×
13.01.2020
220.017.f4b9

Результат интеллектуальной деятельности: Способ получения металлического нанопорошка из отходов свинцовой бронзы в дистиллированной воде

Вид РИД

Изобретение

Аннотация: Изобретение относится к получению нанопорошков из отходов свинцовой бронзы, которые могут быть использованы для нанесения износостойких, антифрикционных, коррозионностойких и противозадирных покрытий. Отходы свинцовой бронзы подвергают электроэрозионному диспергированию в дистиллированной воде при частоте следования импульсов 95…105 Гц, напряжении на электродах 190…200 В и емкости конденсаторов 65,5 мкФ, после чего ведут отделение наноразмерных частиц от крупноразмерных центрифугированием раствора. Обеспечивается получение нанопорошков из отходов с невысокими энергетическими затратами и экологической чистотой процесса. 6 ил., 3 пр.

Изобретение относится к области порошковой металлургии, в частности к составам и способам получения бронзового порошка, и может быть использовано для нанесения износостойких, антифрикционных, коррозионностойких и противозадирных покрытий - для восстановления и упрочнения деталей машин горно-металлургической промышленности, автомобильного, трамвайно-троллейбусного и судового транспорта.

Известные марки бронзовых порошков различных форм и размеров получают разнообразными способами:

- посредством механического сухого размола. В этом случае измельчение стружки, обрезков и компактных материалов проводят в шаровых, вихревых, молотковых и других мельницах (Технология неорганических порошковых материалов и покрытий функционального назначения. Удалов Ю.П., Германский A.M., Жабреев В.А. и др. СПб., 2001, 428 с.);

- путем обработки твердых (компактных) металлов резанием. При станочной обработке литых металлов или сплавов подбирают такой режим резания, который обеспечивает образование частиц, а не стружки (Технология неорганических порошковых материалов и покрытий функционального назначения. Удалов Ю.П., Германский A.M., Жабреев В.А. и др. СПб., 2001, 428 с. ).

Известен способ изготовления порошкового материала на основе меди (Патент РФ №2458166, МПК С22С 1/04, B22F 3/12, С22С 9/00), в частности способ изготовления порошковых оловянистых бронз при утилизации отходов порошковых формовок. В высокоэнергетической мельнице активируют предварительно измельченные до размера менее 5 мм и пропитанные керосином отходы порошковых формовок на основе меди с помощью размольных шаров, покрытых ферромарганцем в количестве 10 мас. %, в среде, содержащей 10 мас. % керосина. Недостатком известного способа являются высокая энергоемкость процесса получения порошковых материалов, низкая экологичность, высокая себестоимость.

Наиболее близким к заявляемому является способ получения порошка бронзы (Патент РФ №1208672, МПК B22F 9/04). Согласно данному способу, смешивают порошок меди с частицами дендритной формы с легирующей добавкой в виде металлического порошка или окисла, например порошка олова или окисла олова, смесь подвергают нагреву до 550-600°С в среде осушенного диссоциированного аммиака, выдерживают при этой температуре в течение 3-4 ч и охлаждают в той же среде до 100-150°С, в результате чего получают пористые бронзовые кольца на бронзовых вставках, которые затем подвергают резанию в стружку. Образованная сыпучая стружка размалывается в вихревой мельнице в порошок. Недостатком данного метода получения порошка бронзы является многооперационность, энергозатратность, высокая себестоимость компонентов.

Существенным отличием предложенного способа является то, получение порошкового материала происходит из готового бронзового сплава методов электроэрозионного диспергирования, отсутствует необходимость спекания компонентов для дальнейшего размалывания и получения конечного продукта, что значительно снижает энергозатраты, себестоимость.

Заявляемое изобретение направлено на решение задачи получения нанопорошков из отходов свинцовой бронзы с низкой себестоимостью, невысокими энергетическими затратами и экологической чистотой процесса.

Поставленная задача достигается способом получения металлического нанопорошка из отходов свинцовой бронзы, отличающимся от прототипа тем, что отходы свинцовой бронзы (ГОСТ 493-79) подвергают электроэрозионному диспергированию в дистиллированной воде при частоте следования импульсов 95…105 Гц; напряжении на электродах 190…200 В и емкости конденсаторов 65,5 мкФ, с последующим центрифугированием раствора для отделения наноразмерных частиц от крупноразмерных.

На фигуре 1 описаны этапы получения нанопорошка из отходов свинцовой бронзы; на фигуре 2 - схема процесса ЭЭД, на фигуре 3 - фазовый состав порошка, полученного из отходов свинцовой бронзы, на фигуре 4 - микрофотографии наночастиц полученного порошка; в фигуре 5 - элементный состав порошка, полученного из отходов свинцовой бронзы, на фигуре 6 - микрофотографии наночастиц полученного порошка.

Процесс ЭЭД представляет собой разрушение токопроводящего материала в результате локального воздействия кратковременных электрических разрядов между электродами [Немилов, Е.Ф. Электроэрозионная обработка материалов. Л.: Машиностроение, Ленингр. отд-ние, 1983. - 160 с.]. Получение порошка из отходов свинцовой бронзы на экспериментальной установке для получения нанодисперсных порошков из токопроводящих материалов [Патент RU на изобретение №2449859] проводилось по схеме, представленной на фигуре 1 в четыре этапа:

- 1 этап - подготовка к процессу электроэрозионного диспергирования;

- 2 этап - процесс электроэрозионного диспергирования;

- 3 этап - выгрузка порошка из реактора и его центрифугирование.

- 4 этап - сушка и взвешивание нанопорошка из отходов свинцовой бронзы.

Получаемые этим способом порошковые материалы, имеют в основном сферическую и эллиптическую форму частиц. Причем, изменяя электрические параметры процесса диспергирования (напряжение на электродах, емкость конденсаторов и частоту следования импульсов) можно управлять шириной и смещением интервала размера частиц, а также производительностью процесса. Для отделения наночастиц от крупноразмерных используется центрифуга.

На первом этапе производили сортировку отходов свинцовой бронзы, их промывку, сушку, обезжиривание и взвешивание. Реактор заполняли рабочей средой - дистиллированной водой, отходы загружали в реактор. Монтировали электроды. Смонтированные электроды подключали к генератору. Устанавливали необходимые параметры процесса: частоту следования импульсов, напряжение на электродах, емкость конденсаторов.

На втором этапе - этапе электроэрозионного диспергирования включали установку. Процесс ЭЭД представлен на фигуре 2. Импульсное напряжение генератора 1 прикладывается к электродам 2 и далее к отходам 3 (в качестве электродов так же служили соответственно отходы свинцовой бронзы) в реакторе 4. При достижении напряжения определенной величины происходит электрический пробой рабочей среды 5, находящийся в межэлектродном пространстве, с образованием канала разряда. Благодаря высокой концентрации тепловой энергии, материал в точке разряда плавится и испаряется, рабочая среда испаряется и окружает канал разряда газообразными продуктами распада (газовым пузырем 6). В результате развивающихся в канале разряда и газовом пузыре значительных динамических сил, капли расплавленного материала выбрасываются за пределы зоны разряда в рабочую среду, окружающую электроды, и застывают в ней, образуя каплеобразные частицы порошка 7. Регулятор напряжения 8 предназначен для установки необходимых значений напряжения, а встряхиватель 9 передвигает один электрод, что обеспечивает непрерывное протекание процесса ЭЭД.

На третьем этапе проводится выгрузка рабочей жидкости с порошком из реактора, отделение наночастиц от крупноразмерных с помощью центрифуги. При этом, крупные частицы оседают под действием центробежных сил, а наночастицы остаются в растворе.

На четвертом этапе происходит выпаривание раствора, его сушка, взвешивание, фасовка, упаковка и последующий анализ нанопорошка.

При этом достигается следующий технический результат: получение нанопорошков из отходов свинцовой бронзы с частицами правильной сферической формы с невысокими энергетическими затратами и экологической чистотой процесса способом электроэрозионного диспергирования (ЭЭД).

Способ позволяет получить порошки из отходов свинцовой бронзы без использования химических реагентов, что существенно влияет на себестоимость порошка и позволяет избежать загрязнения рабочей жидкости и окружающей среды химическими веществами.

Средние удельные затраты электроэнергии при производстве электроэрозионного порошка из отходов свинцовой бронзы составляет 2,4 кг/кВт⋅ч, что ниже других способов получения порошков из свинцовой бронзы. Электроэрозионное диспергирование позволяет эффективно утилизировать отходы свинцовой бронзы с невысокими энергетическими затратами и экологической частотой процесса и получать нанопорошок.

Нанопорошковые материалы, получаемые ЭЭД отходов свинцовой бронзы, могут эффективно использоваться для нанесения износостойких, антифрикционных, коррозионностойких и противозадирных покрытий - для восстановления и упрочнения деталей машин горно-металлургической промышленности, автомобильного, трамвайно-троллейбусного и судового транспорта, энергетического и нефтегазового оборудования, а также для напыления декоративных покрытий.

Пример 1

Для получения нанодисперсного порошка на экспериментальной установке методом электроэрозионного диспергирования использовали отходы свинцовой бронзы ГОСТ 493-79 в виде стружки. Стружку загружали в реактор, заполненный рабочей жидкостью дистиллированной водой. При этом использовали следующие электрические параметры установки:

- частота следования импульсов 95…105 Гц;

- напряжение на электродах 190…200 В;

- емкость конденсаторов 65,5 мкФ.

Полученный порошок исследовали различными методами.

Исследование фазового состава порошка проводили методом рентгеновской дифракции на дифрактометре Rigaku Ultima IV в излучении Cu-Kα (длина волны λ=0.154178 нм) с использованием щелей Соллера. На основании фигуры 3 было установлено, что основными фазами в порошке, полученном методом электроэрозионного диспергирования отходов свинцовой бронзы в дистиллированной воде, являются Cu, Pb(Cu2O2), Pb5O8, Pb.

Для изучения элементного состава и морфологии полученного нанопорошка из отходов свинцовой бронзы были выполнены снимки с помощью энерго-дисперсионного анализатора рентгеновского излучения фирмы EDAX, встроенного в растровый электронный микроскоп «QUANTA 200 3D». На основании фигуры 4 нанопорошок, полученный методом ЭЭД из отходов свинцовой бронзы, в основном, состоит из частиц правильной сферической формы (или эллиптической), с включениями частиц неправильной формы (конгломератов). На основании фигуры 5 установлено, что основными элементами являются О (7,77%); Sn (1,77%); Cu (55,59%); Zn (5,86%); Pb (28,10%).

Пример 2

Для получения дисперсного порошка на экспериментальной установке методом электроэрозионного диспергирования использовали отходы свинцовой бронзы ГОСТ 493-79 в виде стружки. Стружку загружали в реактор, заполненный рабочей жидкостью дистиллированной водой. При этом использовали следующие электрические параметры установки:

- частота следования импульсов 95…105 Гц;

- напряжение на электродах 140…160 В;

- емкость конденсаторов 45,5 мкФ.

Для изучения формы и морфологии полученного нанопорошка были выполнены снимки с помощью энерго-дисперсионного анализатора рентгеновского излучения фирмы EDAX, встроенного в растровый электронный микроскоп «QUANTA 200 3D». На основании фигуры 6, порошок, полученный методом ЭЭД из отходов свинцовой бронзы при данных режимах получается с частицами преимущественно неправильной (осколочной) формы, а также при данных параметрах диспергирования производительность процесса в 2,3 раза ниже, чем при параметрах диспергирования, описанных в первом примере.

Пример 3

Для получения дисперсного порошка на экспериментальной установке методом электроэрозионного диспергирования использовали отходы свинцовой бронзы ГОСТ 493-79 в виде стружки. Стружку загружали в реактор, заполненный рабочей жидкостью дистиллированной водой. При этом использовали следующие электрические параметры установки:

- частота следования импульсов 150 Гц;

- напряжение на электродах 210 В;

- емкость конденсаторов 65,5 мкФ.

При данных режимах процесс диспергирования не стабилен и носит взрывной характер.

Способ получения металлического нанопорошка из отходов свинцовой бронзы в дистиллированной воде, отличающийся тем, что отходы свинцовой бронзы подвергают электроэрозионному диспергированию в дистиллированной воде при частоте следования импульсов 95…105 Гц, напряжении на электродах 190…200 В и емкости конденсаторов 65,5 мкФ и последующему отделению наноразмерных частиц от крупноразмерных центрифугированием раствора.
Способ получения металлического нанопорошка из отходов свинцовой бронзы в дистиллированной воде
Способ получения металлического нанопорошка из отходов свинцовой бронзы в дистиллированной воде
Способ получения металлического нанопорошка из отходов свинцовой бронзы в дистиллированной воде
Способ получения металлического нанопорошка из отходов свинцовой бронзы в дистиллированной воде
Способ получения металлического нанопорошка из отходов свинцовой бронзы в дистиллированной воде
Способ получения металлического нанопорошка из отходов свинцовой бронзы в дистиллированной воде
Источник поступления информации: Роспатент

Показаны записи 191-200 из 320.
20.06.2019
№219.017.8d4c

Комплексный коррозионноустойчивый воздухоподогреватель

Изобретение относится к теплоэнергетике, а именно к хвостовому оборудованию котельных установок, и может быть использовано в процессах очистки дымовых газов от вредных примесей и утилизации их тепла. В корпусе комплексного коррозионноустойчивого воздухоподогревателя по ходу газа расположен...
Тип: Изобретение
Номер охранного документа: 0002691896
Дата охранного документа: 18.06.2019
22.06.2019
№219.017.8dff

Триггерный синхронный r-s триггер

Изобретение относится к цифровой схемотехнике, автоматике и промышленной электронике. Технический результат: упрощение триггерного синхронного R-S триггера. Для этого в него введены шесть дополнительных транзисторов и четыре дополнительных резистора, последовательно между собой включены первый...
Тип: Изобретение
Номер охранного документа: 0002692041
Дата охранного документа: 19.06.2019
22.06.2019
№219.017.8e4f

Мостовой измеритель параметров n-элементных двухполюсников

Изобретение относится к контрольно-измерительной технике, автоматике и промышленной электронике и может быть использовано для контроля и определения параметров объектов измерения, а также физических величин посредством параметрических датчиков. Технический результат – обеспечение у мостового...
Тип: Изобретение
Номер охранного документа: 0002692109
Дата охранного документа: 21.06.2019
22.06.2019
№219.017.8e9d

Устройство для подогрева питательной воды вторичным паром

Предлагаемое изобретение относится к теплоэнергетике и может быть использовано на теплоэлектростанциях при эксплуатации теплофикационных турбин для утилизации вторичного пара после турбины. Технический результат достигается устройством для подогрева питательной воды вторичным паром, включающим...
Тип: Изобретение
Номер охранного документа: 0002692170
Дата охранного документа: 21.06.2019
26.06.2019
№219.017.921b

Триггерный синхронный d триггер

Изобретение относится к цифровой схемотехнике, автоматике и промышленной электронике. Технический результат: упрощение триггерного синхронного D триггера. Для этого в него введены пять дополнительных транзисторов и четыре дополнительных резистора, последовательно между собой включены третий...
Тип: Изобретение
Номер охранного документа: 0002692422
Дата охранного документа: 24.06.2019
26.06.2019
№219.017.929d

Компрессорная установка

Изобретение относится к управлению компрессорными установками, эксплуатируемыми в климатических условиях с длительным воздействием минусовых температур, и особенно для шахтных предприятий горной промышленности. Технической задачей является поддержание взрывобезопасной эксплуатации пневмосетей...
Тип: Изобретение
Номер охранного документа: 0002692436
Дата охранного документа: 24.06.2019
03.07.2019
№219.017.a43b

Панель для дополнительной теплоизоляции стен

Изобретение относится к области разработки конструкций дополнительной теплоизоляции стен при строительстве и ремонте зданий. Технической задачей предлагаемого изобретения является поддержание нормированных прочностных параметров стен при длительной эксплуатации в условиях вибрационных...
Тип: Изобретение
Номер охранного документа: 0002693070
Дата охранного документа: 01.07.2019
04.07.2019
№219.017.a4d2

Триггерный асинхронный r-s триггер

Изобретение относится к цифровой схемотехнике, автоматике и промышленной электронике. Оно, в частности, может быть использовано в блоках вычислительной техники, выполненных на R-S триггерах. Технический результат - упрощение триггерного асинхронного R-S триггера. Для этого предложен триггерный...
Тип: Изобретение
Номер охранного документа: 0002693297
Дата охранного документа: 02.07.2019
04.07.2019
№219.017.a4f3

Устройство выборки и хранения

Изобретение относится к схемотехнике, промышленной электронике, автоматике и информационно-измерительной технике. Технический результат заключается в уменьшении ошибки операции выборки. Устройство выборки и хранения содержит источник входного напряжения, два операционных усилителя, запоминающий...
Тип: Изобретение
Номер охранного документа: 0002693291
Дата охранного документа: 02.07.2019
04.07.2019
№219.017.a503

Триггерный логический элемент или-не на полевых транзисторах

Изобретение относится к цифровой схемотехнике, автоматике и промышленной электронике. Оно, в частности, может быть использовано в блоках вычислительной техники, построенных на логических элементах. Технический результат - повышение нагрузочной способности триггерного логического элемента ИЛИ-НЕ...
Тип: Изобретение
Номер охранного документа: 0002693298
Дата охранного документа: 02.07.2019
Показаны записи 21-22 из 22.
10.05.2023
№223.018.5368

Способ получения свинцово-латунных порошков из отходов сплава лс58-3 в дистиллированной воде

Изобретение относится к порошковой металлургии, в частности к производству металлических свинцово-латунных порошков. Может использоваться для изготовления деталей, работающих на трение, для мелких деталей в микротехнике, для напыления декоративных покрытий. Свинцово-латунный порошок получают...
Тип: Изобретение
Номер охранного документа: 0002795306
Дата охранного документа: 02.05.2023
10.05.2023
№223.018.537e

Способ получения свинцово-сурьмянистого сплава из порошков, полученных электроэрозионным диспергированием отходов сплава ссу-3 в воде

Изобретение относится к порошковой металлургии, в частности к получению сплавов методом искрового плазменного сплавления. Может использоваться при получении свинцовых сплавов для решеток свинцовых аккумуляторов. Свинцово-сурьмянистый сплав получают путем искрового плазменного сплавления...
Тип: Изобретение
Номер охранного документа: 0002795311
Дата охранного документа: 02.05.2023
+ добавить свой РИД