×
17.01.2020
220.017.f623

Результат интеллектуальной деятельности: УЗЕЛ СПРЯМЛЕНИЯ ВОЗДУШНОГО ПОТОКА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ И ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ, СОДЕРЖАЩИЙ ТАКОЙ УЗЕЛ

Вид РИД

Изобретение

№ охранного документа
0002711204
Дата охранного документа
15.01.2020
Аннотация: Узел спрямления воздушного потока газотурбинного двигателя содержит конструктивную стойку и спрямляющую лопатку, находящуюся со стороны корытца конструктивной стойки и содержащую переднюю кромку, заднюю кромку и среднюю линию, проходящую между передней кромкой и задней кромкой. Лопатка и стойка распложены радиально вокруг оси газотурбинного двигателя и образуют между собой канал прохождения воздуха. Конструктивная стойка содержит входной конец относительно направления прохождения воздуха в канале, имеющий профиль спрямляющей лопатки и содержащий переднюю кромку, выровненную с передней кромкой лопатки, и выступ, находящийся в корытце стойки и образующий в канале горло, на входе в которое канал сходится и на выходе из которого канал расходится. Площадь сечения канала на уровне горла составляет от 0,7 до 0,9 площади сечения канала на уровне передних кромок лопатки и стойки. Другое изобретение группы относится к двухконтурному газотурбинному двигателю, включающему указанный выше узел спрямления воздушного потока. Группа изобретений позволяет исключить появление скачка уплотнения и срыва пограничного слоя воздушного потока в канале между конструктивной стойкой и спрямляющей лопаткой. 2 н. и 3 з.п. ф-лы, 5 ил.

Область техники, к которой относится изобретение

Изобретение относится к узлу спрямления воздушного потока газотурбинного двигателя, содержащему спрямляющие лопатки и одну или несколько конструктивных стоек. Изобретение находит свое применение, в частности, для двухконтурных газотурбинных двигателей.

Уровень техники

Двухконтурный газотурбинный двигатель, используемый в качестве силовой установки в области авиации, показан на фиг. 1а. Он содержит вентилятор 10, выдающий воздушный поток, центральная часть которого, называемая потоком FP первого контура, поступает на компрессор 12, который питает турбину 14, вращающую вентилятор.

Периферическая часть воздушного потока, называемая потоком FS второго контура, выбрасывается в атмосферу, создавая основную часть тяги газотурбинного двигателя 1, пройдя перед этим через венец 20 с неподвижными лопатками 21, расположенный на выходе вентилятора. Этот венец, называемый спрямляющей решеткой 20 (известной также под английским сокращением OGV от “Outlet Guide Vane”), позволяет спрямлять воздушный поток второго контура на выходе вентилятора, максимально ограничивая при этом потери.

На этой же фигуре показана конструктивная стойка 30, которая соединяет обечайку 16 промежуточного корпуса со ступицей 17 промежуточного корпуса, обеспечивая, таким образом, поддержание и удержание в положении приводного(ых) вала(ов) 18 и конструктивную прочность всего узла. Функцией конструктивной стойки является также обеспечение передачи движения или текучих сред между газотурбинным двигателем и остальной частью летательного аппарата, на котором он установлен. Для этого конструктивная стойка является полой и позволяет прокладывать в ней трубопроводы, трансмиссионные валы и т.д.

Существуют несколько типов конструктивных стоек в зависимости от их роли и от их положения в газотурбинном двигателе.

Например, так называемые «главные» конструктивные стойки, основной функцией которых является крепление газотурбинного двигателя под крылом самолета, расположены на «6 часов» и на «12 часов», то есть вертикально относительно самолета, находящегося на горизонтальной площадке (терминология использована по аналогии с положением стрелок часов).

Основной функцией так называемых «вспомогательных» конструктивных стоек является не крепление газотурбинного двигателя, а передача мощности, и они являются полыми для прохождения трансмиссионного вала. Эти стойки расположены, например, на «8 часов», то есть под углом относительно вертикали.

Все типы конструктивных стоек служат также для прокладки вспомогательного оборудования от газотурбинного двигателя к остальной части самолета, то есть, например, масляных трубопроводов, топливных трубопроводов и т.д.

Чтобы уменьшить массу газотурбинного двигателя и улучшить его характеристики, было предложено объединить функции решетки спрямления потока второго контура и конструктивной стойки в одной детали, причем для всех типов конструктивных стоек.

Как показано на фиг. 1b, были предложены так называемые «интегрированные» спрямляющие лопатки, образованные конструктивной стойкой в данном случае вышеупомянутого вспомогательного типа, входная часть которой выполнена обтекаемой, чтобы иметь аэродинамический профиль спрямляющей лопатки.

Такая конструктивная стойка имеет части, которые обусловлены геометрической формой и которыми являются:

- входная концевая часть 31, геометрия которой должна быть геометрией спрямляющей лопатки, и

- полая зона 34 для прокладки вспомогательного оборудования, в которой расположены трубопроводы, трансмиссионные валы и т.д. Эта зона должна быть рассчитана с учетом большого числа условий, таких как габариты вспомогательного оборудования, функциональные и монтажные зазоры, толщина материала и т.д., и ее называют не подлежащей изменениям (или в английской терминологии: “keep-out zone”), то есть она должна оставаться без изменений в случае изменения геометрии конструктивной стойки.

Соблюдение этих условий заставляет предусматривать для конструктивной стойки геометрию, существенно загромождающую каналы прохождения воздуха, образованные спрямляющими лопатками, находящимися с двух сторон от стойки.

В частности, присутствие не подлежащей изменению зоны на выходе обтекаемой части стойки образует выступ 35 со стороны корытца стойки, который перекрывает канал прохождения воздуха, находящийся между корытцем стойки и лопаткой 21.

Как показано на фиг. 1с, воздушный поток в этом канале сильно ускоряется и достигает сверхзвуковой скорости на уровне горла. Резкий переход между дозвуковой скоростью в канале и сверхзвуковой скоростью в воздушном кармане может привести к образованию скачка уплотнения О, приводящего к большой потере напора.

Кроме того, в этой геометрии можно также наблюдать срыв D пограничного слоя воздушного потока на выходе из горла, что тоже приводит к потерям напора и, следовательно, к снижению характеристик спрямляющей решетки.

Следовательно, существует потребность в преодолении проблем, создаваемых этой геометрией.

Раскрытие сущности изобретения

Задача изобретения состоит в устранении вышеуказанных недостатков, присущих известным техническим решениям, за счет создания узла для спрямления воздушного потока, имеющего улучшенные аэродинамические характеристики по сравнению с известными решениями.

Задача изобретения состоит в создании узла, спрямляющего воздушный поток, геометрия которого позволяет устранить риски появления скачка уплотнения и срыва пограничного слоя воздушного потока.

В связи с этим объектом изобретения является узел спрямления воздушного потока газотурбинного двигателя, содержащий:

- конструктивную стойку, и

- по меньшей мере одну спрямляющую лопатку, находящуюся со стороны корытца конструктивной стойки и содержащую переднюю кромку, заднюю кромку и среднюю линию, проходящую между передней кромкой и задней кромкой,

при этом лопатка и стойка распложены радиально вокруг оси газотурбинного двигателя и образуют между собой канал прохождения воздуха,

при этом конструктивная стойка содержит:

- входной конец относительно направления прохождения воздуха в канале, имеющий профиль спрямляющей лопатки и содержащий переднюю кромку, выравненную с передней кромкой лопатки, и

- выступ, находящийся в корытце стойки и образующий в канале горло, на входе в которое канал сходится и на выходе из которого канал расходится,

причем площадь сечения канала на уровне горла составляет от 0,7 до 0,9 площади сечения канала на уровне передних кромок лопатки и стойки.

Предпочтительно, но факультативно заявленный спрямляющий узел дополнительно имеет по меньшей мере один из следующих отличительных признаков:

- площадь сечения канала на уровне горла составляет от 0,75 до 0,85 площади сечения канала на уровне передних кромок лопатки и стойки.

- площадь сечения канала на уровне горла составляет от 0,79 до 0,81 площади сечения канала на уровне передних кромок лопатки и стойки.

- горло канала имеет осевое положение xгорла, определяемое как:

где x1/2emax является осевым положением сечения максимальной толщины стойки со стороны корытца, и с является длиной осевой хорды спрямляющей лопатки,

а осевое положение сечения максимальной толщины стойки со стороны корытца заключено между осевым положением передней кромки и осевым положением задней кромки лопатки.

Объектом изобретения является также двухконтурный газотурбинный двигатель, содержащий решетку спрямления потока второго контура, содержащую множество лопаток, расположенных радиально вокруг оси газотурбинного двигателя, и по меньшей мере одну конструктивную стойку, при этом по меньшей мере одна конструктивная стойка и одна лопатка спрямляющей решетки образуют описанный выше узел спрямления воздушного потока.

Предложенный узел спрямления воздушного потока имеет улучшенные аэродинамические характеристики.

Предложенное соотношение между сечением воздушного канала между конструктивной стойкой и спрямляющей лопаткой на уровне горла и сечением на уровне передних кромок стойки и лопатки задает для лопатки оптимальную среднюю линию.

Действительно, при большем соотношении спрямляющая лопатка будет слишком изогнутой. В результате получают канал большого сечения на уровне горла и после него, что, как было указано выше, приводит к ускорению воздушного потока при прохождении через горло и к возможности созданию ударной волны и появления срыва пограничного слоя воздушного потока на выходе из горла.

При меньшем соотношении спрямляющая лопатка является менее изогнутой. В результате получают меньшее сечение канала на уровне горла с меньшим расходом воздуха. Хотя это и препятствует образованию ударной волны, уменьшение расхода воздуха в этом канале приводит к перераспределению общего расхода воздуха потока второго контура в спрямляющей решетке, что создает нарушения статического давления на входе спрямляющей решетки, которые могут отрицательно повлиять на аэродинамические и аэроакустические характеристики вентилятора.

Определенное таким образом соотношение является оптимизированным, чтобы избегать явления ударной волны и срыва пограничного слоя и чтобы минимизировать уменьшение расхода в канале между стойкой и спрямляющей лопаткой.

Краткое описание чертежей

Другие отличительные признаки, задачи и преимущества изобретения будут более очевидны из нижеследующего описания, представленного исключительно в качестве иллюстративного и неограничивающего примера, со ссылками на прилагаемые чертежи.

На фиг. 1а (уже описана) схематично показан двухконтурный газотурбинный двигатель;

на фиг. 1b (уже описана) показан развернутый схематичный вид узла, содержащего конструктивную стойку между двумя лопатками решетки спрямления потока второго контура;

на фиг. 1с (уже описана) представлены аэродинамические последствия выполнения слишком изогнутой спрямляющей лопатки со стороны корытца конструктивной стойки;

на фиг. 2а показан узел спрямления воздушного потока согласно варианту осуществления изобретения;

на фиг. 2b схематично показан газотурбинный двигатель согласно варианту осуществления изобретения.

Осуществление изобретения

На фиг. 2b показан двухконтурный газотурбинный двигатель 1, содержащий, как было указано выше, вентилятор 10 и спрямляющую решетку 20 типа OGV для спрямления потока второго контура FS, поступающего из вентилятора 10.

Спрямляющая решетка содержит множество лопаток 21, равномерно распределенных вокруг кольца (не показано) с центром на оси Х-Х газотурбинного двигателя, соответствующей оси приводного вала.

Кроме того, газотурбинный двигатель 1 содержит по меньшей мере одну конструктивную стойку 30, более подробно описанную ниже.

Каждый узел, содержащий конструктивную стойку 30 и спрямляющую лопатку 21, смежную с указанной стойкой со стороны ее корытца, называется узлом спрямления воздушного потока и более детально показан на фиг. 2а.

Лопатка 21 и конструктивная стойка 30 расположены вокруг оси Х-Х газотурбинного двигателя, при этом на фиг. 2а представлен развернутый вид углового сектора вокруг оси Х-Х, занимаемого лопаткой 21 и стойкой 30. Лопатка 21 и конструктивная стойка 30 образуют между собой канал прохождения воздушного потока второго контура.

Классически, лопатка 21 содержит переднюю кромку 22, заднюю кромку 23 и среднюю линию 24, проходящую от передней кромки к задней кромке, при этом средняя линия является линией на половине расстояния между поверхностью корытца и поверхностью спинки лопатки.

Отмечается также угол α изгиба, определяемый в каждой точке средней линии как угол между касательной к средней линии в этой точке и осью Х-Х газотурбинного двигателя.

Предпочтительно лопатка 21 выполнена таким образом, чтобы иметь не равный нулю угол α на уровне ее передней кромки.

Конструктивная стойка 30 представляет собой тип «интегрированной спрямляющей лопатки», то есть содержит входную концевую часть 31, имеющую профиль спрямляющей лопатки.

В частности, входная концевая часть 31 имеет переднюю кромку 31, выравненную с передними кромками лопаток 21 спрямляющей решетки 20, то есть находящуюся на одном уровне с ними относительно оси Х-Х, и имеет по меньшей мере на уровне своей передней кромки такую же толщину и такой же угол изгиба, что и лопатка 21 спрямляющей решетки 20.

Кроме того, конструктивная стойка 30 содержит выходную часть 33, выполненную за одно целое с входной концевой частью 31 и непосредственно смежную с ней.

Предпочтительно конструктивная стойка 30 является стойкой вспомогательного типа, то есть ее основной функцией является передача движущей силы от газотурбинного двигателя на остальную часть самолета.

В связи с этим, чтобы выдерживать усилия, порождаемые при этой передаче движущей силы, стенки выходной части 33, смежной с частью 31, предпочтительно выполнены литыми. Кроме того, выходная часть 33 содержит полую зону 34, называемую не подлежащей изменению зоной, предназначенной для прокладки вспомогательного оборудования и, в частности, одного или нескольких трансмиссионных валов и, в случае необходимости, трубопроводов, соединений и т.д.

Таким образом, входная часть 31 конструктивной стойки образует одну из лопаток 21 спрямляющей решетки 20 газотурбинного двигателя. Если газотурбинный двигатель содержит несколько идентичных конструктивных стоек 30, распределенных вокруг оси Х-Х, предпочтительно он содержит столько же спрямляющих узлов, таких, как показанный на фиг. 2а, каждый из которых содержит конструктивную стойку и смежную с ней спрямляющую лопатку со стороны корытца стойки.

Как показано на фиг. 2а, соединение между профилированной входной концевой частью 31 и полой зоной 34 образует на стороне корытца конструктивной стойки 30 выступ 35, который сужает сечение канала, расположенного между стойкой 30 и лопаткой 21. Рассматриваемое сечение является сечением в развернутом виде углового сектора вокруг оси Х-Х, занимаемого лопаткой 21 и стойкой 30, то есть двухмерной зоной, образованной пересечением между каналом, проходящим между лопаткой 21 и стойкой 30, и цилиндром с осью Х-Х, имеющим радиус, равный значению между радиусом ножки лопатки и радиусом вершины лопатки, предпочтительно находящийся в пределах от 5 до 95% радиальной высоты лопатки и стойки, при этом указанное пересечение было затем развернуто.

Обозначим x1/2emax осевое положение сечения стойки 30, поперечного к оси Х-Х, имеющего максимальную толщину со стороны корытца стойки, причем эта толщина измерена между средней линией и поверхностью со стороны корытца. Поскольку это сечение стойки с максимальной толщиной является результатом выполнения выступа 35 и полой зоны 34, оно находится в осевом положении, заключенном между осевыми положениями передней кромки 22 и задней кромки 23 лопатки 21.

Если начало оси, относительно которой измеряют осевое положение x1/2emax, приведено к передней кромке лопатки, то математически можно записать:

где с является осевой хордой лопатки, то есть расстоянием, измеренным в направлении оси Х-Х между передней кромкой и задней кромкой лопатки.

Эта геометрия стойки 30 образует в канале, проходящем между стойкой 30 и лопаткой 21, горло, то есть зону минимального сечения канала, на входе в которую канал является сходящимся и имеет сечение, уменьшающееся в направлении от входа к выходу относительно направления прохождения воздушного потока, и на выходе из которой канал является расходящимся и имеет сечение, увеличивающееся в направлении от входа к выходу.

Обозначим xгорла осевое положение горла канала, Агорла - площадь сечения канала на уровне горла, и Авхода - площадь входного сечения, находящегося на уровне передних кромок 22 и 32.

Площадь сечения канала вычисляют как интеграл, - на высоте канала, измеренной в радиальном направлении вокруг оси Х-Х, - расстояния между корытцем стойки и спинкой лопатки в рассматриваемом сечении.

Авторы изобретения определили, что аэродинамические характеристики узла спрямления воздушного потока зависят от степени сужения канала между входным сечением и сечением горла.

В частности, чтобы избежать скачка уплотнения и срыва пограничного слоя, соотношение между площадью Агорла сечения канала на уровне горла и площадью Авхода сечения канала на входе должно быть меньше 0,9.

Кроме того, чтобы избежать нарушений статического давления в спрямляющей решетке 20, связанных со слишком слабым расходом в канале, находящемся между стойкой 30 и лопаткой 21, это соотношение должно превышать 0,7.

Таким образом, можно записать:

Предпочтительно

Еще предпочтительнее

Действительно, авторы изобретения установили, что для некоторых двигателей оптимальное значение этого соотношения может быть равно 0.8.

Кроме того, положение горла должно быть близким к осевому положению сечения максимальной толщины со стороны корытца стойки 30, в частности:

При фиксированной геометрии спрямляющей стойки 30 положение горла и площадь сечения канала в горле позволяют определить среднюю линию лопатки 21 и, следовательно, определить также геометрию лопатки.

Таким образом, изобретением предложено определение параметров спрямляющего узла, позволяющее оптимизировать аэродинамические характеристики этого узла.


УЗЕЛ СПРЯМЛЕНИЯ ВОЗДУШНОГО ПОТОКА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ И ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ, СОДЕРЖАЩИЙ ТАКОЙ УЗЕЛ
УЗЕЛ СПРЯМЛЕНИЯ ВОЗДУШНОГО ПОТОКА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ И ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ, СОДЕРЖАЩИЙ ТАКОЙ УЗЕЛ
УЗЕЛ СПРЯМЛЕНИЯ ВОЗДУШНОГО ПОТОКА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ И ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ, СОДЕРЖАЩИЙ ТАКОЙ УЗЕЛ
Источник поступления информации: Роспатент

Показаны записи 221-230 из 234.
21.04.2023
№223.018.5070

Вентиляторный модуль с лопастями с переменным углом установки

Объектом изобретения является вентиляторный модуль (3) с лопастями с переменным углом установки, при этом упомянутый вентиляторный модуль (3) содержит: ротор (20) вентилятора с лопастями (23) вентилятора (4, 400а, 400b), установленными с возможностью поворота, каждая, вокруг оси (А) установки,...
Тип: Изобретение
Номер охранного документа: 0002794134
Дата охранного документа: 11.04.2023
22.04.2023
№223.018.513d

Способ сверления отверстия в детали из электропроводящего материала

Изобретение относится к способу электроэрозионного сверления отверстия (18) в детали (16) из электропроводящего материала, в частности, для авиационного газотурбинного двигателя. В способе используют электроэрозионную машину, содержащую головку (12), которая является подвижной относительно...
Тип: Изобретение
Номер охранного документа: 0002794191
Дата охранного документа: 12.04.2023
11.05.2023
№223.018.53fc

Усовершенствованное противопожарное устройство, предназначенное для установки между концом подкоса крепления газотурбинного двигателя летательного аппарата и капотом газотурбинного двигателя, ограничивающим отсек промежуточного потока

Объектом изобретения является противопожарное устройство (50), предназначенное для установки между подкосом крепления двухконтурного газотурбинного двигателя летательного аппарата и соединительным капотом, которым оснащен этот газотурбинный двигатель, при этом соединительный капот предназначен...
Тип: Изобретение
Номер охранного документа: 0002795414
Дата охранного документа: 03.05.2023
16.05.2023
№223.018.624f

Способ получения металлического лопаточного элемента для авиационной турбомашины

Изобретение относится к получению металлического лопаточного элемента для авиационной турбомашины, которые могут быть элементами статора или ротора. Лопаточный элемент содержит по меньшей мере одну лопасть, имеющую нижнюю поверхность и спинку, расположенные между передней кромкой и задней...
Тип: Изобретение
Номер охранного документа: 0002782767
Дата охранного документа: 02.11.2022
21.05.2023
№223.018.68b1

Лопатка газотурбинного двигателя с правилом максимальной толщины с большим запасом прочности при флаттере

Изобретение относится к лопатке ротора газотурбинного двигателя, в которой согласно изобретению соотношение между максимальной толщиной и хордой на 30% высоты лопатки составляет от 20% до 42% соотношения между максимальной толщиной и хордой в корневой части лопатки, соотношение между...
Тип: Изобретение
Номер охранного документа: 0002794951
Дата охранного документа: 26.04.2023
23.05.2023
№223.018.6c7a

Литниковая система питания изложницы расплавленным металлом, установка и способ изготовления с ее применением

Изобретение относится к литейному производству. Литниковая система содержит литейную чашу (2), вертикальную трубу (3), распределитель (4), размещенный на нижнем конце вертикальной трубы, и по меньшей мере одну систему литниковых каналов (5, 5’, 5”), соединенных с по меньшей мере двумя литейными...
Тип: Изобретение
Номер охранного документа: 0002732516
Дата охранного документа: 18.09.2020
23.05.2023
№223.018.6cb7

Устройство регулирования расхода рабочего тела для электрического ракетного двигателя

Устройство (52) регулирования расхода рабочего тела для электрического ракетного двигателя типа термокапиллярного устройства содержит по меньшей мере один электропроводящий капиллярный канал и выполнено с возможностью регулирования расхода рабочего тела под действием изменения температуры...
Тип: Изобретение
Номер охранного документа: 0002771562
Дата охранного документа: 05.05.2022
23.05.2023
№223.018.6db7

Способ выполнения лопатки авиационного газотурбинного двигателя посредством аддитивного изготовления

Изобретение относится к порошковой металлургии, в частности к способу аддитивного изготовления лопатки авиационного газотурбинного двигателя. Изготавливают лопатку, содержащую верхнюю и нижнюю окружные стенки, между которыми расположено по меньшей мере одно перо, содержащее переднюю кромку и...
Тип: Изобретение
Номер охранного документа: 0002765420
Дата охранного документа: 31.01.2022
23.05.2023
№223.018.6eb0

Отбор мощности на каскаде нд и система удаления обломков

Группа изобретений относится к двухконтурным и многовальным газотурбинным двигателям, в частности, к двухвальным или трехвальным газотурбинным двигателям для летательного аппарата, и касается контроля запаса по помпажу на уровне компрессоров. Представлен двухконтурный газотурбинный двигатель...
Тип: Изобретение
Номер охранного документа: 0002795890
Дата охранного документа: 12.05.2023
27.05.2023
№223.018.71fa

Движительная система для летательного аппарата

Изобретение относится к летательным аппаратам. Движительная система (100) для летательного аппарата содержит ротор (110) и обтекатель гондолы, расположенный вокруг ротора (110). Обтекатель гондолы разбит на секторы и содержит неподвижный сектор (130а, 130b) и секторы (141a, 141b), убирающиеся в...
Тип: Изобретение
Номер охранного документа: 0002796081
Дата охранного документа: 16.05.2023
+ добавить свой РИД