×
22.01.2020
220.017.f875

ТЕРМОСТАТИРУЮЩЕЕ УСТРОЙСТВО ДЛЯ ПРОВЕДЕНИЯ НАНОКАЛОРИМЕТРИЧЕСКИХ ИЗМЕРЕНИЙ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002711563
Дата охранного документа
17.01.2020
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области приборостроения и может быть использовано для проведения комбинированных in-situ исследований структуры и теплофизических свойств материалов различного типа в широком температурном интервале. Заявляемое устройство для термостатирования нанокалориметрических сенсоров нового поколения позволяет размещать внутри корпуса несколько различных типов нанокалориметрических сенсоров (XEN-40014, XEN Т08, FlashDSC chip). Устройство может быть интегрировано в приборы для измерения теплофизических и структурных параметров образцов. Устройство расширяет возможности методов нанокалориметрии за счет реализации возможности нагрева образца до 450°С и охлаждения образца до -20°С. Кроме того, конструкция устройства позволяет использовать сенсоры, имеющие две активные зоны, одну из которых можно использовать в качестве эталонной ячейки. Устройство включает корпус, выполненный с возможностью подключения к коннектору и снабженный окнами из рентгенопрозрачного материала, в котором размещен нанокалориметрический сенсор, элемент Пельтье прямоугольной формы, теплоотводящая пластина, изготовленная из материала с хорошей теплопроводностью, система жидкостного охлаждения, вмонтированная в корпус. Теплоотводящая пластина снабжена отверстием для прохождения излучения, а сенсор с исследуемым образцом расположен на этой пластине с обеспечением размещения активной части сенсора в проекции отверстия. В корпус встроены электрические платы для возможности подключения различных сенсоров. Технический результат – повышение качества проводимых исследований. 10 з.п. ф-лы, 5 ил.
Реферат Свернуть Развернуть

Область техники

Изобретение относится к научному приборостроению и представляет собой устройство, которое может быть использовано для сочетания методов нанокалориметрии и рентгеновской дифракции и проведения комбинированных in-situ исследований структуры и теплофизических свойств материалов различного типа в широком температурном интервале, в т.ч. и при отрицательных температурах. В заявляемом решении реализованы конструкционные особенности, позволяющие использовать нанокалориметрические сенсоры нового поколения с двумя активными областями, одна из которых предназначена для исследуемого образца. Модифицированное термостатирующее устройство позволяет создавать контролируемую атмосферу вокруг нанокалориметрического сенсора, что позволяет реализовать сложные нанокалориметрические эксперименты, ранее недоступные научному сообществу.

Уровень техники

Из уровня техники известны устройства, описанные в патентах US 5288147 A «Датчик дифференциального термического анализатора на основе термопар» и US 5788373 A «Способ и устройство для дифференциального термического анализа». Указанные патенты лежат в основе коммерческого прибора компании Mettler Toledo «Flash DSC1». Также известен патент RU 2620028 C1 «Термостатирующее устройство для нанокалориметрических измерений на чипе со сверхбыстрыми скоростями нагрева и охлаждения», в котором описано наиболее близкое решение к заявляемому устройству.

В патенте US 5288147 A представлен дифференциальный датчик для термического анализа, состоящий из двух низкоомных дифференциальных термоэлектрических батарей. Каждая термобатарея состоит из серии последовательно соединенных термопар. Контакты измерительных термопар расположены равномерно как вокруг измерительной области, так и вокруг аналогичной области для образца сравнения (эталонной). Дифференциальный термоаналитический датчик может быть использован, например, для дифференциальных измерений тепловых потоков ячейки с исследуемым образцом и эталонной (т.е. пустой) ячейки, при этом измерение разности тепловых потоков реализуется на основе принципа компенсации мощности.

В патенте US 5788373 A описаны метод и устройство для проведения дифференциальных термоаналитических экспериментов с использованием исследуемого образца и образца сравнения. Образец сравнения может быть представлен, например, пустым тиглем с известным весом, либо может заменяться расчетами с использованием математической модели, принимающей во внимание реальное поведение теплофизического устройства. Термоаналитические кривые исследуемого образца и эталонного образца сравниваются для определения разности температур, при этом ошибка измерения сильно зависит от положения обоих образцов по отношению к нагревательным элементам.

Из уровня техники известно устройство «Термостатирующее устройство для нанокалориметрических измерений на чипе со сверхбыстрыми скоростями нагрева и охлаждения» (патент RU 2620028 C1), выбранное в качестве прототипа. Термостатирующее устройство содержит корпус, выполненный с возможностью подключения к коннектору, для соединения с блоком электроники, и размещенные в корпусе нанокалориметрический сенсор, элемент Пельтье, выполненный в виде пластины, электронную плату, предназначенную для передачи сигнала с сенсора на коннектор, систему жидкостного охлаждения элемента Пельтье, при этом в корпусе выполнены соосные рентгенопрозрачные окна для прохождения излучения, система жидкостного охлаждения выполнена в качестве отдельного блока, изготовленного из медной пластины, а активная область сенсора для исследуемого образца расположена в проекции упомянутых отверстий. Использование данного устройства возможно в различных измерительных системах, включающих, как правило, платы цифро-аналогового преобразователя и усилителей сигналов, подаваемых на нанокалориметрические сенсоры и снимаемых с нанокалориметрических сенсоров, а также контролирующее программное обеспечение, позволяющее проводить нанокалориметрические измерения не только в режимах линейных нагревов (так называемая DC- калориметрия), но и в режимах температурной модуляции (АС-калориметрия). Возможность температурной модуляции позволяет достигнуть достаточной точности измерений в режиме относительно низких скоростей нагрева / охлаждения. В свою очередь, в DC-режиме возможно достичь скорости нагрева активной области нанокалориметрического сенсора до 1000000°С/сек, а скорость охлаждения - до 5000°С/сек за счет герметичности устройства и наличия специальной системы охлаждения. Также в данном устройстве реализована возможность использования дополнительного (эталонного) нанокалориметрического сенсора для проведения дифференциальных нанокалориметрических измерений.

Однако прототип имеет ряд недостатков, один из которых - относительно большая толщина прибора в активной области. Это обусловлено наличием системы жидкостного охлаждения выполненной в качестве отдельного блока, наличием керамических тепловых экранов и воздушных прослоек между окнами и внутренними элементами устройства. Существенным недостатком также является необходимость использования двух нанокалориметрических сенсоров, из-за чего усложняется процесс синхронного считывания сигналов с сенсоров, а полученные экспериментальные данные сильно зависят от положения этих сенсоров на элементе Пельтье. При работе в области отрицательных температур устройство-прототип имеет недостаток, связанный с конденсацией влаги на мембранах, закрывающих конструкционные корпусные отверстия. Данная влага препятствует проведению экспериментов с использованием оптической микроскопии или рентгеновской дифракции. Раскрытие изобретения

Технической проблемой, решаемой настоящим изобретением является разработка термостатирующего устройства с малой толщиной в зоне активной области сенсора для возможности интеграции с микро- и нанофокусной линией рентгеновской дифракции на синхротроне. Устройство должно быть выполнено в виде отдельного блока с возможностью размещения нескольких типов нанокалориметрических сенсоров (в корпусах типа XEN-40014, FlashDSC и др., выпускаемые компанией Xensor Integration), а также с возможностью регулирования температуры сенсора. Устройство может быть интегрировано в экспериментальное оборудование для измерения теплофизических и структурных параметров образцов.

Техническим результатом является повышение качества проводимых исследований за счет создания конструкции термостатирующего устройства со ступенчатым профилем для уменьшения его толщины в зоне активной области сенсора, позволяющем его размещать в современном нанокалориметрическом оборудовании и проводить исследования физико-химических параметров образца с реализацией возможности нагрева образца до 450°С и охлаждения образца до -20°С, а также за счет создания электронной платы для осуществления связи с коннектором. Кроме того, конструкция устройства позволяет использовать нанокалориметрические сенсоры нового поколения, имеющие две активные зоны, одну из которых можно использовать в качестве эталонной ячейки.

Технический результат достигается тем, что заявляемое устройство включает корпус, содержащий основание и крышку, выполненный с возможностью подключения к коннектору контрольно-измерительного блока нанокалориметра, и снабженный рентгенопрозрачными окнами - мембранами из рентгенопрозрачного материала, закрывающими конструкционные отверстия. В данном корпусе предусмотрена возможность размещения нанокалориметрического сенсора с двумя активными областями, одна из которых предназначена для исследуемого образца, элемента Пельтье прямоугольной формы, системы жидкостного охлаждения и теплоотводящей пластины. Последняя изготовлена из материала с высокой теплопроводностью (например, со значением коэффициента теплопроводности не менее 350 Вт/(м⋅К)) и снабжена сквозным отверстием для беспрепятственного прохождения излучения, используемого при изучении образцов методами рентгеновской дифракции или оптической микроскопии. В корпус встроены две электронные платы для возможности подключения различных нанокалориметрических сенсоров, одна из которых предназначена для передачи сигнала с сенсора на коннектор, а вторая снабжена отверстием для прохождения излучения и пружинными контактами для передачи сигнала с сенсора на первую электронную плату и расположена между крышкой и сенсором. Устройство выполнено с разделением его объема на три зоны по длине, где первая зона предназначена для размещения первой электронной платы, вторая - для размещения системы жидкостного охлаждения, третья - является рабочей, предназначенной для размещения сенсора, при этом корпус (и основание) имеет меньшую толщину в рабочей зоне (например, от 5 мм до 10 мм), например за счет выполнения основания со ступенчатым профилем в поперечном сечении. Конструкция устройства выполнена таким образом, что вне зависимости от типа сенсора, его активная область располагается непосредственно в проекции отверстия теплоотводящей пластины. Для подключения нанокалориметрических сенсоров XEN-40014 или FlashDSC используются пружинные контакты с золотым покрытием, а для остальных типов сенсоров предусмотрен соответствующий коннектор. Вторая электронная плата представляет собой пластину, изготовленную из двустороннего фольгированного стеклотекстолита с пружинными контактами и проводящими дорожками, при этом часть пружинных контактов расположена по окружности вокруг отверстия, а оставшаяся часть - с противоположной стороны платы с возможностью подключения к контактным площадкам первой платы.

Система жидкостного охлаждения может быть выполнена в виде каналов в основании корпуса для прохождения охлаждающей среды или в виде выреза в форме меандра в нижней части корпуса устройства. Над данным вырезом размещается элемент Пельтье и уплотняется по периметру специальной прокладкой, прижим которой осуществляется с помощью медного теплоотвода, необходимого для теплового контакта между нанокалориметрическим сенсором и системой охлаждения.

Таким образом, поставленная задача решается размещением в корпусе модуля охлаждения, состоящего из системы жидкостного охлаждения (7), элемента Пельтье (5) и теплоотводящей пластины (4). Система жидкостного охлаждения нужна для отвода тепла, генерируемого элементом Пельтье. В конструкции корпуса устройства имеются держатели для сенсоров различной геометрии. Для обеспечения возможности проведения исследований с использованием методов оптической микроскопии и рентгеновской дифракции, в корпус и крышку устройства встроены мембраны из нитрида кремния.

Заявляемое устройство имеет ряд преимуществ перед прототипом, из которых наиболее важным является возможность проведения экспериментов с использованием нанокалориметрических сенсоров нового поколения. Это особенно актуально в связи с развитием технологий, используемых в области нанокалориметрии и выходом на коммерческий рынок нового типа нанокалориметрических сенсоров. Кроме того, превосходством предлагаемого термостатирующего устройства является компактность конструкции и эргономичность в процессе эксплуатации. Небольшие размеры термостатирующего блока упрощают адаптацию устройства к различным лабораторным условиям, что ускоряет процесс калибровки устройства и его интегрирования в различные экспериментальные установки. В устройстве, выбранном за прототип, система жидкостного охлаждения выполнена в качестве отдельного блока, изготовленного из медной пластины, в то время как в заявляемом устройстве система жидкостного охлаждения располагается непосредственно в корпусе, благодаря чему достигается максимально возможная компактность прибора, а ступенчатый профиль устройства в поперечном сечении обеспечивает минимальную толщину прибора в рабочей зоне. Также, геометрия отверстия в термостатирующем устройстве обеспечивает возможность проведения экспериментов по МУРР (малоугловое рассеяние рентгеновских лучей) и ШУРР (широкоугловое рассеяние рентгеновских лучей) как в геометрии на просвет, так и с использованием отраженного скользящего пучка рентгеновских лучей.

Значительным преимуществом также является отсутствие необходимости использования дополнительного эталонного нанокалориметрического сенсора, так как в заявляемом устройстве предусмотрена возможность работы со специальными дифференциальными сенсорами с измерительной и эталонной ячейками. Стоит отметить, что при работе в области отрицательных температур устройство-прототип имеет недостаток, связанный с конденсацией влаги на мембранах, закрывающих конструкционные корпусные отверстия. В заявляемом изобретении данная проблема решается за счет размещения в непосредственной близости к мембранам специальных отверстий, через которые производится обдув инертным газом.

Заявляемое устройство является универсальным, его конструкция позволяет использовать прибор в любых устройствах, основанных на использовании как отдельных методов исследования материалов, например, нанокалориметрических методов, оптической микроскопии, сканирующей зондовой микроскопии, рентгеновской дифракции, так и приборах, совмещающих два и более из вышеупомянутых методов.

При монтаже заявляемого устройства в экспериментальную установку для измерения структурных параметров образца необходимо учитывать высокую чувствительность нанокалориметрического сенсора к любым побочным электрическим сигналам. Так, в экспериментах может использоваться широкий диапазон частот модуляции температуры - от 1.0 Гц до 40 кГц, при этом точность измерения фазового смещения температурного отклика образца, обеспечиваемого контрольно-измерительным блоком нанокалориметра, лучше 0.05°. В предлагаемом устройстве реализована стабильная передача аналогового сигнала, получаемого нанокалориметрическими сенсорами до контрольно-измерительного блока нанокалориметра без каких-либо потерь интенсивности сигнала и без внесения дополнительных шумов благодаря использованию электрической платы (2) с покрытием контактных площадок иммерсионным золотом.

Краткое описание чертежей

Изобретение поясняется чертежами.

На фиг. 1 представлен вид устройства с разнесенными конструктивными элементами.

На фиг. 2 изображен общий вид термостатирующего устройства с размещенным внутри сенсором типа XEN-40014.

На фиг. 3 изображен общий вид электронной платы с пружинными контактами.

На фиг. 4 представлена разводка электронных печатных плат.

На фиг. 5 изображена электрическая схема соединений.

Позициями на чертежах обозначены: 1 - крышка, 2 - электронная плата с пружинными контактами (вторая электронная плата), 3 - нанокалориметрический сенсор, 4 - теплоотводящая пластина, 5 - модуль Пельтье, 6 - основание корпуса, 7 - каналы жидкостного охлаждения, 8 - электронная плата с коннектором (первая электронная плата), 9 - штуцеры для подвода или отвода сред, 10 - рентгенопрозрачные окна, 11 - пружинные контакты, 12 - коннектор.

Осуществление изобретения.

Ниже представлено более подробное описание заявляемого устройства, не ограничивающее сущность, представленную в независимом пункте формулы, а лишь демонстрирующее возможность реализации назначения с достижением заявленного технического результата.

Заявляемое устройство имеет конфигурацию, обеспечивающую его размещение в приборах для проведения исследований методами оптической микроскопии, дифракции рентгеновских лучей или сканирующей зондовой микроскопии. В частности, термостатирующее устройство совместимо с линиями МФРД и НФРД синхротрона ESRF (Гренобль, Франция). Для использования устройства на данных линиях особенно важна минимальная толщина в зоне активной области (т.е. в зоне размещения исследуемого образца), это связано с особенностями фокусировки рентгеновских лучей для получения пучка заданного размера, - фокусное расстояние в таких системах составляет несколько миллиметров и толщина устройства, которая составляет от 5 до 10 мм, соответствует данному требованию. Плоская конструкция устройства позволяет размещать его практически под любым оптическим микроскопом.

Устройство в сборке представляет собой прочный корпус (6) из дюрали. Внутри корпуса расположена система охлаждения, представленная вырезом в форме меандра (7), элементом Пельтье (5) и теплоотводящей пластиной (4) с отверстием для прохождения, например, рентгеновского пучка. Нанокалориметрический сенсор (3) подключается к электронной плате (8) с помощью дополнительной электронной платы (2) с золочеными пружинными контактами. Особое внимание уделено расположению активной области нанокалориметрических сенсоров с исследуемым образцом, положение ее строго инвариантно вне зависимости от типа применяемого сенсора. Активная область сенсора лежит на одной оси с отверстием в теплоотводящей пластине (4) для прохождения излучения. Сверху основная часть корпуса (6) крышкой (1), выполненной с вырезом для размещения мембраны из материала, прозрачного для рентгеновских и оптических лучей, что позволяет проводить in-situ измерения с использованием, в частности, методов рентгеноструктурного анализа и оптической микроскопии. По бокам устройства расположены резьбовые отверстия (9) для установки штуцеров, предназначенных для подачи охлаждающей жидкости и различных газов. При помощи коннектора micro-d-21 основная плата (8) соединена с контрольно-измерительным блоком нанокалориметра, представляющим собой электронный контроллер, состоящий из платы усилителей сигналов и цифро-аналогового преобразователя, помещенных в прочный стальной экранирующий корпус. Электронный блок нанокалориметра соединен с ПК при помощи USB-коннектора.

Ниже представлено описание работы системы для нанокалориметрических измерений с используемым заявляемым термостатическим устройством.

Рабочий цикл начинается с задания температурной программы для контрольно-измерительного блока нанокалориметра, где производится автоматический пересчет ее параметров из температуры в напряжение, подаваемое на термопары и нагреватели нанокалориметрического сенсора. Если собственного температурного диапазона нанокалориметрических сенсоров недостаточно, то программа подключает охлаждение или нагрев термостатирующего устройства. Для этого через элемент Пельтье пропускается ток необходимого значения (5). Элемент Пельтье представляет собой полупроводниковое устройство, в котором градиент температур на нижней и верхней поверхностях создается за счет проходящего электрического тока. Для дополнительного охлаждения системы и вывода избыточного тепла из термостатируемой камеры нижняя поверхность элемента Пельтье (5) охлаждается путем прокачки охлаждающей жидкости через контур жидкостного охлаждения (7) сразу после подачи сигнала на включение насоса. При этом для нагрева исследуемого образца, размещенного в активной области сенсора достаточно подать на элемент Пельтье (5) обратное напряжение. После достижения теплового равновесия внутри термостатируемого объема программа передает рассчитанные параметры подаваемого напряжения цифро-аналоговому преобразователю контрольно-измерительного блока нанокалориметра через USB-соединение. Цифро-аналоговый преобразователь (ЦАП) генерирует выходной сигнал, который попадает в плату усилителей, и затем передается на соответствующие нагревательные элементы сенсора; одновременно начинается параллельный прием входящего сигнала от термопар сенсора. Анализируемый сигнал поступает с нанокалориметрического сенсора (3) на основную электронную плату (8), либо напрямую, либо в обход через электронную плату (2). Далее основная электрическая плата передает сигнал при помощи коннектора на плату усилителей контрольно-измерительного блока нанокалориметра. Проходя через различные модули и усилительные каскады платы усилителей, сигнал попадает в ЦАП, откуда при помощи USB-коннектора передается на ПК, где регистрируется и записывается программой. Программа позволяет рассматривать как отдельные сигналы, так и производить простейшие действия с ними, например, вычитание базовой линии и производить визуализацию в разных системах координат.

Для реализации заявляемого устройства были выбраны нанокалориметрические сенсоры в корпусах XEN-40014 и FlashDSC, выпускаемые компанией Xensor Integration. Данные сенсоры обладают оптимальными характеристиками для проведения теплофизических исследований различных материалов в широком спектре температур с использованием высоких скоростей нагрева (до 1000000°С/с).

Представляемое устройство адаптировано для использования воды в качестве жидкого компонента системы охлаждения. Используемый элемент Пельтье в представляемом устройстве способен развивать и поддерживать постоянную отрицательную температуру до - 20°С. При этом используя модуль Пельтье в качестве системы нагрева, можно контролируемо увеличивать температуру нанокалорриметрического сенсора на дополнительные 100°С. Объем термостатируемой области пространства составляет 55 мл, что достаточно для размещения всех необходимых конструкционных элементов устройства.

Опытный образец устройства был испытан на линии МФРД синхротрона ESRF (Гренобль, Франция) при проведении in situ эксперимента дифракции рентгеновских лучей и нанокалориметрии. Устройство располагалось вертикально на XYZ столике, за счет чего обеспечивался доступ ко всем штуцерам и коннектору для подключения к контрольно-измерительному блоку. Крышка с платой с пружинными контактами надежно фиксировала нанокалориметрический сенсор. Благодаря малой толщине корпуса в зоне активной области сенсора удалось подвести фокусирующую апертуру на расстояние 3 мм до образца, - это позволило сфокусировать рентгеновский пучок до диаметра в 12 мкм. За счет золотых пружинных контактов и экранированных проводов удалось обеспечить стабильную передачу аналогового сигнала с нанокалориметрического сенсора. В качестве исследуемого образца был взят изотактический полипропилен. Несколько микрограмм вещества размещали на активной области нанокалориметрического сенсора XEN-40014. Сенсор размещался на теплопроводящей пластине с последующим ее охлаждением до температуры -22°C с помощью системы охлаждения, при такой температуре образец переходил в стеклообразное состояние. Внутренняя камера устройства обдувалась сухим азотом. Выходом для газа служили отверстия для обдува окон, благодаря чему решалась проблема с конденсацией влаги на них. Нагрев образца до температуры плавления осуществлялся с помощью нанокалориметрического сенсора со скоростью 1000 К/с. Одновременно с нагревом производилась непрерывная съемка рентгеновским детектором каждые 1,5 мс. Весь эксперимент занял около 220 мс, после чего можно было сопоставлять данные рентгеновской дифракции и нанокалориметрии.

Источник поступления информации: Роспатент

Показаны записи 1-10 из 19.
10.03.2013
№216.012.2ee9

Способ изготовления пленочного электрета

Изобретение относится к области технологий изготовления пленочных электретов и может быть использовано, например, при производстве биполярных электретных микрофонов и нового класса пьезодатчиков на основе ламинированных электретных пленок, обладающих гигантским пьезомодулем (до 1000 нКл/Н)....
Тип: Изобретение
Номер охранного документа: 0002477540
Дата охранного документа: 10.03.2013
27.06.2013
№216.012.508c

Способ повышения механических свойств полимерного нанокомпозиционного материала на основе анизодиаметрического наполнителя

Изобретение относится к способу повышения механических свойств полимерного нанокомпозиционного материала на основе анизодиаметрического наполнителя. Согласно способу экструдируют и затем прессуют полученный экструдат. После экструзии проводят рентгеноструктурный анализ РСА экструдата для...
Тип: Изобретение
Номер охранного документа: 0002486213
Дата охранного документа: 27.06.2013
20.07.2014
№216.012.e0cf

Способ изготовления пленочного электрета

Изобретение относится к области электротехники, а именно к способу изготовления полимерных пленочных электретов, которые могут быть использованы при производстве биполярных электретных микрофонов и пьезодатчиков на основе ламинированных электретных пленок, обладающих стабильным зарядом....
Тип: Изобретение
Номер охранного документа: 0002523337
Дата охранного документа: 20.07.2014
20.09.2014
№216.012.f541

Способ изготовления пленочного электрета

Изобретение относится к области технологий изготовления пленочных электретов и может быть использовано, например, при производстве биполярных электретных микрофонов и нового класса пьезодатчиков на основе ламинированных электретных пленок, обладающих гигантским пьезомодулем (до 1000 пКл/Н)....
Тип: Изобретение
Номер охранного документа: 0002528618
Дата охранного документа: 20.09.2014
20.05.2015
№216.013.4b66

Катодный материал для тотэ на основе медь-содержащих слоистых перовскитоподобных оксидов

Изобретение относится к области электротехники, в частности к катодному материалу для твердооксидных топливных элементов (ТОТЭ) на основе сложных оксидов 3d-металлов. Катодный материал выполнен на основе перовскитоподобных слоистых оксидов с общей формулой PrSrCuO, где 0.0
Тип: Изобретение
Номер охранного документа: 0002550816
Дата охранного документа: 20.05.2015
10.08.2016
№216.015.555d

Блок держателя нанокалориметрического сенсора устройства для измерения теплофизических и/или структурных параметров образца

Блок держателя нанокалориметрического сенсора, предназначенный для размещения в дифрактометре на X-Y-Z движителе (столике), дает возможность проведения экспериментов с одновременным использованием данных методов, что позволяет проводить in-situ исследования структуры и теплофизических свойств...
Тип: Изобретение
Номер охранного документа: 0002593209
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.5663

Блок держателя нанокалориметрического сенсора устройства для измерения теплофизических и/или морфологических параметров образца

Блок держателя для нанокалориметрического сенсора предназначен для размещения на X-Y столике оптического микроскопа и проведения in-situ исследования морфологии и теплофизических свойств материалов различного типа. Блок держателя представляет собой пластину из инертного материала, на которой...
Тип: Изобретение
Номер охранного документа: 0002593211
Дата охранного документа: 10.08.2016
25.08.2017
№217.015.cac8

Блок держателей нанокалориметрических сенсоров для измерения теплофизических и структурных параметров образца

Изобретение относится к области приборостроения и может быть использовано при проведении измерений теплофизических и/или структурных параметров образца. Предложен блок держателей нанокалориметрических сенсоров, предназначенный для размещения в дифрактометре на X-Y-Z движителе (столике)....
Тип: Изобретение
Номер охранного документа: 0002620029
Дата охранного документа: 22.05.2017
25.08.2017
№217.015.cb2b

Термостатирующее устройство для нанокалориметрических измерений на чипе со сверхбыстрыми скоростями нагрева и охлаждения

Изобретение относится к области приборостроения и может быть использовано для нанокалориметрических измерений. Заявляемое термостатирующее устройство для нанокалориметрических измерений на чипе со сверхбыстрыми скоростями нагрева и охлаждения обеспечивает стабильную передачу аналогового...
Тип: Изобретение
Номер охранного документа: 0002620028
Дата охранного документа: 22.05.2017
25.08.2017
№217.015.ce2d

Поршневой мини-экструдер

Механический мини-экструдер предназначен для автоматизированного процесса экструзии низкомолекулярных или высокомолекулярных соединений, имеющих жидкокристаллическую или частично-кристаллическую структуру. Мини-экструдер представляет собой каркасную конструкцию с закрепленным на ней шаговым...
Тип: Изобретение
Номер охранного документа: 0002620790
Дата охранного документа: 29.05.2017
+ добавить свой РИД