×
04.02.2020
220.017.fd21

Результат интеллектуальной деятельности: СПОСОБ ОЦЕНКИ МЕХАНИЧЕСКИХ ХАРАКТЕРИСТИК ДЕФОРМИРОВАННЫХ МЕТАЛЛИЧЕСКИХ ОБЪЕКТОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области машиностроения и может быть использовано для оценки степени деформирования металлических объектов и исследования прочностных свойств твердых материалов путем приложения к ним механических усилий. Сущность: осуществляют внедрение индентора в одну фиксированную точку поверхности образца, пошаговое увеличение нагрузки на индентор в заданном интервале, определение коэффициентов а и n формулы P=a⋅h по зависимости нагрузки от глубины внедрения индентора, получение уравнения зависимости механических характеристик от коэффициентов a и n. Выбирают заготовку из того же материала, что и исследуемый деформированный металлический объект, которую отжигают до равновесного состояния, из заготовки изготавливают образцы для деформации, каждый из которых деформируют через заданный шаг деформации без промежуточных отжигов до установленного предела деформации. После каждого шага деформации из каждого образца для деформации изготавливают образец для растяжения, в который перед растяжением внедряют индентор, определяют глубину внедрения индентора. По зависимости нагрузки от глубины внедрения определяют коэффициенты а и n. Испытывают растяжением образцы для растяжения и определяют их механические характеристики, и строят зависимости степени деформации и механических характеристик от коэффициентов а и n. Выбирают показатель алгебраической связи коэффициентов а и n по максимальной величине достоверности аппроксимации. Внедряют индентор в поверхность шлифа деформированного исследуемого объекта, определяют глубину внедрения индентора, по зависимости нагрузки от глубины внедрения индентора в объект определяют коэффициенты а, n и показатель их алгебраической связи, по которым и по построенным ранее зависимостям для образцов определяют степень деформации и механические свойства деформированного исследуемого объекта. Технический результат: расширение области применения микромеханических испытаний для любого деформированного металлического исследуемого объекта, однотипность и упрощение подготовительных операций деформирования, возможность определения степени предельной деформации исследуемого объекта и прогнозирование запаса его деформации до разрушения. 7 з.п. ф-лы, 10 ил.

Область техники

Данное техническое решение относится к области машиностроения и может быть использовано для оценки степени деформирования металлических объектов и исследования прочностных свойств твердых материалов путем приложения к ним механических усилий.

Предшествующий уровень техники

Для некоторых изделий, получаемых, например, прокаткой или вытяжкой (фольги, мембраны, сильфоны, упругие элементы) оценить степень деформации или установить характеристики прочности и пластичности в зонах переходов, резких изменений сечений экспериментальным путем не представляется возможным. Классическое измерение твердости (микротвердости) не дает ответа на вопрос степени деформации в этих зонах.

Известен способ, на который был получен патент РФ №2080581 «Способ определения прочностных характеристик металлов и их сплавов», МПК: G01N 3/48; приоритет 11.01.1993 г., опубликовано. 27.05.1997 г., авторы: Кубарев А.Е., Аннабердиев Л.Х. (RU).

Способ заключается в том, что внедряют индентор в испытуемый объект, измеряют глубину внедрения и определяют его прочностные характеристики, при этом измеряют максимальное значение скорости внедрения индентора, время достижения им максимальной глубины. Элементы процесса проникновения индентора в образец используются в качестве факторов для построения математической модели прочностных характеристик, например в виде уравнений регрессии.

Недостатком аналога является определение прочностных характеристик исследуемого объекта по глубине внедрения индентора, что для тонкостенных объектов, при глубине внедрения, соизмеримой с толщиной исследуемого объекта, может привести к несоответствию получаемых данных фактическим свойствам. Кроме того, отсутствие взаимосвязи степени деформации с физико-механическими свойствами материала приводит к невозможности прогнозирования предельной деформации, приводящей к разрушению материала. Использование данного решения не является универсальным.

В качестве прототипа был выбран патент РФ №2554306 «Способ оценки микромеханических характеристик локальных областей металлов»; МПК: G01N 3/44; приоритет 15.10.2013 г, опубликовано. 27.06.2015 г., авторы: Собко С.А., Брунеткина Е.В. (RU).

Подбирают образцы одной марки стали, термообработанные при разных режимах. Внедряют индентор в произвольную зону образца, пошагово увеличивают нагрузку в заданном интервале, прилагают нагрузку последовательно в одну фиксированную точку поверхности произвольной зоны, по зависимости нагрузки от глубины внедрения индентора определяют коэффициенты а и n формулы P=a⋅hn. Получают уравнения зависимости механических характеристик от коэффициентов а и n. Внедряют индентор в локальную зону образца таким же образом, как в произвольную зону, по зависимости нагрузки от глубины внедрения индентора определяют коэффициенты а и n, подставляют их в полученные уравнения и рассчитывают свойства материала в локальной зоне образца.

К недостаткам данного способа можно отнести применимость только к термоупрочняемым сталям, не предусматривающую возможность оценки свойств нетермоупрочняемых сплавов, в том числе цветных металлов. Кроме того существует необходимость предварительно выбрать достаточное количество вариантов (отжиг, нормализация, закалка, низкий, средний, высокий отпуск) и режимов термической обработки исследуемой стали для обеспечения широкого интервала степени ее упрочнения. Это приводит к большому количеству затратных подготовительных операций.

Также данный способ не устанавливает зависимость прочностных и пластических характеристик материала непосредственно от технологических режимов термического упрочнения.

Раскрытие изобретения

Задачей, на решение которой направлено заявляемое изобретение, является разработка экспериментально-расчетного алгоритма определения комплекса механических свойств исследуемых деформированных объектов не только из сталей, но и из сплавов, а так же степени их деформации и запаса деформации до разрушения по результатам микромеханических испытаний с упрощением технологии обработки на этапе подготовки образцов.

Технический результат заключается в расширении области применения микромеханических испытаний для любого деформированного металлического исследуемого объекта, однотипность и упрощение подготовительных операций деформирования, возможность определения степени предельной деформации исследуемого объекта и прогнозирование запаса его деформации до разрушения.

Технический результат достигается тем, что в способе оценки механических характеристик деформированных металлических объектов, включающем выбор образца для исследования, растяжение, определение его механических характеристик, внедрение индентора в одну фиксированную точку поверхности образца, пошаговое увеличение нагрузки на индентор в заданном интервале, определение коэффициентов а и n формулы P=a⋅hn по зависимости нагрузки от глубины внедрения индентора, получение уравнения зависимости механических характеристик от коэффициентов а и n, внедрение индентора в исследуемый объект, по зависимости нагрузки от глубины внедрения индентора определение коэффициентов а и n, подстановку их в полученные уравнения и расчет свойств исследуемого объекта, согласно изобретению, выбирают заготовку из того же материала, что и исследуемый деформированный металлический объект, которую отжигают до равновесного состояния. Из заготовки изготавливают образцы для деформации, каждый из которых деформируют через заданный шаг деформации без промежуточных отжигов до установленного предела деформации. После каждого шага деформации из каждого образца для деформации изготавливают образец для растяжения, в который перед растяжением внедряют индентор. Определяют глубину внедрения индентора, по зависимости нагрузки от глубины внедрения определяют коэффициенты а и n. Испытывают растяжением образцы для растяжения и определяют их механические характеристики, строят зависимости степени деформации и механических характеристик от коэффициентов а и n и показателей их алгебраической связи. Внедряют индентор в поверхность шлифа деформированного исследуемого объекта, определяют глубину внедрения индентора. По зависимости нагрузки от глубины внедрения индентора в объект определяют коэффициенты а, n и показатели их алгебраической связи, по которым и по построенным ранее зависимостям для образцов определяют степень деформации и механические свойства деформированного исследуемого объекта.

Совокупность существенных признаков обеспечивает получение технического результата - расширение области применения микромеханических испытаний для любого деформированного металлического исследуемого объекта, однотипность и упрощение подготовительных операций деформирования, возможность определения фактической степени предельной деформации исследуемого объекта и прогнозирование запаса его деформации до разрушения.

Это позволяет решить задачу разработки экспериментально-расчетного алгоритма определения комплекса механических свойств исследуемых деформированных объектов не только из сталей, но и из сплавов, а также степень их деформации и запаса деформации до разрушения по данным микромеханических испытаний с упрощением технологии обработки на этапе подготовки образцов.

Глубину внедрения индентора возможно определяют по методу восстановленного отпечатка.

Для прогнозирования на основе расчетных зависимостей степени предельной деформации материала возможно деформируют образцы прокаткой за один или несколько переходов без промежуточных отжигов с заданным шагом деформации или вытяжкой за один или несколько переходов без промежуточных отжигов с заданной степенью деформации до появления трещин в образце и определяют степень предельной деформации материала образцов до появления трещин в образце.

Для разработки экспериментально-расчетного алгоритма определения степени деформирования, возможно, строят линейные зависимости степени деформации от коэффициентов а и n, полученные экспериментально-расчетным путем, или показателя их алгебраической связи.

Для прогнозирования запаса деформации исследуемого объекта до его разрушения по степени расчетной деформации образца и степени предельной деформации определяют запас степени деформации объекта до разрушения.

Достигаемый результат обеспечивается не только наличием известных отличительных признаков, но и зависит от взаимодействия их с другими существенными признаками заявляемого способа. Это позволяет способу расширить свои функциональные возможности и обеспечить решение задачи разработки экспериментально-расчетного алгоритма определения степени деформирования и комплекса механических свойств металлических объектов по данным микромеханических испытаний.

Расширенная функция, обеспечиваемая известными и отличительными признаками, и получение неожиданного неочевидного результата от использования этих признаков в совокупности с другими признаками, свидетельствует о соответствии предлагаемого технического решения критерию "изобретательский уровень".

Краткое описание фигур чертежа

На фиг. 1 показана зависимость нагрузки Р от глубины отпечатков h после индентирования образца для стали 12Х18Н10Т, деформированного на 50% с уравнением связи нагрузки Р и глубины восстановленного отпечатка h в виде формулы P=ahn, где а и n - расчетные коэффициенты.

На фиг. 2 показана зависимость нагрузки Р от глубины отпечатков h после индентирования образца из сплава меди (бронзы) БрБ2, деформированного на 50% с уравнением связи нагрузки Р и глубины восстановленного отпечатка h в виде формулы P=ahn, где а и n - расчетные коэффициенты.

На фиг. 3 приведены экспериментальные данные по степени деформации и механическим свойствам деформированных (до 50% с шагом 10%) образцов из стали 12Х18Н10Т, а также расчетные коэффициенты а и n, полученные по результатам микромеханических испытаний образцов на каждом шаге деформирования, и произведения коэффициентов а и n в виде показателя an, который выбран для построения зависимостей механических свойств и степени деформации от an.

На фиг. 4 приведены экспериментальные данные по степени деформации и механическим свойствам деформированных (до 50% с шагом 10%) образцов из сплава меди - бронзы БрБ2, а также расчетные коэффициенты а и n, а также произведение коэффициентов а и n в виде показателя an.

На фиг. 5 показана графическая и расчетная линейная зависимость предела прочности σв стали 12Х18Н10Т от показателя an: σв=6,0937(an)-25,738 (при R2=0,9402), где R2 - величина достоверности аппроксимации линейной функцией, отражающая тесноту связи σв и показателя an. Точками показаны экспериментальные данные, а линиями - графические зависимости, аппроксимированные степенными и линейными функциями.

На фиг. 6 показана графическая и расчетная линейная зависимость предела прочности σв сплава меди - бронзы БрБ2 от показателя an: σв=6,0937(an)-25,738 (при R2=0,9402), где R2 - величина достоверности аппроксимации линейной функцией, отражающая тесноту связи σв и показателя an. Точками показаны экспериментальные данные, а линиями - графические зависимости, аппроксимированные степенными и линейными функциями.

На фиг. 7 показана графическая и расчетная линейная зависимость относительного удлинения δ стали 12Х18Н10Т от показателя an: δ=6,2847(an)+135,75 (при R2=0,9063). Точками показаны экспериментальные данные, а линиями - графические зависимости, аппроксимированные степенными и линейными функциями.

На фиг. 8 показана графическая и расчетная линейная зависимость относительного удлинения δ сплава меди - бронзы БрБ2 от показателя an: δ=6,2847(an)+135,75 (при R2=0,9063). Точками показаны экспериментальные данные, а линиями - графические зависимости, аппроксимированные степенными и линейными функциями.

На фиг. 9 показана графическая и расчетная линейная зависимость степени деформации ε стали 12Х18Н10Т от показателя an: ε=6,4344(an)-95,273 (при R2=0,897). Точками показаны экспериментальные данные, а линиями - графические зависимости, аппроксимированные степенными и линейными функциями.

На фиг. 10 показана графическая и расчетная линейная зависимость степени деформации ε сплава меди - бронзы БрБ2 от показателя an: ε=6,4344(an)-95,273 (при R2=0,897). Точками показаны экспериментальные данные, а линиями - графические зависимости, аппроксимированные степенными и линейными функциями.

Варианты осуществления изобретения

Осуществление способа рассмотрим на задаче, когда требуется определить прочностные свойства и степень фактической деформации фольги из стали 12Х18Н10Т и фольги из сплава меди (бронзы) БрБ2. Для этого выбирают заготовку в виде листа - проката из того же материала, что и деформированный металлический объект. Заготовку переводят в равновесное состояние термической обработкой (отжигом). Из заготовки изготавливают одинаковые плоские образцы с заданной толщиной, шириной и длиной для деформации.

Таким образом, проявляется технический результат - в расширении области применения микромеханических испытаний для любого деформированного металлического исследуемого объекта.

Каждый из образцов деформируют через заданный шаг деформации 10% без промежуточных отжигов до установленного предела деформации, в данном примере - 50%. Под шагом деформации здесь понимают отношение между первоначальным размером образца и его размером после деформации, например, относительное изменение толщины, выраженное в процентах.

Сначала первый образец деформируют за один или несколько переходов без промежуточного отжига на один шаг деформации (10%), затем второй образец деформируют за один или несколько переходов без промежуточного отжига на 2 шага (20%) и так далее. Количество шагов деформации ограничено задачей исследователя, возможностями оборудования, предельной деформацией разрушения.

Таким образом, проявляется технический результат - однотипность и упрощение подготовительных операций деформирования.

После каждого шага деформации (или после всех деформаций) из каждого деформированного образца, в том числе из исходного, недеформированного плоского образца изготавливают образцы для растяжения. Это необходимо делать, потому что после деформации образцы имеют разную форму. Для дальнейших испытаний растяжением образцам придают одинаковую форму, а толщина каждого образца для испытаний определяется исходным состоянием или степенью деформации.

В каждый образец, в том числе исходный, недеформированный, перед растяжением внедряют индентор. При этом индентор внедряют в подготовленную, полированную часть образца, так называемый шлиф, на лопатке или в зоне захвата испытательной машины.

При микромеханических испытаниях образцов пошагово увеличивают нагрузку на индентор в заданном интервале нагрузок (в данном примере от 5 до 1000 гс). Глубину внедрения индентора определяют по методу восстановленного отпечатка. После каждого снятия нагрузки измеряют диагонали отпечатка и вычисляют его глубину, исходя из того, что глубина отпечатков по Виккерсу, с учетом углов алмазной пирамиды, в семь раз меньше его диагонали.

Нагрузку прикладывают последовательно в одну фиксированную точку поверхности произвольной зоны. По аналогичным измерениям в трех точках определяют средние величины глубины внедрения индентора при каждой нагрузке. Для каждого деформированного образца строят свою расчетно-экспериментальную зависимость. По зависимости нагрузки от глубины внедрения индентора определяют коэффициенты а и n:

P=a⋅hn,

где Р - нагрузка на индентор, h - глубина отпечатка.

На фиг. 1 показаны зависимости нагрузки от глубины отпечатков после индентирования образцов из стали 12Х18Н10Т, а на фиг. 2 - сплава меди (бронзы БрБ2) при степени деформации образца 50%.

Проводят испытания растяжением образцов после всех шагов деформации и определяют (выборочно) механические характеристики прочности и пластичности, включая: предел прочности, предел текучести, относительное удлинение, относительное сужение и т.д. На фиг. 3 приведены экспериментальные данные по степени деформации и механическим свойствам деформированных до 50% с шагом 10% образцов из стали 12Х18Н10Т, а на фиг. 4 - из бронзы БрБ2. Также приведены расчетные коэффициенты а и n, полученные по результатам микромеханических испытаний образцов на каждом шаге деформирования.

В данном примере для выявления тесноты связи (величины достоверности аппроксимации R2) механических свойств и степени деформации от коэффициентов а и ⋅n сначала строили модельные функции Y(x), где в качестве переменной х рассматривали отдельно а и n, произведение a⋅n; частное а/n или другого показателя в виде их алгебраической связи. С учетом максимальной величины достоверности аппроксимации R2 при построении линейных функций в данном примере из рассмотренных вариантов выбрано произведение a⋅n (показатель an).

Для построения модельных функций в данном примере выбраны наиболее значимые механические характеристики, полученные при растяжении предоставленных образцов, - предел прочности при растяжении σв и относительное удлинение δ.

Строят зависимости механических характеристик и степени деформации от показателя an, при этом применяют линейные зависимости.

Графические линейные зависимости предела прочности σв от показателя an и соответствующие расчетные данные показаны на фиг. 5 для стали 12Х18Н10Т, на фиг. 6 для бронзы БрБ2:

σв (сталь 12Х18Н10Т)=6,0937(an)-25,738, при R2=0,9402;

σв (бронза БрБ2)=5,3746(an)+1,6081, при R2=0,9873,

где R2 - величина достоверности аппроксимации линейной функцией, отражающая тесноту связи σв и показателя an.

На фиг. 7 для стали 12Х18Н10Т) и фиг. 8 для бронзы БрБ2 показаны графические и расчетные линейные зависимости относительного удлинения δ от показателя an:

δ (сталь 12Х18Н10Т)=-6,2847(an)+135,75, при R2=0,9063;

δ (бронза БрБ2)=-8,7163(an)+123,7, при R2=0,8994.

На фиг. 9 для стали 12Х18Н10Т и на фиг. 10 для бронзы БрБ2 показаны графические и расчетные линейные зависимости степени деформации ε от показателя an:

ε (сталь 12Х18Н10Т)=6,4344(an)-95,273, при R2=0,897;

ε (бронза БрБ2)=8,1053(an)-73,465, при R2=0,9877.

Таким образом установлены тесные корреляционные связи коэффициентов а и n эмпирических уравнений (в виде показателя an), полученных на основе микротвердометрии деформированных образцов из стали 12Х18Н10Т и сплава меди - бронзы БрБ2 разной прочности и пластичности, с механическими свойствами этих материалов.

Для определения степени деформации и механических свойств деформированного исследуемого объекта изготавливают шлиф интересующей зоны после вырезки этой зоны из объекта или подготовки поверхности самого объекта.

В данном примере объектом являлась нагартованная пластина малого размера (квадрат 20×20 мм толщиной 1 мм) из стали 12Х18Н10Т. После подготовки поверхности полировкой внедряют индентор в интервале нагрузок от 5 до 1000 гс, определяют глубину внедрения индентора для каждой нагрузки, строят уравнение связи нагрузки и глубины внедрения индентора по аналогии с фиг. 1. Определяют коэффициенты а и n и их произведение: а=10,038; n=1,971; an=19,785.

По полученным ранее аналитическим линейным зависимостям (фиг. 5, фиг. 7, фиг. 9) определяют механические свойства: предел прочности 94,8 кгс/мм2, относительное удлинение 11,4% и степень деформации (32%) деформированного исследуемого объекта.

Для определения запаса степени деформации исследуемого объекта до разрушения несколько подготовленных из заготовки стали 12Х18Н10Т плоских образцов деформируют прокаткой без промежуточного отжига до разрушения (до визуального появления трещин на поверхности образца) с определением степени предельной деформации. Сначала деформируют образец через установленный шаг деформации для определения, после какого шага деформации образовались первые трещины. Затем следующий образец деформируют до предыдущего шага и от этого шага деформируют с меньшим шагом (например, 5% или 1%) до шага, соответствующего разрушению образца и определяют, после какого дробного шага (или перехода в каждом шаге) образуются первые трещины и так далее. В данном примере степень предельной деформации составляет 87%. Для расчета запаса степени деформации исследуемого объекта из значения степени предельной деформации вычитают расчетную степень деформации исследуемого объекта (32%). Запас степени деформации исследуемого объекта до разрушения в данном примере составляет разность 87 и 32% или 55%.

Таким образом, проявляется технический результат - возможность определения степени предельной деформации исследуемого объекта и прогнозирование запаса его деформации до разрушения.

Это позволяет решить задачу определения комплекса механических свойств исследуемых деформированных объектов, а так же степени их деформации и запаса деформации до разрушения по данным микромеханических испытаний.

По другому варианту, при невозможности достичь разрушения с образованием трещин, степень предельной деформации определяют исходя из деформирующей мощности прокатного оборудования (или оборудования для вытяжки). В этом случае образец деформируют без промежуточного отжига за необходимое количество переходов до практически значимого прекращения деформации (усадки) и фиксируют эту предельную деформацию.

Для дальнейшего определения свойств объекта по измерению микротвердости используют линейные или нелинейные графические или расчетные зависимости предела прочности σв, относительного удлинения δ и степени деформирования ε от коэффициентов an.

Полученные линейные или нелинейные зависимости свойств и состояния материала от коэффициентов an могут быть проверены на вновь деформированном на любую степень деформации образце из того же материала. Для этого образец подвергают механическим и микромеханическим испытаниям с определением коэффициентов а и n, а также an. Если отклонение фактической деформации или определенных механических характеристик от рассчитанных, полученных при подстановке коэффициентов a⋅n в расчетную зависимость, не превышает установленного порога, то данная зависимость признается рабочей для данного материала.

Применение полученных зависимостей позволяет решать задачу количественной оценки механических свойств исследуемых деформированных зон металлических объектов: тонкостенных, малогабаритных, сложнопрофильных, а также степени их деформации и запаса деформации до разрушения по измерению микротвердости в рамках микромеханических испытаний.

При проведении анализа уровня техники, включающего поиск по патентным и научно-техническим источникам информации, и выявлении источников, содержащих сведения об аналогах заявленного изобретения, не были обнаружены аналоги, характеризующиеся совокупностью признаков, тождественной всем существенным признакам данного изобретения. Это подтверждает, что заявленное изобретение соответствует требованию «новизна».

Промышленная применимость

Предложенное изобретение может найти применение в отраслях промышленности, где используются тонкостенные, малогабаритные и сложнопрофильные детали, полученные различными методами обработки металлов давлением. Для некоторых изделий, получаемых, например, прокаткой или вытяжкой (фольги, мембраны, сильфоны, упругие элементы) способ оценки механических характеристик деформированных объектов позволяет оценить степень деформации, а также возможность дополнительного деформирования (без отжига) до стадии разрушения или установить характеристики прочности и пластичности в локальных зонах, зонах переходов и резких изменений сечений экспериментальным путем. Способ может найти применение в приборостроении, машиностроении, металлургии специальных материалов. Способ может быть осуществлен на существующем на сегодняшний день оборудовании с применением существующих материалов, что подтверждает его промышленную применимость.


СПОСОБ ОЦЕНКИ МЕХАНИЧЕСКИХ ХАРАКТЕРИСТИК ДЕФОРМИРОВАННЫХ МЕТАЛЛИЧЕСКИХ ОБЪЕКТОВ
СПОСОБ ОЦЕНКИ МЕХАНИЧЕСКИХ ХАРАКТЕРИСТИК ДЕФОРМИРОВАННЫХ МЕТАЛЛИЧЕСКИХ ОБЪЕКТОВ
СПОСОБ ОЦЕНКИ МЕХАНИЧЕСКИХ ХАРАКТЕРИСТИК ДЕФОРМИРОВАННЫХ МЕТАЛЛИЧЕСКИХ ОБЪЕКТОВ
СПОСОБ ОЦЕНКИ МЕХАНИЧЕСКИХ ХАРАКТЕРИСТИК ДЕФОРМИРОВАННЫХ МЕТАЛЛИЧЕСКИХ ОБЪЕКТОВ
СПОСОБ ОЦЕНКИ МЕХАНИЧЕСКИХ ХАРАКТЕРИСТИК ДЕФОРМИРОВАННЫХ МЕТАЛЛИЧЕСКИХ ОБЪЕКТОВ
СПОСОБ ОЦЕНКИ МЕХАНИЧЕСКИХ ХАРАКТЕРИСТИК ДЕФОРМИРОВАННЫХ МЕТАЛЛИЧЕСКИХ ОБЪЕКТОВ
Источник поступления информации: Роспатент

Показаны записи 231-240 из 706.
20.01.2018
№218.016.11e7

Способ дезагрегирования порошка натриетермического циркония

Изобретение относится к получению металлических порошков и может найти применение, в частности, в пиротехнике и химической технологии. В способе дезагрегирования порошка натриетермического циркония осуществляют обработку агрегированного порошка путем перемешивания в среде с водородным...
Тип: Изобретение
Номер охранного документа: 0002634111
Дата охранного документа: 23.10.2017
20.01.2018
№218.016.121e

Способ получения металлического порошка

Изобретение относится к порошковой металлургии. Способ получения металлического порошка включает выбор исходного сырья и его измельчение с контролем удельной поверхности полученного порошка, при этом определяют удельную поверхность исходного сырья, а выбор сырья и его измельчение производят в...
Тип: Изобретение
Номер охранного документа: 0002634110
Дата охранного документа: 23.10.2017
20.01.2018
№218.016.1246

Способ и устройство исследования характеристик заряда взрывчатого вещества и способ идентификации свойств взрывчатого вещества

Группа изобретений относится к области исследования материалов с помощью протонной радиографии при ударно-волновом нагружении. Способ исследования характеристик заряда взрывчатого вещества (ВВ) включает ударно-волновое нагружение элемента при подрыве исследуемого заряда ВВ, при этом, с помощью...
Тип: Изобретение
Номер охранного документа: 0002634249
Дата охранного документа: 24.10.2017
20.01.2018
№218.016.12a7

Поворотный пневмодвигатель

Пневмодвигатель предназначен для преобразования возвратно-поступательного движения поршня в возвратно-поворотное движение исполнительного механизма. Пневмодвигатель содержит корпус со штуцерами для подачи газа, поворотный механизм с валом. Корпус выполнен в виде цилиндра, с двух сторон которого...
Тип: Изобретение
Номер охранного документа: 0002634346
Дата охранного документа: 25.10.2017
20.01.2018
№218.016.12bc

Устройство возбуждения квадратного волновода

Изобретение относится к области радиотехники, а именно к элементам и узлам СВЧ-трактов антенн с круговой поляризацией поля излучения, и может быть использовано для возбуждения волноводных поляризационных секций квадратного поперечного сечения. Устройство содержит плавный волноводный переход от...
Тип: Изобретение
Номер охранного документа: 0002634334
Дата охранного документа: 25.10.2017
20.01.2018
№218.016.132f

Способ формирования плоской поверхности пластины, метаемой продуктами взрыва заряда взрывчатого вещества

Изобретение относится к военной технике и может применяться при испытаниях техники, в которых используются взрывы зарядов взрывчатых веществ (ВВ). Способ метания пластины взрывом включает инициирование заряда ВВ, размещенного в контакте по крайней мере с двумя упорами, ортогональными...
Тип: Изобретение
Номер охранного документа: 0002634454
Дата охранного документа: 30.10.2017
20.01.2018
№218.016.1669

Способ консервации металлов

Изобретение относится к консервации металлов и может быть использовано для защиты от окислительной коррозии и воздействий водорода изделий машиностроения, приборостроения и т.п., а также для упрочнения поверхностей деталей с целью повышения их износостойкости. Способ включает нанесение...
Тип: Изобретение
Номер охранного документа: 0002635145
Дата охранного документа: 09.11.2017
20.01.2018
№218.016.1ac6

Система обнаружения нарушителя с одноранговой информационной сетью

Изобретение относится к системе обнаружения нарушителя. Система содержит комплект средств обнаружения (общее число n), по меньшей мере одно средство видеонаблюдения и центральный пункт средств сбора и обработки информации и дополнительно содержит сетевой ретранслятор или локальный пункт средств...
Тип: Изобретение
Номер охранного документа: 0002636012
Дата охранного документа: 17.11.2017
20.01.2018
№218.016.1d15

Способ удаления металлического покрытия с поверхности деталей из радиоактивных металлов и сплавов

Изобретение относится к области ядерной техники, а именно к способам удаления металлических покрытий с поверхностей деталей из радиоактивных металлов и сплавов перед их утилизацией с использованием технологических операций переплавки. Способ удаления металлического покрытия с поверхности...
Тип: Изобретение
Номер охранного документа: 0002640398
Дата охранного документа: 09.01.2018
13.02.2018
№218.016.2140

Клапан пиротехнический (варианты)

Изобретение предназначено для газовых и гидравлических систем ответственного назначения. Клапан пиротехнический содержит корпус, в котором установлены на одной оси пиротехнический привод и поршень, взаимодействующий при срабатывании пиротехнического привода с вскрываемым элементом -...
Тип: Изобретение
Номер охранного документа: 0002641789
Дата охранного документа: 22.01.2018
Показаны записи 11-11 из 11.
25.12.2019
№219.017.f223

Проходной электрический соединитель

Изобретение относится к проходному электрическому соединителю и может быть использовано в электрических соединителях и гермовводах в энергетических установках, работающих в условиях вакуума или в агрессивных средах, в условиях повышенных температур, обеспечивая при этом требуемую герметичность....
Тип: Изобретение
Номер охранного документа: 0002710028
Дата охранного документа: 24.12.2019
+ добавить свой РИД