×
13.01.2020
220.017.f4b9

Результат интеллектуальной деятельности: Способ получения металлического нанопорошка из отходов свинцовой бронзы в дистиллированной воде

Вид РИД

Изобретение

Аннотация: Изобретение относится к получению нанопорошков из отходов свинцовой бронзы, которые могут быть использованы для нанесения износостойких, антифрикционных, коррозионностойких и противозадирных покрытий. Отходы свинцовой бронзы подвергают электроэрозионному диспергированию в дистиллированной воде при частоте следования импульсов 95…105 Гц, напряжении на электродах 190…200 В и емкости конденсаторов 65,5 мкФ, после чего ведут отделение наноразмерных частиц от крупноразмерных центрифугированием раствора. Обеспечивается получение нанопорошков из отходов с невысокими энергетическими затратами и экологической чистотой процесса. 6 ил., 3 пр.

Изобретение относится к области порошковой металлургии, в частности к составам и способам получения бронзового порошка, и может быть использовано для нанесения износостойких, антифрикционных, коррозионностойких и противозадирных покрытий - для восстановления и упрочнения деталей машин горно-металлургической промышленности, автомобильного, трамвайно-троллейбусного и судового транспорта.

Известные марки бронзовых порошков различных форм и размеров получают разнообразными способами:

- посредством механического сухого размола. В этом случае измельчение стружки, обрезков и компактных материалов проводят в шаровых, вихревых, молотковых и других мельницах (Технология неорганических порошковых материалов и покрытий функционального назначения. Удалов Ю.П., Германский A.M., Жабреев В.А. и др. СПб., 2001, 428 с.);

- путем обработки твердых (компактных) металлов резанием. При станочной обработке литых металлов или сплавов подбирают такой режим резания, который обеспечивает образование частиц, а не стружки (Технология неорганических порошковых материалов и покрытий функционального назначения. Удалов Ю.П., Германский A.M., Жабреев В.А. и др. СПб., 2001, 428 с. ).

Известен способ изготовления порошкового материала на основе меди (Патент РФ №2458166, МПК С22С 1/04, B22F 3/12, С22С 9/00), в частности способ изготовления порошковых оловянистых бронз при утилизации отходов порошковых формовок. В высокоэнергетической мельнице активируют предварительно измельченные до размера менее 5 мм и пропитанные керосином отходы порошковых формовок на основе меди с помощью размольных шаров, покрытых ферромарганцем в количестве 10 мас. %, в среде, содержащей 10 мас. % керосина. Недостатком известного способа являются высокая энергоемкость процесса получения порошковых материалов, низкая экологичность, высокая себестоимость.

Наиболее близким к заявляемому является способ получения порошка бронзы (Патент РФ №1208672, МПК B22F 9/04). Согласно данному способу, смешивают порошок меди с частицами дендритной формы с легирующей добавкой в виде металлического порошка или окисла, например порошка олова или окисла олова, смесь подвергают нагреву до 550-600°С в среде осушенного диссоциированного аммиака, выдерживают при этой температуре в течение 3-4 ч и охлаждают в той же среде до 100-150°С, в результате чего получают пористые бронзовые кольца на бронзовых вставках, которые затем подвергают резанию в стружку. Образованная сыпучая стружка размалывается в вихревой мельнице в порошок. Недостатком данного метода получения порошка бронзы является многооперационность, энергозатратность, высокая себестоимость компонентов.

Существенным отличием предложенного способа является то, получение порошкового материала происходит из готового бронзового сплава методов электроэрозионного диспергирования, отсутствует необходимость спекания компонентов для дальнейшего размалывания и получения конечного продукта, что значительно снижает энергозатраты, себестоимость.

Заявляемое изобретение направлено на решение задачи получения нанопорошков из отходов свинцовой бронзы с низкой себестоимостью, невысокими энергетическими затратами и экологической чистотой процесса.

Поставленная задача достигается способом получения металлического нанопорошка из отходов свинцовой бронзы, отличающимся от прототипа тем, что отходы свинцовой бронзы (ГОСТ 493-79) подвергают электроэрозионному диспергированию в дистиллированной воде при частоте следования импульсов 95…105 Гц; напряжении на электродах 190…200 В и емкости конденсаторов 65,5 мкФ, с последующим центрифугированием раствора для отделения наноразмерных частиц от крупноразмерных.

На фигуре 1 описаны этапы получения нанопорошка из отходов свинцовой бронзы; на фигуре 2 - схема процесса ЭЭД, на фигуре 3 - фазовый состав порошка, полученного из отходов свинцовой бронзы, на фигуре 4 - микрофотографии наночастиц полученного порошка; в фигуре 5 - элементный состав порошка, полученного из отходов свинцовой бронзы, на фигуре 6 - микрофотографии наночастиц полученного порошка.

Процесс ЭЭД представляет собой разрушение токопроводящего материала в результате локального воздействия кратковременных электрических разрядов между электродами [Немилов, Е.Ф. Электроэрозионная обработка материалов. Л.: Машиностроение, Ленингр. отд-ние, 1983. - 160 с.]. Получение порошка из отходов свинцовой бронзы на экспериментальной установке для получения нанодисперсных порошков из токопроводящих материалов [Патент RU на изобретение №2449859] проводилось по схеме, представленной на фигуре 1 в четыре этапа:

- 1 этап - подготовка к процессу электроэрозионного диспергирования;

- 2 этап - процесс электроэрозионного диспергирования;

- 3 этап - выгрузка порошка из реактора и его центрифугирование.

- 4 этап - сушка и взвешивание нанопорошка из отходов свинцовой бронзы.

Получаемые этим способом порошковые материалы, имеют в основном сферическую и эллиптическую форму частиц. Причем, изменяя электрические параметры процесса диспергирования (напряжение на электродах, емкость конденсаторов и частоту следования импульсов) можно управлять шириной и смещением интервала размера частиц, а также производительностью процесса. Для отделения наночастиц от крупноразмерных используется центрифуга.

На первом этапе производили сортировку отходов свинцовой бронзы, их промывку, сушку, обезжиривание и взвешивание. Реактор заполняли рабочей средой - дистиллированной водой, отходы загружали в реактор. Монтировали электроды. Смонтированные электроды подключали к генератору. Устанавливали необходимые параметры процесса: частоту следования импульсов, напряжение на электродах, емкость конденсаторов.

На втором этапе - этапе электроэрозионного диспергирования включали установку. Процесс ЭЭД представлен на фигуре 2. Импульсное напряжение генератора 1 прикладывается к электродам 2 и далее к отходам 3 (в качестве электродов так же служили соответственно отходы свинцовой бронзы) в реакторе 4. При достижении напряжения определенной величины происходит электрический пробой рабочей среды 5, находящийся в межэлектродном пространстве, с образованием канала разряда. Благодаря высокой концентрации тепловой энергии, материал в точке разряда плавится и испаряется, рабочая среда испаряется и окружает канал разряда газообразными продуктами распада (газовым пузырем 6). В результате развивающихся в канале разряда и газовом пузыре значительных динамических сил, капли расплавленного материала выбрасываются за пределы зоны разряда в рабочую среду, окружающую электроды, и застывают в ней, образуя каплеобразные частицы порошка 7. Регулятор напряжения 8 предназначен для установки необходимых значений напряжения, а встряхиватель 9 передвигает один электрод, что обеспечивает непрерывное протекание процесса ЭЭД.

На третьем этапе проводится выгрузка рабочей жидкости с порошком из реактора, отделение наночастиц от крупноразмерных с помощью центрифуги. При этом, крупные частицы оседают под действием центробежных сил, а наночастицы остаются в растворе.

На четвертом этапе происходит выпаривание раствора, его сушка, взвешивание, фасовка, упаковка и последующий анализ нанопорошка.

При этом достигается следующий технический результат: получение нанопорошков из отходов свинцовой бронзы с частицами правильной сферической формы с невысокими энергетическими затратами и экологической чистотой процесса способом электроэрозионного диспергирования (ЭЭД).

Способ позволяет получить порошки из отходов свинцовой бронзы без использования химических реагентов, что существенно влияет на себестоимость порошка и позволяет избежать загрязнения рабочей жидкости и окружающей среды химическими веществами.

Средние удельные затраты электроэнергии при производстве электроэрозионного порошка из отходов свинцовой бронзы составляет 2,4 кг/кВт⋅ч, что ниже других способов получения порошков из свинцовой бронзы. Электроэрозионное диспергирование позволяет эффективно утилизировать отходы свинцовой бронзы с невысокими энергетическими затратами и экологической частотой процесса и получать нанопорошок.

Нанопорошковые материалы, получаемые ЭЭД отходов свинцовой бронзы, могут эффективно использоваться для нанесения износостойких, антифрикционных, коррозионностойких и противозадирных покрытий - для восстановления и упрочнения деталей машин горно-металлургической промышленности, автомобильного, трамвайно-троллейбусного и судового транспорта, энергетического и нефтегазового оборудования, а также для напыления декоративных покрытий.

Пример 1

Для получения нанодисперсного порошка на экспериментальной установке методом электроэрозионного диспергирования использовали отходы свинцовой бронзы ГОСТ 493-79 в виде стружки. Стружку загружали в реактор, заполненный рабочей жидкостью дистиллированной водой. При этом использовали следующие электрические параметры установки:

- частота следования импульсов 95…105 Гц;

- напряжение на электродах 190…200 В;

- емкость конденсаторов 65,5 мкФ.

Полученный порошок исследовали различными методами.

Исследование фазового состава порошка проводили методом рентгеновской дифракции на дифрактометре Rigaku Ultima IV в излучении Cu-Kα (длина волны λ=0.154178 нм) с использованием щелей Соллера. На основании фигуры 3 было установлено, что основными фазами в порошке, полученном методом электроэрозионного диспергирования отходов свинцовой бронзы в дистиллированной воде, являются Cu, Pb(Cu2O2), Pb5O8, Pb.

Для изучения элементного состава и морфологии полученного нанопорошка из отходов свинцовой бронзы были выполнены снимки с помощью энерго-дисперсионного анализатора рентгеновского излучения фирмы EDAX, встроенного в растровый электронный микроскоп «QUANTA 200 3D». На основании фигуры 4 нанопорошок, полученный методом ЭЭД из отходов свинцовой бронзы, в основном, состоит из частиц правильной сферической формы (или эллиптической), с включениями частиц неправильной формы (конгломератов). На основании фигуры 5 установлено, что основными элементами являются О (7,77%); Sn (1,77%); Cu (55,59%); Zn (5,86%); Pb (28,10%).

Пример 2

Для получения дисперсного порошка на экспериментальной установке методом электроэрозионного диспергирования использовали отходы свинцовой бронзы ГОСТ 493-79 в виде стружки. Стружку загружали в реактор, заполненный рабочей жидкостью дистиллированной водой. При этом использовали следующие электрические параметры установки:

- частота следования импульсов 95…105 Гц;

- напряжение на электродах 140…160 В;

- емкость конденсаторов 45,5 мкФ.

Для изучения формы и морфологии полученного нанопорошка были выполнены снимки с помощью энерго-дисперсионного анализатора рентгеновского излучения фирмы EDAX, встроенного в растровый электронный микроскоп «QUANTA 200 3D». На основании фигуры 6, порошок, полученный методом ЭЭД из отходов свинцовой бронзы при данных режимах получается с частицами преимущественно неправильной (осколочной) формы, а также при данных параметрах диспергирования производительность процесса в 2,3 раза ниже, чем при параметрах диспергирования, описанных в первом примере.

Пример 3

Для получения дисперсного порошка на экспериментальной установке методом электроэрозионного диспергирования использовали отходы свинцовой бронзы ГОСТ 493-79 в виде стружки. Стружку загружали в реактор, заполненный рабочей жидкостью дистиллированной водой. При этом использовали следующие электрические параметры установки:

- частота следования импульсов 150 Гц;

- напряжение на электродах 210 В;

- емкость конденсаторов 65,5 мкФ.

При данных режимах процесс диспергирования не стабилен и носит взрывной характер.

Способ получения металлического нанопорошка из отходов свинцовой бронзы в дистиллированной воде, отличающийся тем, что отходы свинцовой бронзы подвергают электроэрозионному диспергированию в дистиллированной воде при частоте следования импульсов 95…105 Гц, напряжении на электродах 190…200 В и емкости конденсаторов 65,5 мкФ и последующему отделению наноразмерных частиц от крупноразмерных центрифугированием раствора.
Способ получения металлического нанопорошка из отходов свинцовой бронзы в дистиллированной воде
Способ получения металлического нанопорошка из отходов свинцовой бронзы в дистиллированной воде
Способ получения металлического нанопорошка из отходов свинцовой бронзы в дистиллированной воде
Способ получения металлического нанопорошка из отходов свинцовой бронзы в дистиллированной воде
Способ получения металлического нанопорошка из отходов свинцовой бронзы в дистиллированной воде
Способ получения металлического нанопорошка из отходов свинцовой бронзы в дистиллированной воде
Источник поступления информации: Роспатент

Показаны записи 311-320 из 320.
10.05.2023
№223.018.537e

Способ получения свинцово-сурьмянистого сплава из порошков, полученных электроэрозионным диспергированием отходов сплава ссу-3 в воде

Изобретение относится к порошковой металлургии, в частности к получению сплавов методом искрового плазменного сплавления. Может использоваться при получении свинцовых сплавов для решеток свинцовых аккумуляторов. Свинцово-сурьмянистый сплав получают путем искрового плазменного сплавления...
Тип: Изобретение
Номер охранного документа: 0002795311
Дата охранного документа: 02.05.2023
14.05.2023
№223.018.54bb

Комплексный теплообменник из многослойных пластин

Изобретение относится к теплоэнергетике и может быть использовано для комплексной утилизации тепла сбросных газов и жидкостей. В комплексном теплообменнике из многослойных пластин, содержащем корпус с газовыми и воздушными патрубками, внутри которого помещен пакет, состоящий из многослойных...
Тип: Изобретение
Номер охранного документа: 0002737574
Дата охранного документа: 01.12.2020
14.05.2023
№223.018.55f8

Экологичное вентилируемое ограждение здания

Изобретение относится к строительству и может быть использовано при изготовлении вентилируемых стеновых ограждений, позволяющих снизить тепловые поступления от наружного воздуха и одновременно очищать уличный воздух от вредных примесей в регионах жаркого и влажного климата. Технический...
Тип: Изобретение
Номер охранного документа: 0002730067
Дата охранного документа: 17.08.2020
14.05.2023
№223.018.5642

Устройство поразрядного вычисления логических и арифметических операций

Изобретение относится к устройству поразрядного вычисления логических и арифметических операций. Технический результат заключается в повышении точности выполнения логических и арифметических операций. Устройство содержит соединенные между собой блок выполнения логических и арифметических...
Тип: Изобретение
Номер охранного документа: 0002739343
Дата охранного документа: 23.12.2020
14.05.2023
№223.018.5679

Профилометр для внутренних цилиндрических поверхностей

Изобретение относится к измерительной технике и предназначено для измерения шероховатости внутренней цилиндрической поверхности детали в радиальном направлении. Профилометр для внутренних цилиндрических поверхностей содержит датчик, фиксирующий элемент для удержания датчика относительно...
Тип: Изобретение
Номер охранного документа: 0002739139
Дата охранного документа: 21.12.2020
16.05.2023
№223.018.631b

Устройство для нанесения металлического покрытия

Изобретение может быть использовано для нанесения металлического покрытия посредством 3D принтера. Устройство для нанесения металлического покрытия состоит из корпуса с креплением, позволяющим закрепить устройство на исполнительных механизмах принтера. Корпус представляет собой трубку,...
Тип: Изобретение
Номер охранного документа: 0002771807
Дата охранного документа: 12.05.2022
21.05.2023
№223.018.6a43

Триггерный логический элемент или-не на полевых транзисторах

Изобретение относится к цифровой схемотехнике, автоматике и промышленной электронике и, в частности, может быть использовано в блоках вычислительной техники, построенных на логических элементах. Техническим результатом изобретения является повышение нагрузочной способности триггерного...
Тип: Изобретение
Номер охранного документа: 0002795046
Дата охранного документа: 28.04.2023
21.05.2023
№223.018.6a44

Триггерный логический элемент или-не на полевых транзисторах

Изобретение относится к цифровой схемотехнике, автоматике и промышленной электронике и, в частности, может быть использовано в блоках вычислительной техники, построенных на логических элементах. Техническим результатом изобретения является повышение нагрузочной способности триггерного...
Тип: Изобретение
Номер охранного документа: 0002795046
Дата охранного документа: 28.04.2023
17.06.2023
№223.018.8052

Способ дешифрации электромиосигналов и устройство для его реализации

Группа изобретений относится к дешифрации электромиосигналов и устройству для его реализации. Предложено устройство для реализации способа, содержащее последовательно соединенные миоэлектрическое устройство считывания, блок обработки ЭМГ-сигнала, бортовой процессор, осуществляющий дешифрацию...
Тип: Изобретение
Номер охранного документа: 0002762775
Дата охранного документа: 22.12.2021
19.06.2023
№223.018.8228

Устройство для измерения прочности бетона

Изобретение предназначено для измерения прочности бетона и содержит ударник и пьезоэлектрический датчик, электроды которого подключены к входам фильтра высоких частот, выход которого соединен со входами измерителя частоты и измерителя коэффициента затухания, снабжено пригрузом изменяемой массы,...
Тип: Изобретение
Номер охранного документа: 0002797126
Дата охранного документа: 31.05.2023
Показаны записи 21-22 из 22.
10.05.2023
№223.018.5368

Способ получения свинцово-латунных порошков из отходов сплава лс58-3 в дистиллированной воде

Изобретение относится к порошковой металлургии, в частности к производству металлических свинцово-латунных порошков. Может использоваться для изготовления деталей, работающих на трение, для мелких деталей в микротехнике, для напыления декоративных покрытий. Свинцово-латунный порошок получают...
Тип: Изобретение
Номер охранного документа: 0002795306
Дата охранного документа: 02.05.2023
10.05.2023
№223.018.537e

Способ получения свинцово-сурьмянистого сплава из порошков, полученных электроэрозионным диспергированием отходов сплава ссу-3 в воде

Изобретение относится к порошковой металлургии, в частности к получению сплавов методом искрового плазменного сплавления. Может использоваться при получении свинцовых сплавов для решеток свинцовых аккумуляторов. Свинцово-сурьмянистый сплав получают путем искрового плазменного сплавления...
Тип: Изобретение
Номер охранного документа: 0002795311
Дата охранного документа: 02.05.2023
+ добавить свой РИД