×
05.02.2020
220.017.fe80

Результат интеллектуальной деятельности: УЛЬТРАЗВУКОВАЯ СИСТЕМА С АСИММЕТРИЧНЫМИ СИГНАЛАМИ ПЕРЕДАЧИ

Вид РИД

Изобретение

№ охранного документа
0002713036
Дата охранного документа
03.02.2020
Аннотация: Использование: для передачи ультразвуковой энергии в тело. Сущность изобретения заключается в том, что ультразвуковая система для передачи ультразвуковой энергии в тело содержит ультразвуковой зонд с решеткой ультразвуковых элементов-преобразователей и формирователь луча передачи с каналами передачи, связанными с ультразвуковыми элементами-преобразователями и выполненными с возможностью подачи асимметричных сигналов передачи на упомянутые элементы во время их соответствующих интервалов передачи, при этом каждый канал передачи содержит аппаратное адресуемое запоминающее устройство или сдвиговый регистр, выполненные с возможностью хранения цифровых данных сигналов передачи. Технический результат: обеспечение возможности создания большой акустической выходной мощности, а также повышение надежности устройства. 13 з.п. ф-лы, 4 ил.

Это изобретение относится к медицинским диагностическим ультразвуковым системам и, конкретно, к ультразвуковой системе, которая производит асимметричные сигналы передачи для поддержания поляризации ультразвукового зонда с решеткой преобразователей.

Ультразвуковой зонд передает ультразвуковые волны и принимает ультразвуковые эхо-сигналы с использованием пьезоэлектрических элементов-преобразователей, которые механически отклоняются при возбуждении высоковольтным сигналом и преобразуют вибрации в результате принимаемых эхо-сигналов в электрические сигналы. Традиционно эти пьезоэлектрические элементы изготавливаются из керамического материала, такого как PZT (цирконат-титанат свинца), поликристаллического керамического материала, предпочтительного из-за его большей механической эффективности. PZT является поликристаллическим керамическим материалом. Около пятидесяти лет назад исследования привели к разработкам монокристаллических материалов для ультразвуковых преобразователей, таких как PZN-PT (ниобат цинка-свинца - титанат свинца) и PMN-PT (ниобат магния-свинца - титанат свинца). При использовании здесь термин монокристалл используется для обозначения ориентированных пьезоэлектрических кристаллов, в которых кристалл содержит очень мало доменов (причем все они выровнены в одном направлении для обеспечения максимального суммарного пьезоэлектрического отклика), и монодоменных кристаллов, в которых кристалл содержит единственный домен материала, ориентированный для обеспечения максимального пьезоэлектрического отклика. По сравнению с керамикой PZT-типа, монокристаллы PZN-PT и PMN-PT были разработаны с большей эффективностью преобразования электрической энергии в механическую энергию и наоборот. Следовательно, преобразователи на монокристаллах являются предпочтительными для многих диагностических ультразвуковых применений, таких как гармоническая визуализация. См., например, патент США № 6532819 (Chen и др.).

Однако эти новые материалы имеют свои собственные ограничения. Было обнаружено, что эти материалы имеют более низкие температуры Кюри и меньшие электрические коэрцитивные поля, чем типичные керамики PZT-типа, используемые для медицинской визуализации. Эти меньшие электрические коэрцитивные поля делают эти монокристаллические материалы более восприимчивыми к уменьшению электрической поляризации при использовании в применениях, требующих больших электрических возбуждающих полей, а также длительной передачи большой энергии. При изготовлении ультразвукового преобразователя, пьезоэлектрический материал в преобразователе может подвергаться процессу поляризации, также известному как поляризация, для улучшения чувствительности и эффективности элементов-преобразователей. Во время поляризации пьезоэлектрический материал подвергают воздействию большего электрического поля, чем электрическое коэрцитивное поле этого материала. Поляризующее поле прикладывают в течение интервала времени, достаточного для выравнивания доменов для обеспечения суммарной электрической поляризации в этом материале. Поляризация материала при повышенных температурах может ускорить этот процесс и сократить интервал времени, требуемый для достижения поляризации. После охлаждения и снятия поляризующего поля, выровненные пьезоэлектрические домены становятся фиксированными по ориентации.

Когда преобразователь подвергается воздействию высоких длительных напряжений во время работы, это выравнивание может быть нарушено, что приводит к уменьшению электрической поляризации и уменьшению чувствительности и эффективности преобразователя. Это уменьшение электрической поляризации известно как деполяризация. Для предотвращения деполяризации к пьезоэлектрическим элементам преобразователя может быть приложено электрическое поле смещения постоянным током для противодействия электрическим полям, которые могут деполяризовать пьезоэлектрический материал, причем оно также не приводит к уменьшению радиочастотного (RF) поля, используемого в работе преобразователей. К сожалению, добавление электрического поля смещения постоянным током требует наличия дополнительных электрических компонентов в ручке преобразователей и увеличивает сложность конструкции. Таким образом, было бы желательно иметь способ для поддержания поляризации пьезоэлектрического материала без использования электрического смещения постоянным током.

Одним из применений диагностического ультразвука является диагностирование поражений в теле посредством эластичности или жесткости ткани. Одним подходом к измерению эластичности является измерение волны сдвига. Когда точка в теле сжимается, затем освобождается, примыкающая ткань сжимается сверху вниз, затем разжимается обратно, когда сжимающая сила исчезает. Но поскольку ткань, где прикладывается сжимающая сила, непрерывно соединена с окружающей тканью, несжатая ткань, поперечная вектору силы, будет откликаться на перемещение вверх-вниз сжатой ткани. Пульсирующий эффект в этом поперечном направлении, называемый волной сдвига, является откликом в окружающей ткани на направленную вниз сжимающую силу. Волна сдвига будет перемещаться с одной скоростью через мягкую ткань и с другой, более высокой скоростью, через твердую ткань. Посредством измерения скорости волны сдвига в точке в теле получают информацию в отношении патологически релевантных характеристик ткани в этом местоположении. Было показано, что сила, необходимая для толкания ткани вниз, может быть создана давлением излучения от ультразвукового импульса, обычно называемого «толчковым импульсом». Толчковые импульсы являются обычно длинными (сотни микросекунд) импульсами, создаваемыми при подаче длительных высоковольтных сигналов возбуждения на преобразователь, который подвергается опасности уменьшения электрической поляризации. Поскольку один и тот же «толчковый импульс» обычно повторяется для измерений с шагом приращения сантиметрового размера по всему телу, технология волн сдвига может значительно увеличить проблему уменьшения электрической поляризации, особенно когда зонд имеет преобразователь из монокристаллического материала.

В некоторых аспектах настоящее изобретение обеспечивает ультразвуковые системы, которые передают ультразвуковую энергию в тело. Ультразвуковые системы могут включать в себя ультразвуковой зонд с решеткой ультразвуковых элементов-преобразователей и формирователь луча передачи с каналами передачи, связанными с ультразвуковыми элементами-преобразователями и выполненными с возможностью подачи асимметричных сигналов передачи на упомянутые элементы во время их соответствующих интервалов передачи. Формирователь луча передачи может быть выполнен с возможностью подачи асимметричных радиочастотных сигналов, и/или система может включать в себя цепь смещения постоянным током, а асимметричные сигналы могут включать в себя симметричный радиочастотный сигнал со смещением постоянным током.

В некоторых аспектах элементы-преобразователи могут включать в себя пьезоэлектрические керамические элементы-преобразователи, которые могут быть монокристаллическими элементами-преобразователями. Монокристаллические элементы-преобразователи могут быть выполнены из множества материалов, таких как монокристаллические PMN-PT, PZN-PT или PIN-PMN-PT.

В некоторых аспектах системы могут включать в себя переключатель T/R (передача/прием), связывающий каждый канал передачи с элементом-преобразователем, и необязательно кабель зонда, связывающий переключатели T/R с элементами-преобразователями.

В некоторых аспектах ультразвуковые элементы-преобразователи могут включать в себя отрицательно поляризованные элементы-преобразователи, и в таких примерах асимметричные сигналы передачи имеют среднее значение амплитуды, которое является отрицательным относительно нулевого опорного напряжения. Ультразвуковые элементы-преобразователи могут включать в себя положительно поляризованные элементы-преобразователи, и асимметричные сигналы передачи могут иметь среднее значение амплитуды, которое является положительным относительно нулевого опорного напряжения.

В некоторых аспектах каждый канал передачи может включать в себя аппаратное адресуемое запоминающее устройство или сдвиговый регистр, выполненные с возможностью хранения цифровых данных сигналов передачи. Каждый канал передачи может также включать в себя цифро-аналоговый преобразователь, выполненный с возможностью приема цифровых данных сигналов передачи для преобразования этих данных в аналоговый сигнал передачи. Каждый канал передачи может включать в себя высоковольтный усилитель передачи, выполненный с возможностью приема аналогового сигнала передачи и подачи высоковольтного сигнала передачи на элемент-преобразователь.

В некоторых аспектах настоящее изобретение включает в себя использование асимметричных сигналов передачи в комбинации с эластографией волн сдвига. По существу, в некоторых вариантах осуществления асимметричные сигналы передачи могут включать в себя сигналы передачи толчковых импульсов. Сигналы передачи толчковых импульсов могут составлять по продолжительности, например, 50-1000 микросекунд.

На чертежах:

Фигура 1 показывает в форме блок-схемы ультразвуковую диагностическую систему визуализации, которая возбуждает элементы решетки преобразователей зонда асимметричными сигналами передачи.

Фигура 2 является схематичной иллюстрацией двух каналов формирователя луча передачи, связанных с двумя элементами решетки преобразователей.

Фигура 3 является графиком измеренных форм сигналов передачи, показывающим асимметричный сигнал передачи по настоящему изобретению.

Фигура 4 показывает главные компоненты ультразвукового зонда согласно одному варианту осуществления настоящего изобретения.

В некоторых вариантах осуществления настоящего изобретения описана ультразвуковая система, которая возбуждает элементы-преобразователи зонда асимметричными сигналами передачи. Асимметрия амплитуды сигнала передачи создает электрическое поле с большими амплитудами в направлении, которое усиливает поляризацию пьезоэлектрического материала, и меньшими амплитудами в направлении, которое является противоположным и уменьшает поляризацию пьезоэлектрического материала. Асимметричные сигналы передачи усиливают поляризацию, поскольку суммарная энергия, подаваемая на элемент-преобразователь в течение длительности импульса передачи, создает суммарные механические и электрические силы, которые действуют для поддержания доменов в выровненном состоянии и поддержания поляризации.

Теперь со ссылкой на фиг. 1 в форме блок-схемы показана ультразвуковая система, которая производит асимметричные сигналы передачи для ультразвукового зонда согласно принципам настоящего изобретения. В показанной реализации ультразвуковая система предназначена для передачи толчковых импульсов для измерения волн сдвига в теле. Ультразвуковой зонд 10 имеет решетку 12 преобразователей из элементов-преобразователей, которые выполнены с возможностью передачи и приема ультразвуковых сигналов. Элементы решетки 12 преобразователей выполняют из пьезоэлектрического керамического материала, такого как PZT, PMN-PT, PZN-PT или PIN-PMN-PT (ниобат индия-свинца - ниобат магния-свинца - титанат свинца). Решетка может быть изготовлена в виде одномерной (1D) или двухмерной (2D) решетки элементов-преобразователей. Решетка обоих типов может сканировать двухмерную плоскость, и двухмерная решетка может быть использована для сканирования объемной области перед решеткой. Кабель 40 зонда соединяет зонд с центральным процессором ультразвуковой системы. Фиг. 4 является видом сбоку типичного ультразвукового зонда 10, причем кабель 40 зонда прикреплен к проксимальному концу ручки зонда. Решетка 12 преобразователей находится на дистальном конце 11 зонда и выполнена с возможностью передачи ультразвуковых сигналов и приема эхо-сигналов в пределах области 80 сканирования перед зондом, когда дистальный конец находится в акустическом контакте с телом пациента.

Элементы решетки преобразователей зонда 10 связаны с формирователем 18 луча передачи и многолинейным формирователем 20 луча приема в ультразвуковой системе посредством переключателя 14 передачи/приема (T/R). Формирователи луча передачи общеизвестны в данной области техники и описаны, например, в патентной публикации США № 2013/0131511 (Peterson и др.), патенте США № 6937176 (Freeman и др.), патенте США № 7715204 (Miller) и патенте США № 5581517 (Gee и др.), каждый из которых полностью включен в данный документ посредством ссылки. Как описано в этих публикациях, формирователь луча передачи для решетки преобразователей имеет множественные каналы, каждый из которых может передавать сигнал или импульс, или форму сигнала возбуждения для элемента-преобразователя в независимо запрограммированный момент времени относительно других каналов. Это - выбираемая относительная синхронизация подачи сигналов возбуждения на отдельные элементы-преобразователи, которая обеспечивает фокусировку и управление лучом передачи. Координацией передачи и приема формирователями луча управляет контроллер 16 формирователя луча, который управляется за счет работы пользователя пользовательской панели 38 управления. Пользователь может управлять панелью управления для предписания ультразвуковой системе передавать, например, единственный толчковый импульс или множественные одновременные толчковые импульсы во время визуализации волн сдвига. Многолинейный формирователь луча приема производит множественные пространственно отдельные линии приема (А-линии) эхо-сигналов во время единственного интервала передачи-приема. Многолинейные формирователи луча известны в данной области техники и описаны, например, в патенте США № 6482157 (Robinson), патенте США № 6695783 (Henderson и др.) и патенте США № 8137272 (Cooley и др.), каждый из которых полностью включен в данный документ посредством ссылки. Эхо-сигналы обрабатываются посредством фильтрации, шумопонижения и т.п. сигнальным процессором 22, затем сохраняются в памяти 24 А-линий, цифровой памяти, которая сохраняет данные эхо-сигналов, принимаемых по А-линиям. Отдельные во времени замеры А-линий, относящиеся к одному и тому же местоположению пространственного вектора, связаны друг с другом в совокупности эхо-сигналов, относящихся к общей точке в поле изображения. Радиочастотные эхо-сигналы последовательной выборки А-линий одного и того же пространственного вектора взаимно коррелируются радиочастотным кросс-коррелятором 26 А-линий, процессором, запрограммированным на выполнение взаимной корреляции данных сигналов, для создания последовательности замером смещения ткани для каждой точки выборки на векторе. Альтернативно, А-линии пространственного вектора могут быть обработаны с использованием эффекта Доплера для детектирования движения волн сдвига вдоль вектора, или могут быть использованы другие фазочувствительные технологии. Пиковый детектор 28 волнового фронта откликается на детектирование смещения волны сдвига вдоль вектора А-линии с детектированием пика смещения волны сдвига в каждой точке выборки на А-линии. В предпочтительном варианте осуществления это осуществляется процессором, выполняющим аппроксимацию кривой, хотя при необходимости также могут быть использованы взаимная корреляция и другие интерполяционные технологии. Момент времени, в который происходит пик смещения волны сдвига, отмечают относительно моментов времени того же самого события в других местоположениях А-линии, все моменты времени относительно общей привязки по времени, и эту информацию передают на детектор 30 скорости волнового фронта, процессор, который дифференциально вычисляет скорость волны сдвига из моментов времени смещений пиков на смежных А-линиях. Эту информацию о скорости связывают в карту 32 отображения скорости, хранимую в буфере, которая указывает скорость волны сдвига в пространственно разных точках в поле двухмерного (2D) или трехмерного (3D) изображения. Карту отображения скорости передают на процессор 34 изображения, который обрабатывает карту скорости, предпочтительно накладывая анатомическое ультразвуковое изображение ткани, для отображения на устройстве 36 отображения изображения. Дополнительные подробности компонентов ультразвуковой системы по фиг. 1 можно найти в патентной публикации США № 2013/0131511 (Peterson и др.), которая полностью включена в данный документ посредством ссылки.

Фиг. 2 является схематичным чертежом компонентов двух каналов формирователей луча передачи и приема, связанных переключателями 14 T/R и сигнальными линиями кабеля 40 зонда с элементами eM и eM+1 решетки преобразователей зонда с N элементами. Переключатели 14 T/R показаны установленными в положение передачи. При установке в положение приема, переключатель связывает элемент-преобразователь с усилителем 42, 52 на входе в канал формирователя луча приема. Переключатели T/R являются доступными для приобретения на рынке, например, TX810 компании Texas Instruments, Даллас, Техас, США. При показанной установке для передачи канал формирователя 18 луча передачи связан с элементом-преобразователем. Каждый канал 49, 50 передачи в показанной реализации имеет аппаратное адресуемое запоминающее устройство или сдвиговый регистр 48, 58, в который загружены цифровые данные сигнала передачи, показанного иллюстрациями выборочных форм сигнала. При наступлении момента времени передачи элементом, связанным с каналом, ультразвукового сигнала во время интервала передачи, сохраненные цифровые данные сигнала адресуют или синхронно отправляют из запоминающего устройства или сдвигового регистра на цифро-аналоговый преобразователь 46, 56. Этот преобразователь преобразует цифровые данные в аналоговый сигнал передачи, который усиливается высоковольтным усилителем 44, 54 передачи. Пиковые напряжения возбуждения на элементах-преобразователях обычно находятся в диапазоне от 5 до 100 вольт, в зависимости от режима визуализации. Высоковольтный сигнал передачи подается на элемент-преобразователь eM, eM+1 посредством переключателя 14 T/R и сигнальной линии кабеля 40 зонда.

Согласно принципам настоящего изобретения, сигналы передачи, подаваемые на элементы-преобразователи, являются асимметричными относительно опорного потенциала нуль вольт, как показано на фиг. 3. Этот чертеж формы сигнала показывает замеры общепринятого симметричного сигнала 60 передачи и асимметричного сигнала 70 передачи. Симметричный сигнал 60 передачи изменяется в диапазоне между пиками +1 и -1 и имеет среднее значение амплитуды около нуля. Асимметричный сигнал 70 передачи изменяется в диапазоне от положительного пика, равного 0,5, до отрицательного пика, равного -1, и имеет отрицательное среднее значение около -0,25. При подаче на отрицательно поляризованный элемент-преобразователь, асимметричная форма 70 сигнала усиливает отрицательную поляризацию. При использовании положительно поляризованного преобразователя, асимметрия синусоидальной формы сигнала передачи будет иметь больший положительный пик и/или длительность, чем ее отрицательная фаза, и будет иметь положительное среднее значение для усиления положительной поляризации.

Другим вариантом осуществления сигналов передачи, которые усиливают поляризацию преобразователя, является комбинация симметричного радиочастотного сигнала и напряжения смещения постоянным током. Этот вариант осуществления включает в себя дополнительные схемы в преобразователе или ультразвуковой системе для создания смещения постоянным током. В практической реализации цепь смещения постоянным током может быть размещена между конденсатором связи по переменному току и элементами-преобразователями решетки преобразователей. Смещение постоянным током может быть сгенерировано в пределах модуля преобразователей или подано на него из ультразвуковой системы. Преимущество этого альтернативного варианта осуществления состоит в том, что он позволяет использовать более простые схемы сигналов передачи в пределах ультразвуковой системы.

Асимметричный сигнал передачи (например, асимметричный радиочастотный сигнал или комбинация симметричного радиочастотного сигнала и напряжения смещения постоянным током) согласно настоящему изобретению является особенно предпочтительным в случае высоковольтных сигналов большой длительности, таких как сигналы, используемые для создания толчкового импульса для диагностики с использованием волн сдвига. Для толчкового импульса, импульсы с большим индексом модуляции (MI) (например, 1,5-1,9) и большими длительностями используются таким образом, чтобы передавалась достаточная энергия для смещения ткани вниз по направлению луча и обеспечения развития волны сдвига. В типичной реализации толчковый импульс является длинным импульсом с длительностью от 50 до 1000 микросекунд. Типичная длительность составляет, например, 500 микросекунд. При использовании общепринятых симметричных сигналов передачи существует значительный риск уменьшения электрической поляризации элементов-преобразователей, тогда как асимметричные сигналы передачи могут фактически усиливать поляризацию. Это происходит, конкретно, в случае, когда элементы-преобразователи выполнены из монокристаллического материала, который будет деполяризоваться при меньших электрических полях, чем традиционный материал PZT. Использование асимметричных сигналов передачи позволяет элементам-преобразователям выдерживать существенно более высокое напряжение передачи без деградации, что, в свою очередь, позволяет обеспечить большую акустическую выходную мощность и улучшенную надежность.


УЛЬТРАЗВУКОВАЯ СИСТЕМА С АСИММЕТРИЧНЫМИ СИГНАЛАМИ ПЕРЕДАЧИ
УЛЬТРАЗВУКОВАЯ СИСТЕМА С АСИММЕТРИЧНЫМИ СИГНАЛАМИ ПЕРЕДАЧИ
УЛЬТРАЗВУКОВАЯ СИСТЕМА С АСИММЕТРИЧНЫМИ СИГНАЛАМИ ПЕРЕДАЧИ
УЛЬТРАЗВУКОВАЯ СИСТЕМА С АСИММЕТРИЧНЫМИ СИГНАЛАМИ ПЕРЕДАЧИ
Источник поступления информации: Роспатент

Показаны записи 21-30 из 1 727.
20.04.2016
№216.015.3633

Светоизлучающий модуль, лампа, осветительное устройство и устройство отображения

Светоизлучающий модуль 150 испускает свет через световыводящее окно 104 и содержит основание 110, твердотельный излучатель 154, 156 света и частично диффузно-отражающий слой 102. Основание 110 имеет светоотражающую поверхность 112, которая обращена в направлении световыводящего окна 104....
Тип: Изобретение
Номер охранного документа: 0002581426
Дата охранного документа: 20.04.2016
27.04.2016
№216.015.37f5

Основанное на правдоподобии шумоподавление области проекции спектральных данных

Использование: для шумоподавления спектральных данных в области проекции. Сущность изобретения заключается в том, что выполняют прием проекционных данных. Проекционные данные генерируются посредством спектрального детектора и включают в себя два или более независимых измерения с разрешением по...
Тип: Изобретение
Номер охранного документа: 0002582475
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.3906

Устройство и способ регулирования потребления электроэнергии у множества осветительных устройств в осветительной системе

Изобретение относится к устройствам регулирования потребления электроэнергии системами освещения. Технический результат - повышение эффективности управления потребляемой мощностью. Для этого представлены технические решения, в которых управление потребляемой мощностью в системе, содержащей...
Тип: Изобретение
Номер охранного документа: 0002582584
Дата охранного документа: 27.04.2016
10.05.2016
№216.015.3be8

Коллиматор света и осветительный прибор, содержащий такой коллиматор света

Изобретение относится к коллиматору света и к осветительному прибору. Коллиматор (1) содержит диффузный отражающий слой и удлиненный световой волновод (100) длиной (wl), шириной (ww) и высотой (wh) волновода. Отношение размеров длины волновода к его ширине (ww) составляет wl/ww>1. Волновод...
Тип: Изобретение
Номер охранного документа: 0002583348
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3dd4

Узел инкубатора и связанное с ним устройство управления, которое управляет удельной влажностью

Группа изобретений относится к медицине. Усовершенствованный инкубатор и устройство управления, включающие в себя отдельные контуры управления температурой и влажностью, где заданная температура и заданное значение относительной влажности (RH) задают устройству управления через пользовательский...
Тип: Изобретение
Номер охранного документа: 0002583247
Дата охранного документа: 10.05.2016
20.05.2016
№216.015.405c

Вычисление потерь мощности для индуктивной передачи мощности

Использование: в области электротехники. Технический результат - предотвращение нагревания металлических объектов на поверхности передатчика мощности. Заявлен способ вычисления потерь мощности в системе индуктивного переноса мощности, содержащей передатчик (112) мощности для передачи мощности...
Тип: Изобретение
Номер охранного документа: 0002584820
Дата охранного документа: 20.05.2016
20.05.2016
№216.015.4098

Способ конфигурирования узла

Изобретение относится к беспроводной связи. Ограниченный узел выполнен с возможностью приема данных только в течение ограниченных возможностей приема. Способ конфигурирования ограниченного узла содержит этапы, на которых: (a) обнаруживают, что требуется обновление значения параметра...
Тип: Изобретение
Номер охранного документа: 0002584673
Дата охранного документа: 20.05.2016
20.05.2016
№216.015.41a5

Способ функционирования и ввода в действие устройств в сети zigbee

Настоящее изобретение относится к сети ZigBee, содержащей устройства с поддержкой ZigBee Green Power (ZGP) и устройства без поддержки ZGP. Техническим результатом является эффективное управление устройствами в сети ZigBee. Способ функционирования устройств в сети ZigBee, содержащей устройства с...
Тип: Изобретение
Номер охранного документа: 0002584499
Дата охранного документа: 20.05.2016
27.05.2016
№216.015.42a0

Пылесосное устройство

Пылесосное устройство содержит узел (1) для аэродинамического воздействия на частицы пыли и/или поверхность, подлежащую чистке. Узел (1) содержит корпус (30), имеющий стенку (31) корпуса, окружающую два внутренних отделения (20, 22), и подвижную поверхность (11), расположенную на контактной...
Тип: Изобретение
Номер охранного документа: 0002585558
Дата охранного документа: 27.05.2016
10.06.2016
№216.015.471c

Изображение с зависящим от контрастности разрешением

Использование: для обработки одного или более восстановленных изображений. Сущность изобретения заключается в том, что способ для обработки одного или более восстановленных изображений включает в себя прием первого восстановленного изображения, имеющего первое разрешение изображения, и прием...
Тип: Изобретение
Номер охранного документа: 0002585790
Дата охранного документа: 10.06.2016
Показаны записи 1-1 из 1.
04.03.2020
№220.018.085c

Зонд с ультразвуковым матричным преобразователем для визуализации сдвиговых волн

Группа изобретений относится к медицинской технике, а именно к средствам измерения ригидности или эластичности ткани с использованием сдвиговых волн. Ультразвуковая система содержит зонд и передающий формирователь луча с заданным числом каналов передачи, в зонде расположена матрица...
Тип: Изобретение
Номер охранного документа: 0002715598
Дата охранного документа: 02.03.2020
+ добавить свой РИД