×
04.02.2020
220.017.fd1f

Результат интеллектуальной деятельности: ОПТОВОЛОКОННЫЙ КОНФОКАЛЬНЫЙ СКАНИРУЮЩИЙ МИКРОСКОП

Вид РИД

Изобретение

№ охранного документа
0002712789
Дата охранного документа
31.01.2020
Аннотация: Изобретение относится к устройствам регистрации излучения, возбуждаемого в локальных областях среды при фокусировке лазерного излучения. Оптоволоконный конфокальный сканирующий микроскоп содержит лазерный источник излучения, Y-циркулятор, объектив, конфокальную диафрагму, фотоприемник и устройства пространственного сканирования анализируемой области объекта. Первый однонаправленный вход оптического волновода Y-циркулятора соединен с источником освещения объекта. Оптический пучок выходного торца первого волновода направляется в торец второго волновода под некоторым углом в оси второго волновода в пределах апертурного угла оптического волокна. Выходной торец оптического двунаправленного второго волновода является апертурой, формирующей световой пучок освещения объекта через объектив и одновременно является конфокальной диафрагмой, фильтрующей излучение отклика среды объекта. Излучение отклика среды проходит обратно через объектив и второй волновод в торец третьего однонаправленного волновода. Третий волновод расположен по оси второго волновода. Выход третьего волновода является выходом Y-циркулятора, соединенным с входом оптоволоконного спектрометра. Излучающий торец второго волновода соединен с механической системой смещения этого торца для сканирования масштабированного объективом изображения апертуры излучателя в сопряженной плоскости, совмещенной с объектом. Технический результат заключается в расширении функциональных возможностей устройства и упрощении конструкции микроскопа. 1 ил.

Изобретение относится к устройствам регистрации излучения, возбуждаемого в локальных областях среды при фокусировке лазерного освещения, и последующего синтеза двухмерного и трехмерного изображений по результатам пространственного сканирования объекта световым пучком. Устройство может быть использовано для спектрального исследования различных биологических сред, включая флуоресцентную диагностику для решения прикладных задач медицины. Конфокальная микроскопия имеет ряд преимуществ по сравнению с традиционной оптической микроскопией, включая регулируемую глубину поля, исключение ухудшающей изображение внефокусной информации, возможность последовательного анализа оптических срезов толстых образцов.

Известен «Аппарат для микроскопии», являющийся первым описанием конфокального микроскопа (MARVIN MlNSKY АМ/111 7- ATTORNEYS United States Patent office Patented Dec. 19, 1961 3,013,467 MICROSCOPY APPARATUS Marvin Minsky, 44 Bowdoin St., Cambridge, Mass. Filed Nov. 7, 1957, Ser. No. 695,107 4 Claims. C1. 88-14). Устройство, согласно изобретению (Патент М. Минский), содержит источник излучения 10, 12 с точечной коллимирующей диафрагмой 16, объектив 11, конфокальную диафрагму 26, фотоприемник 28, светоделительную пластину 17, причем отражающая поверхность пластины 17 обращена к объективу 11 и фотоприемнику 28 с конфокальной диафрагмой 26, а прозрачная поверхность пластины 17 обращена к источнику освещения 10, 12 с точечной коллимирующей диафрагмой 16, устройство пространственного сканирования объекта (Патент М. Минский). Из описания патента следует, что излучение источника проходит сквозь делительную пластину к объекту, а возвращается по другому пути: отражается от делительной пластины и направляется через конфокальную диафрагму на фотоприемник. В данном случае делительная пластина выполняет функцию невзаимного устройства - трех портового циркулятора (Y-циркулятора). Данное техническое решение позволяет исключить внефокусные лучи, задерживаемые конфокальной диафрагмой и, на основе данных о смещении образца устройством пространственного сканирования, построить двухмерное или трехмерное изображение с высокой контрастностью. Механическая система сканирования объекта исследований построена с использованием резонатора на изгибных колебаниях, возбуждаемых электромагнитными устройствами, синхронизированными с разверткой электронного луча осциллографа.

Основной недостаток устройства - система фокусировки светового пучка точечного источника 16 на объекте и система управления положением конфокальной диафрагмы 26, должны с высокой точностью обеспечить совмещение изображения освещенной локальной области объекта с точечной конфокальной диафрагмой, размещаемой в сопряженной плоскости объектива. При высоком разрешении микроскопа, вследствие «двойной фокусировки», предъявляются высокие требования к оптомеханике устройства. Кроме того, формирование точечного источника света из протяженного источника с помощью диафрагмы 16 не позволяет получить достаточно высокую плотность мощности сканирующего пучка осветителя на объекте. Представленная механическая система сканера с резонатором, на котором закреплен объект исследований, не может обеспечить независимого смещения по осям координат и имеет ограниченные возможности по исследованию различных сред, подвергающихся вибрационному воздействию.

Наиболее близким по совокупности признаков является прибор фирмы Dilor (Франция), ориентированный на проведение измерений с высоким спектральным разрешением, в котором флуоресцентные изображения объектов реконструируются только на основе записанных спектров (А.В. Феофанов «Спектральная лазерная сканирующая конфокальная микроскопия в биологических исследованиях». Успехи биологической химии - т. 47, 2007, с. 371-410, рис. 3 на с. 381). Прибор содержит лазерный источник излучения, возбуждающего флуоресценцию, устройство невзаимной коммутации направляемого на объект излучения и излучения отклика среды в виде светоделительной пластины, объектив, конфокальную диафрагму, фотоприемник с функцией разложения флуоресцентного излучения в спектр и его регистрации, устройство пространственного сканирования оптическим пучком анализируемой области объекта за счет перемещения объектива и синхронного сканирования подвижными зеркалами.

Недостатком данного устройства является наличие светоделительной пластины и, соответственно, необходимость в высокоточной системе синхронной фокусировки - фокусировки излучения на объекте и совмещения изображения фокального пятна в сопряженной плоскости объектива с точечной конфокальной диафрагмой. При этом, для возбуждения флуоресценции используется только одна длина волны лазера, а ее смена требует перенастройки прибора. Система сканирования, построенная на синхронном движении зеркал, отличается сложностью механических узлов и имеет ограничения по динамическим характеристикам сканера.

Техническим результатом изобретения является расширение функциональных возможностей устройства и упрощение конструкции микроскопа за счет применения оптоволоконного Y-циркулятора в качестве устройства невзаимной коммутации, направляемого на объект излучения и излучения отклика среды (Оптоволоконный коммутатор лазерного спектроанализатора. Патент RU 2632993 от 04.04.2016. Опубликовано: 11.10.2017, Бюл. №29).

Преимущество данной системы состоит в том, что она не содержит селективных делительных зеркал, элементов оптомеханики для выполнения оптической юстировки совмещения изображения фокального пятна сканирующего светового пучка с конфокальной диафрагмой в сопряженной плоскости объектива. Предложенный принцип коммутации оптических пучков решает задачу их разделения независимо от спектрального и модового состава излучения, а также поляризации. В рассматриваемом Y-циркуляторе невзаимность обусловлена топологией пространственной коммутации оптических пучков.

Пучок излучения выходного торца первого (однонаправленного) оптического волновода, сопряженного с лазерным источником, возбуждающим флуоресценцию, направляется в торец второго волновода под некоторым углом, задаваемым направляющей системой подложек с канавками в пределах апертурного угла оптического волокна. Излучение выходного торца второго волновода объективом фокусируется на поверхности или в объеме объекта. Отраженное и флуорецентное излучения освещенной локальной области объекта в пределах пространственного угла числовой апертуры собираются объективом и вводятся обратно в выходной торец второго (двухнаправленного) волновода. Пучок излучения объекта из второго волновода направляется в торец третьего (однонаправленного) волновода, расположенного по оси второго волновода. Выход третьего волновода является выходом Y-циркулятора и соединен с входом оптоволоконного спектрометра. Для регистрации спектра флуоресценции в оптический волновод лазерного источника и оптический волновод входа спектрометра дополнительно включены пропускающий и заграждающий фильтры лазерного излучения. Таким образом, выходная апертура второго волновода является как выходной апертурой лазерного источника, так и входной апертурой фотоприемника (конфокальной диафрагмой), блокирующей внефокусные лучи излучения объекта. Исключается высокоточная механика, обеспечивающая совмещение изображения точечного источника флуоресцентного излучения, возбужденного сфокусированным лазерным пучком, с точечной конфокальной диафрагмой, так как конфокальная диафрагма и точечный источник лазерного излучения совмещены в одной апертуре. Остается только одна независимая степень свободы - фокусировка возбуждающего флуоресценцию лазерного излучения в пространственных координатах объекта. Следствием этого является новая возможность построения устройства сканирования микроскопа, когда пространственное сканирование масштабированного объективом изображения апертуры торца второго волновода в сопряженной плоскости, совмещенной с объектом, осуществляется механическим сканированием торца второго волновода (конфокальной диафрагмы) в соответствующем масштабе смещений. Данное решение расширяет возможности построения сканеров наряду с известными техническими решениями - сканированием флуоресцентных сигналов с трехмерным субмикронным разрешением подвижными зеркалами, смещением объекта и смещением объектива. Устройство дополнительно содержит пропускающий и заграждающий оптические фильтры на выходе лазерного источника и входе оптоволоконного спектрометра в соответствии с известным техническим решением, обеспечивающим выделения флуоресцентного излучения на фоне возбуждающего лазерного излучения.

Данный технический результат достигается тем, что в оптоволоконном конфокальном микроскопе, содержащем лазерный источник излучения, устройство невзаимной коммутации, направляемого на объект излучения и излучения отклика среды, объектив, конфокальную диафрагму, фотоприемник, устройство пространственного сканирования анализируемой области объекта согласно изобретению, в качестве устройства невзаимной коммутации используется оптоволоконный Y-циркулятор, формирующий пространственное разделение коммутируемых оптических пучков, первый однонаправленный вход оптического волновода которого соединен с источником освещения объекта, а оптический пучок выходного торца этого волновода направляется в торец второго волновода под некоторым углом к оси второго волновода, задаваемым направляющей системой подложек с канавками в пределах апертурного угла оптического волокна, выходной торец оптического двунаправленного второго волновода является апертурой, формирующей световой пучок освещения объекта через объектив и, одновременно апертурой, являющейся конфокальной диафрагмой, фильтрующей излучение отклика среды объекта, проходящего обратно через этот же объектив и второй волновод в торец третьего однонаправленного волновода, расположенного по оси второго волновода, выход которого является выходом Y-циркулятора, соединенным с входом оптоволоконного спектрометра, а излучающий торец второго волновода соединен с механической системой смещения этого торца для сканирования масштабированного объективом изображения апертуры излучателя в сопряженной плоскости, совмещенной с объектом.

Сущность изобретения поясняется схемой, приведенной на Фиг. 1, на которой показан оптоволоконный конфокальный сканирующий микроскоп. Оптоволоконный Y-циркулятор (См. Фиг. 1), формирующий пространственное разделение коммутируемых оптических пучков включает оптические волокна 1, 2, и 3, размещенные на подложке 4. Конфокальная диафрагма и одновременно апертура лазерного излучателя 5 соответствуют выходному торцу оптического волновода 2. Лазерный источник 6, сопряженный с волокном 7 через оптический разъем 8 соединен с входом коллиматора 9, обеспечивающего функционирование пропускающего фильтра 10. Оптический выход коллиматора 9 соединен с волокном 1 Y-циркулятора. Объектив 11 формирует сканирующий лазерный пучок 12 на объекте 13. Выход волокна 3 соединен с входом коллиматора 14, содержащего заграждающий фильтр 15. Выход коллиматора 14 через оптический разъем 16 подключен к входу оптоволоконного спектрометра 17. Излучающий торец волокна 2 соединен с механической системой смещения этого торца 18.

Работа оптоволоконного конфокального сканирующего микроскопа (см. Фиг. 1) осуществляется следующим образом. Лазерный источник 6, через оптический волновод 7, оптический разъем 8 передает излучение на вход коллиматора 9, формирующего коллимированный пучок излучения с апертурой, необходимой для функционирования фильтра 10, пропускающего основную линию излучения лазера 6 и подавляющего остальное излучение. Выходное излучение коллиматора 9 поступает на вход волокна 1 Y-циркулятора. Выходной оптический пучок волокна 1 направляется на входной торец волокна 2 под заданным углом к оси волокна 2. Излучающий торец 5 волокна 2 расположен в фокальной плоскости объектива 11, формирующего сканирующий пучок 12, сфокусированный в сопряженной плоскости объектива 11 на исследуемым объекте 13. В локальном объеме сфокусированного лазерного излучения среда объекта 13 создает излучение флуоресценции. Это излучение в границах пространственного угла 12 вместе с отраженным лазерным излучением объективом 11 фокусируется на торце 5 волокна 2, апертура которого выполняет функцию конфокальной диафрагмы, так как иные лучи, кроме излучения из области фокусировки, не могут быть введены в волокно 2. Флуоресцентное излучение из волокна 2 в соответствие с направлением оптического пучка вводится в волокно 3, затем поступает в коллиматор 14, проходит через заграждающий фильтр 15, подавляющий лазерное излучение и пропускающий излучение флуоресценции. Выход коллиматора 14 через оптический разъем 16 соединен с входом оптоволоконного спектрометра 17, регистрирующего спектр флуоресценции сканируемой области объекта 13. Излучающий торец волокна 2 соединен с механической системой смещения этого торца 18. Смещение конфокальной диафрагмы 5, апертура которой также является излучателем, приводит к смещению фокального пятна в сопряженной плоскости объектива 11, расположенной на объекте 13.

Оптоволоконный конфокальный сканирующий микроскоп, содержащий лазерный источник излучения, устройство невзаимной коммутации направляемого на объект излучения и излучения отклика среды, объектив, конфокальную диафрагму, фотоприемник, устройство пространственного сканирования анализируемой области объекта, отличающийся тем, что в качестве устройства невзаимной коммутации используется оптоволоконный Y-циркулятор, формирующий пространственное разделение коммутируемых оптических пучков, первый однонаправленный вход оптического волновода которого соединен с источником освещения объекта, а оптический пучок выходного торца этого волновода направляется в торец второго волновода под некоторым углом к оси второго волновода, задаваемым направляющей системой подложек с канавками в пределах апертурного угла оптического волокна, выходной торец оптического двунаправленного второго волновода является апертурой, формирующей световой пучок освещения объекта через объектив и, одновременно, являющейся конфокальной диафрагмой, фильтрующей излучение отклика среды объекта, проходящего обратно через этот же объектив и второй волновод в торец третьего однонаправленного волновода, расположенного по оси второго волновода, выход которого является выходом Y-циркулятора, соединенным с входом оптоволоконного спектрометра, а излучающий торец второго волновода соединен с механической системой смещения этого торца для сканирования масштабированного объективом изображения апертуры излучателя в сопряженной плоскости, совмещенной с объектом.
ОПТОВОЛОКОННЫЙ КОНФОКАЛЬНЫЙ СКАНИРУЮЩИЙ МИКРОСКОП
ОПТОВОЛОКОННЫЙ КОНФОКАЛЬНЫЙ СКАНИРУЮЩИЙ МИКРОСКОП
Источник поступления информации: Роспатент

Показаны записи 71-80 из 86.
29.05.2020
№220.018.2183

Способ получения нанопорошков пористого кремния

Изобретение относится к области получения нанопорошков кремния и может быть использовано в стоматологии и биомедицине для получения фотолюминесцентных меток. Способ получения нанопорошков пористого кремния, включает травление подкисленным концентрированной серной кислотой до значения рН 4...
Тип: Изобретение
Номер охранного документа: 0002722098
Дата охранного документа: 26.05.2020
04.06.2020
№220.018.240e

Устройство для спектрального анализа

Изобретение относится к области измерительной техники и касается устройства для спектрального анализа. Устройство содержит источник светового излучения, многоэлементный фотоприемник, подключенный к блоку регистрации и обработки информации, кювету для размещения исследуемого вещества, генератор...
Тип: Изобретение
Номер охранного документа: 0002722604
Дата охранного документа: 02.06.2020
05.06.2020
№220.018.2466

Способ определения тритерпеновых сапонинов группы β-амирина в растительном сырье и лекарственных препаратах на их основе

Изобретение относится к медицине, а именно к фармакологии, и может быть использовано для определения тритерпеновых сапонинов группы β-амирина в растительном сырье и лекарственных препаратах на их основе. Для этого по УФ-спектрам водных растворов сапонинов определяют оптическую плотность...
Тип: Изобретение
Номер охранного документа: 0002722746
Дата охранного документа: 03.06.2020
09.06.2020
№220.018.2594

Способ выявления разнокачественности семян гибридов и линий сахарной свеклы

Изобретение относится к сельскому хозяйству. Способ выявления разнокачественности семян гибридов и линий сахарной свеклы включает отбор, промывание, подсушивание, проращивание семян контрольной и опытной группы в пластиковых контейнерах на фильтровальной бумаге в четырех повторностях по 100 шт....
Тип: Изобретение
Номер охранного документа: 0002723086
Дата охранного документа: 08.06.2020
18.06.2020
№220.018.27c1

Способ диагностики предрасположенности к раку молочной железы в русской популяции на основе пцр-пдрф

Изобретение относится к области биотехнологии. Предложен способ диагностики предрасположенности к раку молочной железы человека из популяции центральной части России на основе ПЦР-ПДРФ. Способ включает выделение ДНК из предварительно отобранного биологического материала пациента, проведение...
Тип: Изобретение
Номер охранного документа: 0002723585
Дата охранного документа: 16.06.2020
21.06.2020
№220.018.2957

Многоканальный конфокальный спектроанализатор изображений

Изобретение относится к области спектроскопических исследований и касается многоканального конфокального спектроанализатора изображений. Спектроанализатор включает в себя диодный лазер, цилиндрическую оптику, конфокальную диафрагму, объектив, видеокамеру, систему сканирования и систему...
Тип: Изобретение
Номер охранного документа: 0002723890
Дата охранного документа: 18.06.2020
27.06.2020
№220.018.2ba6

Способ лазерного разделения изотопов кислорода

Изобретение относится к способу лазерного разделения изотопов кислорода и может быть использовано для получения изотопически обогащенного кислорода, а также для последующего синтеза изотопа фтора F, важного в медицинской диагностике. Способ включает облучение кислорода резонансным инфракрасным...
Тип: Изобретение
Номер охранного документа: 0002724748
Дата охранного документа: 25.06.2020
12.07.2020
№220.018.3200

Применение препарата "зерокс®" (врк) в качестве стимулятора роста сахарной свеклы

Изобретение относится к сельскому хозяйству, в частности к новым стимулирующим рост растений препаратам. В качестве стимулятора роста для сахарной свёклы применяют препарат «Зерокс®» (ВКР), при этом при этом обработку недражированных семян проводят замачиванием в водном растворе концентрацией...
Тип: Изобретение
Номер охранного документа: 0002726251
Дата охранного документа: 10.07.2020
31.07.2020
№220.018.3a17

Способ защиты шмелей от токсического действия митохондриально-направленных пестицидов

Изобретение относится к области сельского хозяйства и может быть использовано для защиты шмелей от токсического действия митохондриально-направленных пестицидов как в лабораторных, так и в полевых условиях. Способ защиты шмелей от токсического действия митохондриально-направленных пестицидов...
Тип: Изобретение
Номер охранного документа: 0002728447
Дата охранного документа: 29.07.2020
11.05.2023
№223.018.53f6

Способ получения гибридного препарата папаина и карбоксиметилцеллюлозы в виде густого раствора

Изобретение относится к биотехнологии. Способ получения гибридного препарата папаина и карбоксиметилцеллюлозы в виде густого раствора характеризуется тем, что включает иммобилизацию папаина, которую проводят путем комплексообразования папаина и натриевой соли карбоксиметилцеллюлозы, которую...
Тип: Изобретение
Номер охранного документа: 0002795425
Дата охранного документа: 03.05.2023
Показаны записи 11-12 из 12.
18.05.2019
№219.017.5b74

Оптоволоконное устройство для регистрации флуоресценции

Изобретение относится к устройствам медицинской техники и может быть использовано для диагностики спектров флуоресценции локальных внутренних и поверхностных областей различных биологических сред. Устройство содержит призму для разделения пучка стимулирующего флуоресценцию излучения,...
Тип: Изобретение
Номер охранного документа: 0002464549
Дата охранного документа: 20.10.2012
21.06.2020
№220.018.2957

Многоканальный конфокальный спектроанализатор изображений

Изобретение относится к области спектроскопических исследований и касается многоканального конфокального спектроанализатора изображений. Спектроанализатор включает в себя диодный лазер, цилиндрическую оптику, конфокальную диафрагму, объектив, видеокамеру, систему сканирования и систему...
Тип: Изобретение
Номер охранного документа: 0002723890
Дата охранного документа: 18.06.2020
+ добавить свой РИД