой кости по передней и задней...
Тип: Изобретение
Номер охранного документа: 0002749296
Дата охранного документа: 08.06.2021
12.04.2023
№223.018.45dc

Способ остеосинтеза шейки бедра

Изобретение относится к медицине, а именно к травматологии и ортопедии, и может быть использовано для остеосинтеза переломов шейки бедра. Формируют каналы по передней и задней поверхности вертельной области и головки бедренной кости. Через них проводят две серкляжных петли-стяжки через...
Тип: Изобретение
Номер охранного документа: 0002749106
Дата охранного документа: 04.06.2021
Показаны записи 11-20 из 32.
10.04.2015
№216.013.3ee0

Гидролаза пептидогликана, экспрессионная плазмида, содержащая фрагмент днк, кодирующий гидролазу пептидогликана, бактерия-продуцент и способ микробиологического синтеза гидролазы пептидогликана

Группа изобретений относится к биотехнологии, в частности к биосинтезу гидролазы пептидогликана, и представляет собой белок с активностью гидролазы пептидогликана, плазмиду, содержащую фрагмент, кодирующий гидролазу пептидогликана, бактерию-продуцент, способ микробиологического синтеза...
Тип: Изобретение
Номер охранного документа: 0002547584
Дата охранного документа: 10.04.2015
10.06.2015
№216.013.5153

Наночастицы антиоксидантного фермента супероксиддисмутазы в виде полиэлектролитного комплекса состава фермент-поликатион-полианион и способ их получения

Изобретение относится к химической энзимологии, в частности к созданию наночастиц антиоксидантного фермента супероксиддисмутазы для медицинского применения в виде полиэлектролитного комплекса типа фермент/поликатион/полианион, характеризующихся тем, что фермент покрыт внутренней оболочкой из...
Тип: Изобретение
Номер охранного документа: 0002552340
Дата охранного документа: 10.06.2015
10.03.2016
№216.014.cbb9

Способ лечения заболеваний глаз, сопровождающихся окислительным стрессом

Изобретение относится к медицине, в частности к офтальмологии, и предназначено для лечения заболеваний глаз, сопровождающихся окислительным стрессом. Супероксиддисмутазу вводят в состав кальций-фосфатных биодеградируемых наночастиц, покрытых дисахаридами, с радиусом до 350 нм и в диапазоне...
Тип: Изобретение
Номер охранного документа: 0002577236
Дата охранного документа: 10.03.2016
20.02.2016
№216.014.cded

Полимерные наночастицы состава фермент-поликатион-полианион, содержащие антиоксидантный фермент, для применения в медицине и способ их получения

Группа изобретений относится к химической энзимологии, к способу создания дисперсии, содержащей полимерные наночастицы с инкапсулированным антиоксидантным ферментом, в частности к получению водной дисперсии наночастиц состава супероксиддисмутаза/поликатион/полианион, которая предназначена для...
Тип: Изобретение
Номер охранного документа: 0002575836
Дата охранного документа: 20.02.2016
20.02.2016
№216.014.e881

Ферментный биокатализатор для нейтрализации фосфорорганических соединений in vivo

Изобретение относится к биотехнологии, в частности к ферментному биокатализатору в виде наноразмерных частиц, представляющих собой нековалентные полиэлектролитные комплексы, образованные полигистидинсодержащим полипептидом с активностью органофосфатгидролазы и блок-сополимером полиэтиленгликоля...
Тип: Изобретение
Номер охранного документа: 0002575627
Дата охранного документа: 20.02.2016
10.08.2016
№216.015.559e

Устройство для исследования воздействия низкочастотного магнитного поля на кинетику биохимических процессов в биологических системах, содержащих магнитные наночастицы

Изобретение относится к медицинской технике. Устройство для исследования биохимических систем, содержащих магнитные наночастицы, при воздействии низкочастотного негреющего магнитного поля, включающее источник питания, соединенный с генератором, питающим обмотки электромагнита. При этом...
Тип: Изобретение
Номер охранного документа: 0002593238
Дата охранного документа: 10.08.2016
25.08.2017
№217.015.ca4c

Способ покрытия наночастиц магнетита слоем золота

Изобретение относится к способам получения наночастиц магнетита (FeO), покрытых слоем золота, которые могут быть использованы в качестве контрастного агента для магнитно-резонансной томографии, магнитной сепарации, адресной доставки лекарств и т.д. Изобретение увеличивает выход покрытых золотом...
Тип: Изобретение
Номер охранного документа: 0002620166
Дата охранного документа: 23.05.2017
29.12.2017
№217.015.f8cc

Композиция, ингибирующая теломеразу

Изобретение относится к композиции, ингибирующей теломеразу. Указанная композиция включает блок-сополимер полиоксиэтилена и полиоксипропилена, а также координационное соединение производного имидизол-4-она, ингибирующее теломеразу, общей формулы При этом координационное соединение производного...
Тип: Изобретение
Номер охранного документа: 0002639819
Дата охранного документа: 22.12.2017
04.07.2018
№218.016.6a5c

Термографический способ контроля объектов и устройство для его осуществления

Группа изобретений относится к области неразрушающего контроля и может быть использована для идентификации близких к поверхности дефектов в контролируемом объекте. Термографический способ контроля изделий включает нагрев либо охлаждение участка контролируемого объекта. Далее регистрируют...
Тип: Изобретение
Номер охранного документа: 0002659617
Дата охранного документа: 03.07.2018
17.08.2018
№218.016.7c51

Способ получения кластеров из наночастиц магнетита

Изобретение может быть использовано в биомедицине. Способ получения кластеров из наночастиц магнетита включает нагревание раствора соединения железа в высококипящем органическом растворителе в атмосфере инертного газа в присутствии 1,2-гексадекандиола и органической кислоты и последующее...
Тип: Изобретение
Номер охранного документа: 0002664062
Дата охранного документа: 14.08.2018
+ добавить свой РИД