27.12.2019
219.017.f363

ЗАМЕЩЕННЫЕ ЦИКЛИЧЕСКИЕ АМИДЫ В КАЧЕСТВЕ ГЕРБИЦИДОВ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002710379
Дата охранного документа
26.12.2019
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к соединению формулы : Значения R, R, R, R, Q, Q, Y, Y, Т и J приведены в формуле изобретения. Также предложены гербицидные композиции и способ контроля роста нежелательной растительности. Соединение формулы 1 может применяться в сельском хозяйстве в качестве гербицидов для борьбы с нежелательной растительностью. 4 н. и 6 з.п. ф-лы, 20 табл., 13 пр.
Реферат Свернуть Развернуть

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Настоящее изобретение относится к определенным замещенным циклическим амидам, их N-оксидам и солям, а также к композициям и способам их применения для борьбы с нежелательной растительностью.

ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ

Контроль нежелательной растительности чрезвычайно важен для достижения высокой производительности сельскохозяйственных культур. Достижение избирательного контроля роста сорняков, особенно в таких полезных сельскохозяйственных культурах, как рис, соя, сахарная свекла, маис, картофель, пшеница, ячмень, томат и плантационные культуры, среди прочих, является крайне необходимым. Бесконтрольный рост сорняков в таких полезных сельскохозяйственных культурах может вызывать значительное снижение продуктивности и, таким образом, приводить в результате к повышению затрат для потребителя. Контроль нежелательной растительности на незасеваемых участках также является важным. Для этих целей коммерчески доступно множество продуктов, однако остается потребность в новых соединениях, которые являются более эффективными, менее дорогостоящими, менее токсичными, более безопасными для окружающей среды или имеют различные участки приложения действия.

КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Настоящее изобретение относится к соединениям формулы 1 (в том числе всем стереоизомерам), их N-оксидам и солям, к содержащим их композициям для применения в сельском хозяйстве и к их применению в качестве гербицидов:

где

Q1 представляет собой фенильное кольцо или нафталинильную кольцевую систему, причем каждое кольцо или кольцевая система необязательно замещены 1-4 заместителями, независимо выбранными из R7; или 5-6-членное гетероароматическое кольцо или 8-10-членную гетероароматическую бициклическую кольцевую систему, причем каждое кольцо или кольцевая система содержат члены кольца, выбранные из атомов углерода и 1-4 гетероатомов, независимо выбранных из не более 2 атомов O, не более 2 атомов S и не более 4 атомов N, причем не более 3 членов кольца, представляющих собой атом углерода, независимо выбраны из C(=O) и C(=S), а члены кольца, представляющие собой атом серы, независимо выбраны из S(=O)u(=NR8)v, причем каждое кольцо или кольцевая система необязательно замещены не более 4 заместителями, независимо выбранными из R7 при членах кольца, представляющих собой атом углерода, и выбранными из R9 при членах кольца, представляющих собой атом азота;

Q2 представляет собой фенильное кольцо или нафталинильную кольцевую систему, причем каждое кольцо или кольцевая система необязательно замещены не более 5 заместителями, независимо выбранными из R10; или 5-6-членное гетероароматическое кольцо или 8-10-членную гетероароматическую бициклическую кольцевую систему, причем каждое кольцо или кольцевая система содержат члены кольца, выбранные из атомов углерода и 1-4 гетероатомов, независимо выбранных из не более 2 атомов O, не более 2 атомов S и не более 4 атомов N, причем не более 3 членов кольца, представляющих собой атом углерода, независимо выбраны из C(=O) и C(=S), а члены кольца, представляющие собой атом серы, независимо выбраны из S(=O)u(=NR8)v, причем каждое кольцо или кольцевая система необязательно замещены не более 5 заместителями, независимо выбранными из R10 при членах кольца, представляющих собой атом углерода, и выбранными из R11 при членах кольца, представляющих собой атом азота;

T представляет собой J1-A-, при этом свободная связь, направленная вправо, рядом с A указывает на точку соединения J1-A- с Q1; или

T представляет собой R17ON=CR17a-, (R18)2C=NO-, (R19)2NN=CR17a-, (R18)2C=NNR20a-, R20N=CR17a-, (R18)2C=N-, R17ON=CR17aC(R23b)2- или (R18)2C=NOC(R24a)2-, при этом свободная связь, направленная вправо, указывает на точку соединения с Q1;

A представляет собой насыщенную, частично ненасыщенную или полностью ненасыщенную цепь, содержащую 1-3 атома, выбранных из не более 3 атомов углерода, не более 1 атома O, не более 1 атома S и не более 2 атомов N, причем цепь необязательно замещена не более 2 заместителями, независимо выбранными из R15 при атомах углерода и R16 при атомах азота;

каждый из Y1 и Y2 независимо представляет собой O, S или NR12;

J1 представляет собой фенильное кольцо или нафталинильную кольцевую систему, причем каждое кольцо или кольцевая система необязательно замещены не более 5 заместителями, независимо выбранными из R7'; или 4-6-членное гетероциклическое кольцо или 8-10-членную гетероароматическую бициклическую кольцевую систему, причем каждое кольцо или кольцевая система содержат члены кольца, выбранные из атомов углерода и 1-4 гетероатомов, независимо выбранных из не более 2 атомов O, не более 2 атомов S и не более 4 атомов N, причем не более 3 членов кольца, представляющих собой атом углерода, независимо выбраны из C(=O) и C(=S), а члены кольца, представляющие собой атом серы, независимо выбраны из S(=O)u(=NR8)v, причем каждое кольцо или кольцевая система необязательно замещены не более 5 заместителями, независимо выбранными из R7' при членах кольца, представляющих собой атом углерода, и выбранными из R9' при членах кольца, представляющих собой атом азота; или C4-C10циклоалкилалкокси, C4-C10циклоалкилалкил, C2-C8алкенилокси, C2-C8галогеналкенилокси, C2-C8алкоксиалкокси, C2-C8алкилтиоалкил, C2-C8алкилсульфинилалкил, C2-C8алкилсульфонилалкил, C1-C8алкилсульфонилокси, C1-C8галогеналкилсульфонилокси, C1-C8алкилтио, C1-C8галогеналкилтио, C3-C8циклоалкилтио, C1-C8алкилсульфинил, C1-C8галогеналкилсульфинил, C1-C8алкилсульфонил, C1-C8галогеналкилсульфонил, C2-C8алкинил, C2-C8галогеналкинил, C2-C8алкоксиалкил, C2-C8галогеналкоксиалкил, C3-C8галогеналкоксиалкокси, C2-C8галогеналкоксигалогеналкил, C1-C8галогеналкил, C3-C8галогенциклоалкил, C2-C8алкилкарбонилокси или C2-C8галогеналкилкарбонилокси;

J2 представляет собой -CR2R3- или -CR2R3-CR2aR3a-, где фрагмент -CR2R3- соединен c N;

R1 представляет собой H, гидрокси, амино, циано, формил, C3-C8алкилкарбонилалкил, -CPh=N-O(C1-C4алкил), -C(C1-C4алкил)=N-O(C1-C4алкил), -C(O)NH2, C1-C6алкил, C1-C6галогеналкил, C2-C6алкенил, C3-C6алкинил, C2-C6цианоалкил, C3-C6циклоалкил, C4-C8циклоалкилалкил, C2-C8алкоксиалкил, C3-C8алкоксиалкоксиалкил, C2-C8галогеналкоксиалкил, C2-C8алкилтиоалкил, C2-C8алкилсульфинилалкил, C2-C8алкилсульфонилалкил, C2-C8алкилкарбонил, C2-C8галогеналкилкарбонил, C4-C10циклоалкилкарбонил, C2-C8алкоксикарбонил, C2-C8галогеналкоксикарбонил, C4-C10циклоалкоксикарбонил, C2-C8алкиламинокарбонил, C3-C10диалкиламинокарбонил, C4-C10циклоалкиламинокарбонил, C1-C6алкокси, C1-C6алкилтио, C1-C6галогеналкилтио, C3-C8циклоалкилтио, C1-C6алкилсульфинил, C1-C6галогеналкилсульфинил, C3-C8циклоалкилсульфинил, C1-C6алкилсульфонил, C1-C6галогеналкилсульфонил, C3-C8циклоалкилсульфонил, C1-C6алкиламиносульфонил, C2-C8диалкиламиносульфонил, C3-C10триалкилсилил, фенилкарбонил или G1;

каждый из R2 и R3 независимо представляет собой H, галоген, гидрокси, C1-C4алкил, C1-C4галогеналкил или C1-C4алкокси; или

R2 и R3 взяты вместе с атомом углерода, с которым они связаны, с образованием C3-C7циклоалкильного кольца;

каждый из R2a и R3a независимо представляет собой H, галоген или C1-C4алкил; или

R2a и R3a взяты вместе с атомом углерода, с которым они связаны, с образованием C3-C7циклоалкильного кольца;

каждый из R4 и R5 независимо представляет собой H, галоген, гидроксил, C1-C4алкокси или C1-C4алкил;

R6 представляет собой H, гидрокси, амино, C1-C6алкил, C1-C6галогеналкил, C2-C6алкенил, C3-C6алкинил, C2-C8алкоксиалкил, C2-C8галогеналкоксиалкил, C2-C8алкилтиоалкил, C2-C8алкилсульфинилалкил, C2-C8алкилсульфонилалкил, C2-C8алкилкарбонил, C2-C8галогеналкилкарбонил, C4-C10циклоалкилкарбонил, C2-C8алкоксикарбонил, C2-C8галогеналкоксикарбонил, C4-C10циклоалкоксикарбонил, C2-C8алкиламинокарбонил, C3-C10диалкиламинокарбонил, C4-C10циклоалкиламинокарбонил, C1-C6алкокси, C1-C6алкилтио, C1-C6галогеналкилтио, C3-C8циклоалкилтио, C1-C6алкилсульфинил, C1-C6галогеналкилсульфинил, C3-C8циклоалкилсульфинил, C1-C6алкилсульфонил, C1-C6галогеналкилсульфонил, C3-C8циклоалкилсульфонил, C1-C6алкиламиносульфонил, C2-C8диалкиламиносульфонил, C3-C10триалкилсилил или G1;

каждый R7 независимо представляет собой галоген, гидроксил, циано, нитро, C1-C4алкил, C1-C4цианоалкил, C1-C4цианоалкокси, C1-C4галогеналкил, C2-C4алкенил, C2-C4галогеналкенил, C2-C4алкинил, C2-C4галогеналкинил, C1-C4нитроалкил, C2-C4нитроалкенил, C2-C4алкоксиалкил, C3-C8алкоксиалкоксиалкил, C2-C4галогеналкоксиалкил, C3-C4циклоалкил, C3-C4галогенциклоалкил, циклопропилметил, 1-метилциклопропил, 2-метилциклопропил, C1-C4алкокси, C1-C4галогеналкокси, C2-C4алкенилокси, C2-C4галогеналкенилокси, C3-C4алкинилокси, C3-C4галогеналкинилокси, C3-C4циклоалкокси, C1-C4алкилтио, C1-C4галогеналкилтио, C1-C4алкилсульфинил, C1-C4галогеналкилсульфинил, C1-C4алкилсульфонил, C1-C4галогеналкилсульфонил, гидрокси, -CHO, C2-C4алкилкарбонил, C2-C4алкилкарбонилокси, C1-C4алкилсульфонилокси, C1-C4галогеналкилсульфонилокси, амино, C1-C4алкиламино, C2-C4диалкиламино, формиламино, C2-C4алкилкарбониламино, -SF5, -SCN, C3-C4триалкилсилил, триметилсилилметил или триметилсилилметокси; или

два смежных R7 взяты вместе с атомами углерода, с которыми они связаны, с образованием C3-C7циклоалкильного кольца;

каждый R10 независимо представляет собой галоген, гидроксил, циано, нитро, C1-C8алкил, C1-C8галогеналкил, C1-C8нитроалкил, C2-C8алкенил, C2-C4алкоксиалкил, C3-C8алкоксиалкоксиалкил, C1-C4цианоалкил, C1-C4цианоалкокси, C2-C8галогеналкенил, C2-C8нитроалкенил, C2-C8алкинил, C2-C8галогеналкинил, C4-C10циклоалкилалкил, C4-C10галогенциклоалкилалкил, C5-C12алкилциклоалкилалкил, C5-C12циклоалкилалкенил, C5-C12циклоалкилалкинил, C3-C8циклоалкил, C3-C8галогенциклоалкил, C4-C10алкилциклоалкил, C6-C12циклоалкилциклоалкил, C3-C8циклоалкенил, C3-C8галогенциклоалкенил, C2-C8алкоксиалкил, C2-C8галогеналкоксиалкил, C4-C10циклоалкоксиалкил, C3-C10алкоксиалкоксиалкил, C2-C8алкилтиоалкил, C2-C8алкилсульфинилалкил, C2-C8алкилсульфонилалкил, C2-C8алкиламиноалкил, C2-C8галогеналкиламиноалкил, C4-C10циклоалкиламиноалкил, C3-C10диалкиламиноалкил, -CHO, C2-C8алкилкарбонил, C2-C8галогеналкилкарбонил, C4-C10циклоалкилкарбонил, -C(=O)OH, C2-C8алкоксикарбонил, C2-C8галогеналкоксикарбонил, C4-C10циклоалкоксикарбонил, C5-C12циклоалкилалкоксикарбонил, -C(=O)NH2, C2-C8алкиламинокарбонил, C4-C10циклоалкиламинокарбонил, C3-C10диалкиламинокарбонил, гидрокси, C1-C8алкокси, C1-C8галогеналкокси, C2-C8алкоксиалкокси, C2-C8алкенилокси, C2-C8галогеналкенилокси, C3-C8алкинилокси, C3-C8галогеналкинилокси, C3-C8циклоалкокси, C3-C8галогенциклоалкокси, C4-C10циклоалкилалкокси, C3-C10алкилкарбонилалкокси, C2-C8алкилкарбонилокси, C2-C8галогеналкилкарбонилокси, C4-C10циклоалкилкарбонилокси, C1-C8алкилсульфонилокси, C1-C8галогеналкилсульфонилокси, C1-C8алкилтио, C1-C8галогеналкилтио, C3-C8циклоалкилтио, C1-C8алкилсульфинил, C1-C8галогеналкилсульфинил, C1-C8алкилсульфонил, C1-C8галогеналкилсульфонил, C3-C8циклоалкилсульфонил, амино, C1-C8алкиламино, C1-C6галогеналкиламино, C3-C8циклоалкиламино, C2-C8диалкиламино, C2-C8галогендиалкиламино, формиламино, C2-C8алкилкарбониламино, C2-C8галогеналкилкарбониламино, C1-C6алкилсульфониламино, C1-C6галогеналкилсульфониламино, -SF5, -SCN, C3-C12триалкилсилил, C4-C12триалкилсилилалкил, C4-C12триалкилсилилалкокси или G2; или

два смежных R10 взяты вместе с атомами углерода, с которыми они связаны, с образованием C3-C7циклоалкильного кольца;

каждый R7' независимо представляет собой галоген, гидроксил, циано, нитро, C1-C8алкил, C2-C4алкоксиалкил, C3-C8алкоксиалкоксиалкил, C1-C4цианоалкил, C1-C4цианоалкокси, C1-C8галогеналкил, C1-C8нитроалкил, C2-C8алкенил, C2-C8галогеналкенил, C2-C8нитроалкенил, C2-C8алкинил, C2-C8галогеналкинил, C4-C10циклоалкилалкил, C4-C10галогенциклоалкилалкил, C5-C12алкилциклоалкилалкил, C5-C12циклоалкилалкенил, C5-C12циклоалкилалкинил, C3-C8циклоалкил, C3-C8галогенциклоалкил, C4-C10алкилциклоалкил, C6-C12циклоалкилциклоалкил, C3-C8циклоалкенил, C3-C8галогенциклоалкенил, C2-C8алкоксиалкил, C2-C8галогеналкоксиалкил, C4-C10циклоалкоксиалкил, C3-C10алкоксиалкоксиалкил, C2-C8алкилтиоалкил, C2-C8алкилсульфинилалкил, C2-C8алкилсульфонилалкил, C2-C8алкиламиноалкил, C2-C8галогеналкиламиноалкил, C4-C10циклоалкиламиноалкил, C3-C10диалкиламиноалкил, -CHO, C2-C8алкилкарбонил, C2-C8галогеналкилкарбонил, C4-C10циклоалкилкарбонил, -C(=O)OH, C2-C8алкоксикарбонил, C2-C8галогеналкоксикарбонил, C4-C10циклоалкоксикарбонил, C5-C12циклоалкилалкоксикарбонил, -C(=O)NH2, C2-C8алкиламинокарбонил, C4-C10циклоалкиламинокарбонил, C3-C10диалкиламинокарбонил, гидрокси, C1-C8алкокси, C1-C8галогеналкокси, C2-C8алкоксиалкокси, C2-C8алкенилокси, C2-C8галогеналкенилокси, C3-C8алкинилокси, C3-C8галогеналкинилокси, C3-C8циклоалкокси, C3-C8галогенциклоалкокси, C4-C10циклоалкилалкокси, C3-C10алкилкарбонилалкокси, C2-C8алкилкарбонилокси, C2-C8галогеналкилкарбонилокси, C4-C10циклоалкилкарбонилокси, C1-C8алкилсульфонилокси, C1-C8галогеналкилсульфонилокси, C1-C8алкилтио, C1-C8галогеналкилтио, C3-C8циклоалкилтио, C1-C8алкилсульфинил, C1-C8галогеналкилсульфинил, C1-C8алкилсульфонил, C1-C8галогеналкилсульфонил, C3-C8циклоалкилсульфонил, амино, C1-C8алкиламино, C1-C6галогеналкиламино, C3-C8циклоалкиламино, C2-C8диалкиламино, C2-C8галогендиалкиламино, формиламино, C2-C8алкилкарбониламино, C2-C8галогеналкилкарбониламино, C1-C6алкилсульфониламино, C1-C6галогеналкилсульфониламино, -SF5, -SCN, C3-C12триалкилсилил, C4-C12триалкилсилилалкил, C4-C12триалкилсилилалкокси; или

два смежных R7' взяты вместе с атомами углерода, с которыми они связаны, с образованием C3-C7циклоалкильного кольца;

каждый R8 независимо представляет собой H, циано, C2-C3алкилкарбонил или C2-C3галогеналкилкарбонил;

каждый из R9, R9' и R11 независимо представляет собой циано, C1-C3алкил, C2-C3алкенил, C2-C3алкинил, C3-C6циклоалкил, C2-C3алкоксиалкил, C1-C3алкокси, C2-C3алкилкарбонил, C2-C3алкоксикарбонил, C2-C3алкиламиноалкил или C3-C4диалкиламиноалкил;

каждый R12 независимо представляет собой H, циано, C1-C4алкил, C1-C4галогеналкил, C1-C4алкокси, C1-C4галогеналкокси, -(C=O)CH3 или -(C=O)CF3;

каждый G1 независимо представляет собой фенил, фенилметил (т. е. бензил), пиридинилметил, фенилкарбонил (т. е. бензоил), фенокси, фенилэтинил, фенилсульфонил, фенилкарбонилалкил или 5- или 6-членное гетероароматическое кольцо, причем каждый из них необязательно замещен по членам кольца не более 5 заместителями, независимо выбранными из R13;

каждый G2 независимо представляет собой фенил, фенилметил (т. е. бензил), пиридинилметил, фенилкарбонил (т. е. бензоил), фенилкарбонилалкил, фенокси, фенилэтинил, фенилсульфонил или 5- или 6-членное гетероароматическое кольцо, причем каждый из них необязательно замещен по членам кольца не более 5 заместителями, независимо выбранными из R14;

каждый из R13 и R14 независимо представляет собой галоген, циано, гидрокси, амино, нитро, -CHO, -C(=O)OH, -C(=O)NH2, -SO2NH2, C1-C6алкил, C1-C6галогеналкил, C2-C6алкенил, C2-C6алкинил, C2-C8алкилкарбонил, C2-C8галогеналкилкарбонил, C2-C8алкоксикарбонил, C4-C10циклоалкоксикарбонил, C5-C12циклоалкилалкоксикарбонил, C2-C8алкиламинокарбонил, C3-C10диалкиламинокарбонил, C1-C6алкокси, C1-C6галогеналкокси, C2-C8алкилкарбонилокси, C1-C6алкилтио, C1-C6галогеналкилтио, C1-C6алкилсульфинил, C1-C6галогеналкилсульфинил, C1-C6алкилсульфонил, C1-C6галогеналкилсульфонил, C1-C6алкиламиносульфонил, C2-C8диалкиламиносульфонил, C3-C10триалкилсилил, C1-C6алкиламино, C2-C8диалкиламино, C2-C8алкилкарбониламино, C1-C6алкилсульфониламино, фенил, пиридинил или тиенил;

каждый R15 независимо представляет собой галоген, циано, гидрокси, C1-C4алкил, C1-C4галогеналкил, C1-C4алкокси, C1-C4галогеналкокси, C2-C4алкоксиалкил, C2-C4алкилкарбонил, C2-C4алкоксикарбонил или C3-C6циклоалкил;

каждый R16 независимо представляет собой H, циано, C1-C4алкил, C1-C4галогеналкил, C1-C4алкокси, C2-C4алкилкарбонил, C2-C4алкоксикарбонил или C3-C6циклоалкил;

каждый R17 независимо представляет собой H, C1-C6алкил, C3-C8циклоалкил, C4-C8циклоалкилалкил, C1-C6галогеналкил, C2-C6алкенил, C3-C6алкинил, C2-C8алкоксиалкил, C2-C8галогеналкоксиалкил, C2-C8алкилтиоалкил, C2-C8алкилсульфинилалкил, C2-C8алкилсульфонилалкил, C2-C8алкилкарбонил, C2-C8галогеналкилкарбонил, C4-C10циклоалкилкарбонил, C2-C8алкоксикарбонил, C2-C8галогеналкоксикарбонил, C4-C10циклоалкоксикарбонил, C2-C8алкиламинокарбонил, C3-C10диалкиламинокарбонил, C4-C10циклоалкиламинокарбонил, C1-C6алкилсульфинил, C1-C6галогеналкилсульфинил, C3-C8циклоалкилсульфинил, C1-C6алкилсульфонил, C1-C6галогеналкилсульфонил, C3-C8циклоалкилсульфонил, C1-C6алкиламиносульфонил, C2-C8диалкиламиносульфонил, C3-C10триалкилсилил или G1;

каждый R17a независимо представляет собой H, C1-C6алкил, C3-C8циклоалкил, C4-C8циклоалкилалкил, C1-C6галогеналкил, C2-C6алкенил, C3-C6алкинил, C2-C8алкоксиалкил, C2-C8галогеналкоксиалкил, C2-C8алкилтиоалкил, C2-C8алкилсульфинилалкил, C2-C8алкилсульфонилалкил, C1-C6алкокси, C1-C6алкилтио, C1-C6галогеналкилтио, C3-C8циклоалкилтио, C3-C10триалкилсилил или G1;

каждый R18 независимо представляет собой H, гидрокси, C1-C6алкил, C3-C8циклоалкил, C4-C8циклоалкилалкил, C1-C6галогеналкил, C2-C6алкенил, C3-C6алкинил, C2-C8алкоксиалкил, C2-C8галогеналкоксиалкил, C2-C8алкилтиоалкил, C2-C8алкилсульфинилалкил, C2-C8алкилсульфонилалкил, C2-C8алкилкарбонил, C2-C8галогеналкилкарбонил, C4-C10циклоалкилкарбонил, C2-C8алкоксикарбонил, C2-C8галогеналкоксикарбонил, C4-C10циклоалкоксикарбонил, C2-C8алкиламинокарбонил, C3-C10диалкиламинокарбонил, C4-C10циклоалкиламинокарбонил, C1-C6алкокси, C1-C6алкилтио, C1-C6галогеналкилтио, C3-C8циклоалкилтио, C1-C6алкилсульфинил, C1-C6галогеналкилсульфинил, C3-C8циклоалкилсульфинил, C1-C6алкилсульфонил, C1-C6галогеналкилсульфонил, C3-C8циклоалкилсульфонил, C1-C6алкиламиносульфонил, C2-C8диалкиламиносульфонил, C3-C10триалкилсилил или G1;

каждый R19 независимо представляет собой H, C1-C6алкил, C3-C8циклоалкил, C4-C8циклоалкилалкил, C1-C6галогеналкил, C2-C6алкенил, C3-C6алкинил, C2-C8алкоксиалкил, C2-C8галогеналкоксиалкил, C2-C8алкилтиоалкил, C2-C8алкилсульфинилалкил, C2-C8алкилсульфонилалкил, C2-C8алкилкарбонил, C2-C8галогеналкилкарбонил, C4-C10циклоалкилкарбонил, C2-C8алкоксикарбонил, C2-C8галогеналкоксикарбонил, C4-C10циклоалкоксикарбонил, C2-C8алкиламинокарбонил, C3-C10диалкиламинокарбонил, C4-C10циклоалкиламинокарбонил, C1-C6алкокси, C1-C6алкилсульфинил, C1-C6галогеналкилсульфинил, C3-C8циклоалкилсульфинил, C1-C6алкилсульфонил, C1-C6галогеналкилсульфонил, C3-C8циклоалкилсульфонил, C1-C6алкиламиносульфонил, C2-C8диалкиламиносульфонил, C3-C10триалкилсилил или G1;

каждый R20 независимо представляет собой H, гидрокси, амино, C1-C6алкил, C3-C8циклоалкил, C4-C8циклоалкилалкил, C1-C6галогеналкил, C2-C6алкенил, C3-C6алкинил, C2-C8алкоксиалкил, C2-C8галогеналкоксиалкил, C2-C8алкилтиоалкил, C2-C8алкилсульфинилалкил, C2-C8алкилсульфонилалкил, C2-C8алкилкарбонил, C2-C8галогеналкилкарбонил, C4-C10циклоалкилкарбонил, C2-C8алкоксикарбонил, C2-C8галогеналкоксикарбонил, C4-C10циклоалкоксикарбонил, C2-C8алкиламинокарбонил, C3-C10диалкиламинокарбонил, C4-C10циклоалкиламинокарбонил, C1-C6алкокси, C1-C6алкилсульфинил, C1-C6галогеналкилсульфинил, C3-C8циклоалкилсульфинил, C1-C6алкилсульфонил, C1-C6галогеналкилсульфонил, C3-C8циклоалкилсульфонил, C1-C6алкиламиносульфонил, C2-C8диалкиламиносульфонил, C3-C10триалкилсилил или G1;

каждый R20a независимо представляет собой H, C1-C6алкил, C3-C8циклоалкил, C4-C8циклоалкилалкил, C1-C6галогеналкил, C2-C6алкенил, C3-C6алкинил, C2-C8алкоксиалкил, C2-C8галогеналкоксиалкил, C2-C8алкилтиоалкил, C2-C8алкилсульфинилалкил, C2-C8алкилсульфонилалкил, C1-C6алкоксиC3-C10триалкилсилил или G1;

каждый R23b независимо представляет собой H, галоген, циано, гидрокси, C1-C4алкил, C3-C8циклоалкил, C4-C8циклоалкилалкил, C1-C4галогеналкил, C1-C4алкокси, C1-C4галогеналкокси, C2-C4алкоксиалкил, C2-C4алкилкарбонил, C2-C4алкоксикарбонил или C3-C6циклоалкил;

каждый R24a независимо представляет собой H, C1-C4алкил, C3-C8циклоалкил, C4-C8циклоалкилалкил, C1-C4галогеналкил, C1-C4алкокси, C1-C4галогеналкокси, C2-C4алкоксиалкил, C2-C4алкилкарбонил, C2-C4алкоксикарбонил или C3-C6циклоалкил;

каждый из u и v независимо равняется 0, 1 или 2 в каждом случае S(=O)u(=NR8)v, при условии, что сумма u и v равняется 0, 1 или 2;

при условии, что если

a) J1 представляет собой незамещенное фенильное кольцо, A является отличным от -CH2-, -O-, -C≡C-, -C(=O)- или -SO2-; или

b) J1 представляет собой незамещенное пиридинильное кольцо, A является отличным от -CH2-;

c) J1 представляет собой С4-C10циклоалкилалкил, A является отличным от алкила; или

d) J1-A- находится в пара-положении Q1, A является отличным от O, а J1 является отличным от 2-фуранилметила.

Более конкретно, настоящее изобретение относится к соединению формулы 1 (в том числе всем стереоизомерам), его N-оксиду или соли. Настоящее изобретение также относится к гербицидной композиции, содержащей соединение по настоящему изобретению (т. е. в гербицидно эффективном количестве) и по меньшей мере один компонент, выбранный из группы, состоящей из поверхностно-активных веществ, твердых разбавителей и жидких разбавителей. Настоящее изобретение также относится к способу контроля роста нежелательной растительности, предусматривающему приведение в контакт растительности или окружающей ее среды с гербицидно эффективным количеством соединения по настоящему изобретению (например, в виде описанной в данном документе композиции).

Настоящее изобретение также включает гербицидную смесь, содержащую (a) соединение, выбранное из соединения формулы 1, его N-оксидов и солей, и (b) по меньшей мере один дополнительный активный ингредиент, выбранный из (b1) - (b16) и солей соединений (b1) - (b16), как описано ниже.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Подразумевается, что используемые в настоящем документе выражения "содержит", "содержащий", "включает", "включающий", "имеет", "имеющий", "включает в себя", "включающий в себя", "характеризующийся тем, что" или любые другие их варианты распространяются на неисключительное включение, если явно не указано какое-либо ограничение. Например, композиция, смесь, процесс, способ, изделие или прибор, которые содержат перечень элементов, не обязательно ограничиваются только этими элементами, но могут включать другие элементы, которые не перечислены явно или присущи такой композиции, смеси, процессу, способу, изделию или прибору.

Переходная фраза "состоящий из" исключает любой неуказанный элемент, стадию или ингредиент. При наличии в пункте формулы изобретения такая фраза не будет допускать включение в пункт формулы изобретения материалов, отличных от тех, которые перечислены, за исключением примесей, обычно связанных с ними. Если фраза "состоящий из" появляется в отличительной части пункта формулы изобретения, а не сразу после ограничительной части, она ограничивает только элемент, изложенный в этой отличительной части; при этом другие элементы не исключаются из пункта формулы изобретения в целом.

Переходная фраза "по сути состоящий из" применяется для обозначения композиции, способа или прибора, что включает материалы, стадии, признаки, компоненты или элементы, в дополнение к буквально раскрываемым, при условии, что эти дополнительные материалы, стадии, признаки, компоненты или элементы существенно не влияют на основную и новую характеристику(характеристики) заявленного изобретения. Выражение "по сути состоящий из" занимает промежуточное положение между "содержащий" и "состоящий из".

Если заявители определили настоящее изобретение или его часть неограничивающим выражением, таким как "содержащий", явно следует понимать, что (если не указано иное) описание следует толковать как также описывающее такое изобретение с применением выражений "по сути состоящий из" или "состоящий из".

Кроме того, если прямо не указано обратное, "или" относится к включающему "или", а не к исключающему "или". Например, условие А или В удовлетворяет любым из следующих условий: А истинно (или присутствует) и B ошибочно (или не присутствует), А ошибочно (или не присутствует) и B истинно (или присутствует), и как А, так и B истинны (или присутствуют).

Также подразумевается, что упоминание элемента или компонента настоящего изобретения в единственном числе не предполагает ограничения в отношении числа примеров (т. е. случаев присутствия) элемента или компонента. Поэтому единственное число следует понимать как включающее одно или по меньшей мере одно, а форма единственного числа для обозначения элемента или компонента также включает множественное число, за исключением случаев, когда явно подразумевается единственное число.

Как изложено в данном документе, выражение "проросток", применяемое либо отдельно, либо в комбинации слов, означает молодое растение, развивающееся из зародыша семени.

Как изложено в данном документе, выражение "широколиственный", применяемое либо отдельно, либо в таких словах, как "широколиственный сорняк", означает двудольное или двудольное растение, выражение, применяемое для описания группы покрытосеменных растений, характеризующихся наличием двух семядоль у зародышей.

В вышеуказанных перечислениях выражение "алкил", используемое либо отдельно, либо в сложных словах, таких как "алкилтио" или "галогеналкил", включает линейный или разветвленный алкил, такой как метил, этил, н-пропил, изопропил или различные изомеры бутила, пентила или гексила. "Алкенил" включает линейные или разветвленные алкены, такие как этенил, 1-пропенил, 2-пропенил, и различные изомеры бутенила, пентенила и гексенила. "Алкенил" также включает полиены, такие как 1,2-пропадиенил и 2,4-гексадиенил.

"Алкокси" включает, например, метокси, этокси, н-пропилокси, изопропилокси и различные изомеры бутокси, пентокси и гексилокси. "Алкоксиалкил" обозначает замещение алкокси по алкилу. Примеры "алкоксиалкила" включают CH3OCH2-, CH3OCH2CH2-, CH3CH2OCH2-, CH3CH2CH2CH2OCH2- и CH3CH2OCH2CH2-. "Алкоксиалкоксиалкил" обозначает замещение алкокси по фрагменту алкокси фрагмента алкоксиалкила. Примеры "алкоксиалкоксиалкила" включают CH3OCH2OCH2-, CH3CH2O(CH3)CHOCH2- и (CH3O)2CHOCH2-. "Алкоксиалкокси" обозначает замещение алкокси по алкокси. "Алкенилокси" включает линейные или разветвленные алкенилокси-фрагменты. Примеры "алкенилокси" включают H2C=CH=CH2O-, (CH3)2C=CH=CH2O-, (CH3)CH=CH=CH2O-, (CH3)CH=C(CH3)CH2O- и CH2=CH=CH2CH2O-. "Алкинилокси" включает линейные или разветвленные алкинилокси-фрагменты. Примеры "алкинилокси" включают HC≡CCH2O-, CH3C≡CCH2O- и CH3C≡CCH2CH2O-. "Алкилтио" включает разветвленные или линейные фрагменты алкилтио, такие как метилтио, этилтио и различные изомеры пропилтио, бутилтио, пентилтио и гексилтио. "Алкилсульфинил" включает оба энантиомера алкилсульфинильной группы. Примеры "алкилсульфинила" включают CH3S(O)-, CH3CH2S(O)-, CH3CH2CH2S(O)-, (CH3)2CHS(O)- и различные изомеры бутилсульфинила, пентилсульфинила и гексилсульфинила. Примеры "алкилсульфонила" включают CH3S(O)2-, CH3CH2S(O)2-, CH3CH2CH2S(O)2-, (CH3)2CHS(O)2- и различные изомеры бутилсульфонила, пентилсульфонила и гексилсульфонила. Примеры "алкилсульфониламино" включают CH3S(O)2NH-, CH3CH2S(O)2NH-, CH3CH2CH2S(O)2NH-, (CH3)2CHS(O)2NH- и различные изомеры бутилсульфониламино, пентилсульфониламино и гексилсульфониламино. Примеры "алкилсульфонилокси" включают CH3S(O)2O-, CH3CH2S(O)2O-, CH3CH2CH2S(O)2O-, (CH3)2CHS(O)2O- и различные изомеры бутилсульфонилокси, пентилсульфонилокси и гексилсульфонилокси. "Алкилтиоалкил" обозначает замещение алкилтио по алкилу. Примеры "алкилтиоалкила" включают CH3SCH2-, CH3SCH2CH2-, CH3CH2SCH2-, CH3CH2CH2CH2SCH2- и CH3CH2SCH2CH2-. "Цианоалкил" обозначает алкильную группу, замещенную одной цианогруппой. Примеры "цианоалкила" включают NCCH2, NCCH2CH2- и CH3CH(CN)CH2-. «Цианоалкокси" обозначает алкоксигруппу, замещенную одной цианогруппой. Примеры "цианоалкокси" включают NCCH2O-, NCCH2CH2O- и CH3CH(CN)CH2O-. "Алкилсульфинилалкил" обозначает замещение алкилсульфинила по алкилу. Примеры "алкилсульфинилалкила" включают CH3S(=O)CH2-, CH3S(=O)CH2CH2-, CH3CH2S(=O)CH2- и CH3CH2S(=O)CH2CH2-. "Алкилсульфонилалкил" обозначает замещение алкилсульфонила по алкилу. Примеры "алкилсульфонилалкила" включают CH3S(=O)2CH2-, CH3S(=O)2CH2CH2-, CH3CH2S(=O)2CH2- и CH3CH2S(=O)2CH2CH2-. "Алкиламино", "диалкиламино" и т. п. определены аналогично вышеприведенным примерам. Примеры "алкиламиноалкила" включают CH3NHCH2-, (CH3)2CHNHCH2- и CH3NHCH(CH3)-. Примеры "алкиламинокарбонила" включают CH3NHC(O)-, (CH3)2CHNHC(O)- и CH3CH2NHC(O)-. Примеры "диалкиламиноалкила" включают (CH3)2NCH2-, (CH3)2NC(CH3)H- и (CH3)(CH3)NCH2-. Примеры "алкиламинокарбонила" включают CH3NC(O)- и CH3 CH2NC(O)-. Примеры "диалкиламинокарбонила" включают (CH3)2NC(O)-. Примеры "диалкиламиносульфонила" включают (CH3)2NS(O)2-.

"Циклоалкил" включает, например, циклопропил, циклобутил, циклопентил и циклогексил. Выражение "алкилциклоалкил" обозначает замещение алкила по фрагменту циклоалкила и включает, например, этилциклопропил, изопропилциклобутил, 3-метилциклопентил и 4-метилциклогексил. Выражение "циклоалкилалкил" обозначает замещение циклоалкила по фрагменту алкила. Примеры "циклоалкилалкила" включают циклопропилметил, циклопентилэтил и другие фрагменты циклоалкила, связанные с линейными или разветвленными алкильными группами. Выражение "циклоалкокси" обозначает циклоалкил, соединенный посредством атома кислорода, например, циклопентилокси и циклогексилокси. "Циклоалкоксиалкил" обозначает замещение циклоалкила по фрагменту алкила. Примеры "циклоалкоксиалкила" включают циклопропоксиметил, циклопентоксиэтил и другие фрагменты циклоалкокси, связанные с линейными или разветвленными алкильными группами. "Циклоалкилалкокси" обозначает циклоалкилалкил, связанный посредством атома кислорода, присоединенного к алкильной цепи. Примеры "циклоалкилалкокси" включают циклопропилметокси, циклопентилэтокси и другие фрагменты циклоалкила, связанные с линейными или разветвленными алкокси-группами. "Циклоалкенил" включает группы, такие как циклопентенил и циклогексенил, а также группы с более чем одной двойной связью, такие как 1,3- и 1,4-циклогексадиенил.

Выражение "галоген" либо отдельно, либо в сложных словах, таких как "галогеналкил", или при использовании в описаниях, таких как "алкил, замещенный галогеном", включает фтор, хлор, бром или йод. Кроме того, при использовании в сложных словах, таких как "галогеналкил", или при использовании в описаниях, таких как "алкил, замещенный галогеном", указанный алкил может быть частично или полностью замещен атомами галогена, которые могут быть одинаковыми или разными. Примеры "галогеналкила" или "алкила, замещенного галогеном" включают F3C-, ClCH2-, CF3CH2- и CF3CCl2-. Выражения "галогенциклоалкил", "галогеналкокси", "галогеналкилтио", "галогеналкенил", "галогеналкинил" и подобные им определяются аналогично выражению "галогеналкил". Примеры "галогеналкокси" включают CF3O-, CCl3CH2O-, HCF2CH2CH2O- и CF3CH2O-. Примеры "галогеналкилтио" включают CCl3S-, CF3S-, CCl3CH2S- и ClCH2CH2CH2S-. Примеры "галогеналкилсульфинила" включают CF3S(O)-, CCl3S(O)-, CF3CH2S(O)- и CF3CF2S(O)-. Примеры "галогеналкилсульфонила" включают CF3S(O)2-, CCl3S(O)2-, CF3CH2S(O)2- и CF3CF2S(O)2-. Примеры "галогеналкенила" включают (Cl)2C=CH=CH2- и CF3CH2CH=CH=CH2-. Примеры "галогеналкинила" включают HC≡CCHCl-, CF3C≡C-, CCl3C≡C- и FCH2C≡CCH2-. Примеры "галогеналкоксиалкокси" включают CF3OCH2O-, ClCH2CH2OCH2CH2O-, Cl3CCH2OCH2O- и разветвленные производные алкила.

"Алкилкарбонил" обозначает линейные или разветвленные фрагменты алкила, связанные с фрагментом C(=O). Примеры "алкилкарбонила" включают CH3C(=O)-, CH3CH2CH2C(=O)- и (CH3)2CHC(=O)-. Примеры "алкилкарбонилалкокси" включают CH3C(=O)CH2O-, CH3CH2CH2C(=O)CH2O- и (CH3)2CHC(=O)CH2O-. Примеры "алкоксикарбонила" включают CH3OC(=O)-, CH3CH2OC(=O)-, CH3CH2CH2OC(=O)-, (CH3)2CHOC(=O)- и различные изомеры бутокси- или пентоксикарбонила. "Алкилкарбонилокси" обозначает алкилкарбонильный фрагмент, связанный посредством атома кислорода, присоединенного к карбонилу. Примеры "алкилкарбонилокси" включают CH3C(=O)O-, CH3CH2CH2C(=O)O- и (CH3)2CHC(=O)O-.

Общее число атомов углерода в группе заместителя обозначают приставкой "Ci-Cj", в которой i и j являются числами от 1 до 12. Например, C1-C4алкилсульфонил определяет группы от метилсульфонила до бутилсульфонила; C2алкоксиалкил определяет CH3OCH2-; C3алкоксиалкил определяет, например, CH3CH(OCH3)-, CH3OCH2CH2- или CH3CH2OCH2-; и C4алкоксиалкил определяет различные изомеры алкильной группы, замещенной алкокси-группой, содержащей всего четыре атома углерода, при этом примеры включают CH3CH2CH2OCH2- и CH3CH2OCH2CH2-.

Если соединение замещено заместителем, содержащим индекс, который указывает на то, что число указанных заместителей может превышать 1, то указанные заместители (если их число превышает 1) независимо выбраны из группы определенных заместителей (например, [(R10)n], причем n равняется 1, 2, 3, 4 или 5). Кроме того, если индекс указывает диапазон, например, (R)i-j, то число заместителей может быть выбрано из целых чисел от i до j включительно. Если группа содержит заместитель, которым может быть водород, например, (R1 или R6), то в случае, когда этот заместитель представляет собой водород, это понимают как равнозначное тому, что указанная группа является незамещенной. Если показано, что переменная группа необязательно присоединена к положению, например, [(R10)n], где n может равняться 0, то водород может находиться в данном положении, даже если это не указано в определении переменной группы. Если одно или несколько положений в группе указаны как "без заместителей" или "незамещенные", то атомы водорода присоединены с заполнением любой свободной валентности.

Выражение "полностью насыщенный" в отношении кольца атомов означает, что все связи между атомами кольца являются одинарными. Выражение "полностью ненасыщенный" в отношении кольца означает, что связи между атомами в кольце являются одинарными или двойными связями в соответствии с теорией валентных связей, и, кроме того, связи между атомами в кольце включают наибольшее возможное число двойных связей, при этом двойные связи не должны быть кумулированными (т. е. без C=C=C, N=C=C и т. д.). Выражение "частично ненасыщенный" в отношении кольца обозначает кольцо, содержащее по меньшей мере один член кольца, связанный со смежным членом кольца посредством двойной связи, и которое теоретически может содержать число некумулированных двойных связей между смежными членами кольца (т. е. в своей полностью ненасыщенной соответствующей форме), большее, чем число присутствующих двойных связей (т. е. в своей частично ненасыщенной форме). Если полностью ненасыщенное кольцо удовлетворяет правилу Хюккеля, то оно также может быть описано как ароматическое.

Если не указано иное, "кольцо" или "кольцевая система" как компонент формулы 1 (например, заместитель Q1) являются карбоциклическими или гетероциклическими. Выражение "кольцевая система" обозначает два или более конденсированных кольца. Выражения "бициклическая кольцевая система" и "конденсированная бициклическая кольцевая система" обозначают кольцевую систему, состоящую из двух конденсированных колец, в которой каждое кольцо может быть насыщенным, частично ненасыщенным или полностью ненасыщенным, если не указано иное. Выражение "конденсированная гетеробициклическая кольцевая система" обозначает конденсированную бициклическую кольцевую систему, в которой по меньшей мере один атом кольца не представляет собой углерод. "Мостиковая бициклическая кольцевая система" образуется путем связывания сегмента из одного или нескольких атомов с несмежными членами кольца в кольце. Выражение "член кольца" означает атом или другой фрагмент (например, C(=O), C(=S), S(O) или S(O)2), образующий каркас кольца или кольцевой системы.

Выражения "карбоциклическое кольцо" или "карбоциклическая кольцевая система" обозначают кольцо или кольцевую систему, где атомы, образующие остов кольца, выбраны только из углерода. Если не указано иное, карбоциклическое кольцо может быть насыщенным, частично ненасыщенным или полностью ненасыщенным кольцом. Если полностью ненасыщенное карбоциклическое кольцо удовлетворяет правилу Хюккеля, то указанное кольцо также называют "ароматическим кольцом". "Насыщенный карбоциклический" относится к кольцу, имеющему остов, состоящий из атомов углерода, соединенных друг с другом одинарными связями; если не указано иное, оставшиеся валентности углерода заполнены атомами водорода.

Выражения "гетероциклическое кольцо", "гетероцикл" или "гетероциклическая кольцевая система" обозначают кольцо или кольцевую систему, в которой по меньшей мере один атом, образующий остов кольца, не является углеродом, например, азот, кислород или сера. Как правило, гетероциклическое кольцо содержит не более 4 атомов азота, не более 2 атомов кислорода и не более 2 атомов серы. Если не указано иное, гетероциклическое кольцо может быть насыщенным, частично ненасыщенным или полностью ненасыщенным кольцом. Если полностью ненасыщенное гетероциклическое кольцо удовлетворяет правилу Хюккеля, то указанное кольцо также называют "гетероароматическим кольцом". Выражение "гетероароматическая бициклическая кольцевая система" обозначает гетероциклическую кольцевую систему, в которой по меньшей мере одно кольцо кольцевой системы является ароматическим. Если не указано иное, гетероциклические кольца и кольцевые системы могут быть присоединены посредством любого доступного углерода или азота путем замещения водорода по указанному углероду или азоту.

"Ароматический" указывает, что каждый из атомов кольца находится по сути в той же плоскости и имеет p-орбиталь, перпендикулярную плоскости кольца, и что (4n+2) π электронов, где n является положительным целым числом, связаны с кольцом в соответствии с правилом Хюккеля. Выражение "ароматическая кольцевая система" обозначает карбоциклическую или гетероциклическую кольцевую систему, в которой по меньшей мере одно кольцо кольцевой системы является ароматическим.

Выражение "необязательно замещенный" по отношению к гетероциклическим кольцам относится к группам, которые являются незамещенными или имеют по меньшей мере один заместитель, не являющийся водородом, который не подавляет биологическую активность, которой обладает незамещенный аналог. Следующие определения, используемые в данном документе, применяются если не указано иное. Выражение "необязательно замещенный" применяют взаимозаменяемо с фразой "замещенный или незамещенный" или с выражением "(не)замещенный". Если не указано иное, необязательно замещенная группа может иметь заместитель в каждом замещаемом положении группы и каждое замещение не зависит от другого.

Как отмечено выше, Q1, J1 и Q2 могут представлять собой (среди прочего) фенил, необязательно замещенный одним или несколькими заместителями, выбранными из группы заместителей, которые определены в кратком описании настоящего изобретения. Примером фенила, необязательно замещенного одним-пятью заместителями, является кольцо, показанное как U-1 в приложении 1, где, например, Rv представляет собой R7 или R7′, определенные в кратком описании настоящего изобретения для Q1 или J1, а r представляет собой целое число (от 0 до 4); или Rv представляет собой R10, определенный в кратком описании настоящего изобретения для Q2, и r представляет собой целое число (от 0 до 5).

Как отмечено выше, Q1, J1 и Q2 могут представлять собой (среди прочего) 5- или 6-членное полностью ненасыщенное гетероциклическое кольцо, необязательно замещенное одним или несколькими заместителями, выбранными из группы заместителей, которые определены в кратком описании настоящего изобретения. Примеры 5- или 6-членного полностью ненасыщенного гетероциклического кольца, необязательно замещенного одним или несколькими заместителями, включают кольца U-2 - U-61, показанные в приложении 1, где Rv представляет собой любой заместитель, определенный в кратком описании изобретения для Q1, J1 и Q2, а r представляет собой целое число от 0 до 4, ограниченное числом доступных положений в каждой группе U. Поскольку U-29, U-30, U-36, U-37, U-38, U-39, U-40, U-41, U-42 и U-43 имеют только одно доступное положение, для этих групп U r ограничено целыми числами 0 или 1, и при этом r, равный 0, означает, что группа U является незамещенной, а водород присутствует в положении, указанном (Rv)r.

Как отмечено выше, Q1, J1 и Q2 могут представлять собой (среди прочего) 8-10-членную гетероароматическую бициклическую кольцевую систему, необязательно замещенную одним или несколькими заместителями, выбранными из группы заместителей, которые определены в кратком описании настоящего изобретения (т. e. R7, R7′ и R10). Примеры 8-10-членной гетероароматической бициклической кольцевой системы, необязательно замещенной одним или несколькими заместителями, включают кольца U-62 - U-100, показанные в приложении 2, где Rv представляет собой любой заместитель, который определен в кратком описании настоящего изобретения для Q1, J1 или Q2, а r, как правило, представляет собой целое число от 0 до 4 или 5.

Некоторые примеры 4-6-членного насыщенного гетероциклического кольца, необязательно замещенного одним или несколькими заместителями, включают без ограничения кольца U-101 - U-104, показанные в приложении 3, где Rv представляет собой любой заместитель, который определен в кратком описании настоящего изобретения для Q1 или Q2, а r, как правило, представляет собой целое число от 0 до 4 или 5.

Хотя группы Rv показаны в структурах U-1 - U-104, следует отметить, что нет необходимости в их присутствии, поскольку они являются необязательными заместителями. Следует отметить, что если Rv представляет собой Н при присоединении к атому, то это то же самое, как если бы указанный атом являлся незамещенным. Атомы азота, которые должны быть замещены для заполнения их валентности, являются замещенными H или Rv. Следует отметить, что если точка присоединения между (Rv)r и группой U показана как плавающая, то (Rv)r могут быть присоединены к любому доступному атому углерода или атому азота группы U. Следует отметить, что если точка присоединения в группе U показана как плавающая, то группа U может быть присоединена к остальной части соединения формулы 1 посредством любого доступного углерода или азота группы U путем замещения атома водорода. Предпочтительно, для наибольшей гербицидной активности группа U присоединена к остальной части соединения формулы 1 посредством доступного углерода или азота на полностью ненасыщенном кольце группы U. Следует отметить, что некоторые группы U могут быть замещены только менее 4 группами Rv (например, U-2 - U-5, U-7 - U-48 и U-52 - U-61).

Из уровня техники известен широкий ряд способов синтеза с возможностью получения ароматических и неароматических гетероциклических колец и кольцевых систем; для подробных обзоров см. издание в восьми томах Comprehensive Heterocyclic Chemistry, A. R. Katritzky and C. W. Rees editors-in-chief, Pergamon Press, Oxford, 1984 и издание в двенадцати томах Comprehensive Heterocyclic Chemistry II, A. R. Katritzky, C. W. Rees and E. F. V. Scriven editors-in-chief, Pergamon Press, Oxford, 1996.

Соединения по настоящему изобретению могут существовать в виде одного или нескольких стереоизомеров. Различные стереоизомеры включают энантиомеры, диастереомеры, атропоизомеры и геометрические изомеры. Стереоизомеры представляют собой изомеры идентичной структуры, но отличающиеся по расположению их атомов в пространстве, и включают энантиомеры, диастереомеры, цис-транс изомеры (также известные как геометрические изомеры) и атропоизомеры. Атропоизомеры являются результатом ограниченного вращения вокруг одинарных связей, где барьер вращения достаточно высок для обеспечения возможности разделения видов изомеров. Специалисту в данной области техники будет понятно, что один стереоизомер может быть более активным и/или может проявлять положительные эффекты при обогащении по сравнению с другим(другими) стереоизомером(стереоизомерами) или при отделении от другого(других) стереоизомера(стереоизомеров). Кроме того, специалисту в данной области техники известно, как отделять, обогащать и/или избирательно получать указанные стереоизомеры. Соединения по настоящему изобретению могут присутствовать в виде смеси стереоизомеров, отдельных стереоизомеров или в виде оптически активной формы. В частности, если каждый из R4 и R5 представляет собой H, то заместители C(O)N(Q2)(R6) и Q1, как правило, в большинстве случаев представлены в термодинамически предпочтительной транс-конфигурации на пирролидиноновом кольце.

Например, фрагмент C(O)N(Q2)(R6) (связанный с углеродом в 3-положении пирролидинонового кольца, где как Y1, так и Y2 представляет собой кислород, и J2 представляет собой -CR2R3, и как R2, так и R3 представляет собой H) и Q1 (связанный с углеродом в 4-положении пирролидинонового кольца) обычно встречаются в транс-конфигурации. Эти два атома углерода (т. е. каждый в 3- и 4-положениях имеет центральное кольцо формулы 1) оба имеют хиральный центр. Две наиболее распространенные пары энантиомеров изображены как соединение формулы 1' и соединение формулы 1", где указаны хиральные центры (т. е. как 3R,4S или как 3S,4R). Специалисту в данной области техники будет понятно, что в некоторых вариантах осуществления настоящего изобретения обозначение R или S определяется относительно других заместителей вокруг одного и того же углерода, и, поэтому, соединению по настоящему изобретению также может быть присвоено обозначение 3S,4S. Для исчерпывающего обсуждения всех аспектов стереоизомерии см. Ernest L. Eliel and Samuel H. Wilen, Stereochemistry of Organic Compounds, John Wiley & Sons, 1994.

Рисунки молекул, изображенные в данном документе, созданы с соблюдением стандартных правил создания изображений в стереохимии. Для того, чтобы показать стереоконфигурацию, связи, направленные вверх относительно плоскости рисунка и направленные к наблюдателю, изображены в виде сплошных клиньев, причем широкий конец клина соединен с атомом, направленным вверх относительно плоскости рисунка в направлении к наблюдателю. Связи, направленные вниз относительно плоскости рисунка и направленные от наблюдателя, изображены пунктирными клиньями, причем узкий конец клина соединен с атомом, находящимся дальше от наблюдателя. Линии постоянной толщины показывают связи, противоположно или нейтрально направленные относительно связей, показанных в виде сплошных или пунктирных клиньев; при этом линии постоянной толщины также показывают связи в молекулах или частях молекул, в которых не предполагается указывать конкретную стереоконфигурацию.

Настоящее изобретение предусматривает рацемические смеси, например, равные количества энантиомеров формул 1' и 1". Кроме того, настоящее изобретение включает соединения, обогащенные по сравнению с рацемической смесью энантиомером формулы 1. Также включены практически чистые энантиомеры соединений формулы 1, например, формулы 1' и формулы 1".

После обогащения энантиомером (т. e. энантиообогащении) один энантиомер присутствует в большем количестве, чем другой, и степень обогащения может быть определена выражением энантиомерного избытка ("ee"), который определяют как (2x-1)·100%, где x является мольной долей преобладающего энантиомера в смеси (например, ee 20% соответствует соотношению энантиомеров 60:40). Соединения по настоящему изобретению можно получать энантиомерно обогащенными (т. e. энантиообогащенными) путем применения соответствующего энантиомерно обогащенного промежуточного соединения в ходе синтеза. В этих случаях энантиомерный избыток не измеряют в конечном продукте, но его считают "энантиомерно обогащенным" на основании эквивалентных известных из литературы химических преобразований.

Предпочтительно композиции по настоящему изобретению характеризуются энантиомерным избытком более активного изомера, составляющим по меньшей мере 50%; более предпочтительно энантиомерным избытком, составляющим по меньшей мере 75%; еще более предпочтительно энантиомерным избытком, составляющим по меньшей мере 90%; и наиболее предпочтительно энантиомерным избытком, составляющим по меньшей мере 94%. Особый интерес представляют энантиомерно чистые варианты осуществления более активного изомера.

Соединения формулы 1 могут содержать дополнительные хиральные центры. Например, заместители и другие составляющие молекулы, такие как R2 и R3, могут сами по себе содержать хиральные центры. Настоящее изобретение предусматривает рацемические смеси, а также обогащенные и, по сути, чистые стереоконфигурации при таких дополнительных хиральных центрах.

Соединения по настоящему изобретению могут существовать в виде одного или нескольких конформационных изомеров в связи с ограниченным вращением вокруг амидной связи (например, C(O)N(Q2)(R6)) в формуле 1. Настоящее изобретение предусматривает смеси конформационных изомеров. Кроме того, настоящее изобретение включает соединения, которые обогащены одним конформером по отношению к другим.

Соединения формулы 1, как правило, существуют в более чем одной форме, и формула 1, следовательно, включает все кристаллические и некристаллические формы соединений, в которых они представлены. Некристаллические формы включают варианты осуществления, которые представляют собой твердые вещества, такие как воски и смолы, а также варианты осуществления, которые представляют собой жидкости, такие как растворы и расплавы. Кристаллические формы включают варианты осуществления, которые представляют собой, по сути, один кристаллический тип, и варианты осуществления, которые представляют собой смесь полиморфов (т. е. различных кристаллических типов). Выражение "полиморф" относится к определенной кристаллической форме химического соединения, которое может кристаллизоваться в различные кристаллические формы, причем данные формы имеют разные расположения и/или конформации молекул в кристаллической решетке. Хотя полиморфы могут иметь одинаковый химический состав, они также могут отличаться по составу в связи с присутствием или отсутствием совместно кристаллизованной воды или других молекул, которые могут быть слабо или сильно связаны в решетке. Полиморфы могут отличаться такими химическими, физическими и биологическими свойствами, как форма кристалла, плотность, твердость, цвет, химическая стабильность, температура плавления, гигроскопичность, способность к суспендированию, скорость растворения и биологическая доступность. Специалисту в данной области техники будет понятно, что полиморф соединения формулы 1 может проявлять положительные эффекты (например, возможность применения для получения полезных составов, улучшенная биологическая эффективность) по отношению к другому полиморфу или смеси полиморфов того же соединения формулы 1. Получение и выделение определенного полиморфа соединения формулы 1 можно осуществлять с помощью способов, известных специалистам в данной области техники, включая, например, кристаллизацию с применением выбранных растворителей и температур. Для исчерпывающего обсуждения полиморфизма см. R. Hilfiker, Ed., Polymorphism in the Pharmaceutical Industry, Wiley-VCH, Weinheim, 2006.

Специалисту в данной области техники будет понятно, что не все содержащие азот гетероциклы могут образовывать N-оксиды, поскольку азоту нужна доступная неподеленная пара для окисления до оксида; специалисту в данной области техники будут известны такие содержащие азот гетероциклы, которые могут образовывать N-оксиды. Специалисту в данной области техники также будет известно, что третичные амины могут образовывать N-оксиды. Способы синтеза для получения N-оксидов гетероциклов и третичных аминов хорошо известны специалистам в данной области техники, в том числе окисление гетероциклов и третичных аминов пероксикислотами, такими как перуксусная и мета-хлорпербензойная кислота (MCPBA), пероксидом водорода, гидропероксидами алкилов, такими как гидропероксид трет-бутила, перборатом натрия и диоксиранами, такими как диметилдиоксиран. Эти способы получения N-оксидов были подробно описаны и рассмотрены в литературе, см., например: T. L. Gilchrist in Comprehensive Organic Synthesis, vol. 7, pp 748-750, S. V. Ley, Ed., Pergamon Press; M. Tisler and B. Stanovnik in Comprehensive Heterocyclic Chemistry, vol. 3, pp 18-20, A. J. Boulton and A. McKillop, Eds., Pergamon Press; M. R. Grimmett and B. R. T. Keene in Advances in Heterocyclic Chemistry, vol. 43, pp 149-161, A. R. Katritzky, Ed., Academic Press; M. Tisler and B. Stanovnik in Advances in Heterocyclic Chemistry, vol. 9, pp 285-291, A. R. Katritzky and A. J. Boulton, Eds., Academic Press; G. W. H. Cheeseman and E. S. G. Werstiuk in Advances in Heterocyclic Chemistry, vol. 22, pp 390-392, A. R. Katritzky and A. J. Boulton, Eds., Academic Press.

Специалисту в данной области техники известно, что поскольку в окружающей среде и в физиологических условиях соли химических соединений находятся в равновесии с их соответствующими несолевыми формами, то соли обладают такой же биологической применимостью, что и несолевые формы. Таким образом, широкий спектр солей соединения формулы 1 является пригодным для контроля нежелательной растительности (т. е. является подходящим с точки зрения сельского хозяйства). Соли соединения формулы 1 включают соли присоединения кислоты с неорганическими или органическими кислотами, такими как бромистоводородная, хлористоводородная, азотная, фосфорная, серная, уксусная, масляная, фумаровая, молочная, малеиновая, малоновая, щавелевая, пропионовая, салициловая, винная, 4-толуолсульфоновая или валериановая кислоты. Если соединение формулы 1 содержит кислотный фрагмент, такой как карбоновая кислота или фенол, то соли также включают соли, образованные органическими или неорганическими основаниями, такими как пиридин, триэтиламин или аммиак, или амиды, гидриды, гидроксиды или карбонаты натрия, калия, лития, кальция, магния или бария. Соответственно, настоящее изобретение предусматривает соединения, выбранные из соединений формулы 1, их N-оксидов и подходящих с точки зрения сельского хозяйства солей.

Варианты осуществления настоящего изобретения, описанные в кратком описании изобретения, включают следующие (где соединение формулы 1, как применяется в следующих вариантах осуществления, включает его N-оксиды и соли).

Вариант осуществления 1. Соединение формулы 1, где, если Q1 представляет собой 5-6-членное гетероароматическое кольцо или 8-10-членную гетероароматическую бициклическую кольцевую систему, то каждое кольцо или кольцевая система необязательно замещены не более 4 заместителями, независимо выбранными из R7 при членах кольца, представляющих собой атом углерода, и выбранными из R9 при членах кольца, представляющих собой атом азота.

Вариант осуществления 2. Соединение согласно варианту осуществления 1, где Q1 не является замещенным R7 или R9.

Вариант осуществления 3. Соединение формулы 1, где Q1 представляет собой фенильное кольцо или нафталинильную кольцевую систему, причем каждое кольцо или кольцевая система необязательно замещены 1-4 заместителями, независимо выбранными из R7.

Вариант осуществления 4. Соединение согласно варианту осуществления 3, где Q1 представляет собой фенильное кольцо, необязательно замещенное 1-2 заместителями, независимо выбранными из R7.

Вариант осуществления 5. Соединение согласно варианту осуществления 4, где Q1 представляет собой фенильное кольцо, замещенное 1 заместителем, выбранным из R7.

Вариант осуществления 6. Соединение согласно варианту осуществления 4, где Q1 представляет собой фенильное кольцо, незамещенное R7.

Вариант осуществления 7. Соединение формулы 1 или согласно любому из варианта осуществления 1 - варианта осуществления 6, где, если Q2 представляет собой 5-6-членное гетероароматическое кольцо или 8-10-членную гетероароматическую бициклическую кольцевую систему, то каждое кольцо или кольцевая система необязательно замещены не более 5 заместителями, независимо выбранными из R10 при членах кольца, представляющих собой атом углерода, и выбранными из R11 при членах кольца, представляющих собой атом азота.

Вариант осуществления 8. Соединение формулы 1 или согласно любому из варианта осуществления 1 - варианта осуществления 6, где Q2 представляет собой фенильное кольцо, необязательно замещенное 1-5 заместителями, независимо выбранными из R10.

Вариант осуществления 9. Соединение согласно варианту осуществления 8, где Q2 представляет собой фенильное кольцо, необязательно замещенное 1-3 заместителями, независимо выбранными из R10.

Вариант осуществления 10. Соединение согласно варианту осуществления 9, где Q2 представляет собой фенильное кольцо, необязательно замещенное 1-2 заместителями, независимо выбранными из R10.

Вариант осуществления 11. Соединение формулы 1 или согласно любому из варианта осуществления 1 - варианта осуществления 10, где Q2 представляет собой фенильное кольцо, имеющее по меньшей мере один заместитель, выбранный из R10, в орто-положении (и необязательно другие заместители).

Вариант осуществления 12. Соединение формулы 1 или согласно любому из варианта осуществления 1 - варианта осуществления 9, где, если Q2 представляет собой фенильное кольцо, замещенное по меньшей мере двумя заместителями, выбранными из R10, то по меньшей мере одни заместитель находится в орто-положении, и по меньшей мере один заместитель находится в пара-положении фенильного кольца.

Вариант осуществления 13. Соединение формулы 1 или согласно любому из варианта осуществления 1 - варианта осуществления 9, где Q2 представляет собой фенильное кольцо, замещенное тремя заместителями, выбранными из R10, и три заместителя находятся в орто-, мета- и пара-положениях фенильного кольца.

Вариант осуществления 14. Соединение формулы 1 или согласно любому из варианта осуществления 1 - варианта осуществления 13, где T представляет собой J1-A-.

Вариант осуществления 15. Соединение согласно варианту осуществления 14, где A представляет собой насыщенную, частично ненасыщенную или полностью ненасыщенную цепь, содержащую 1-3 атома, выбранных из не более 3 атомов углерода, не более 1 атома O, не более 1 атома S и не более 2 атомов N, причем цепь необязательно замещена не более 2 заместителями, независимо выбранными из R15 при атомах углерода и R16 при атомах азота.

Вариант осуществления 16. Соединение согласно варианту осуществления 15, где A представляет собой -CH2-, -CH2O-, -CH2NH-, -CH=CH-, -C≡C-, -NH-, -O-, -S-, -SO- или -SO2-.

Вариант осуществления 17. Соединение согласно варианту осуществления 16, где A представляет собой -CH2-, -CH2O-, -CH2NH-, -CH=CH-, -C≡C-, -NH- или -O-.

Вариант осуществления 18. Соединение согласно варианту осуществления 17, где A представляет собой -CH2O- или -O-.

Вариант осуществления 19. Соединение формулы 1 или согласно любому из варианта осуществления 1 - варианта осуществления 18, где J1 представляет собой фенильное кольцо или нафталинильную кольцевую систему, причем каждое кольцо или кольцевая система необязательно замещены не более 5 заместителями, независимо выбранными из R7'; или 4-6-членное гетероциклическое кольцо или 8-10-членную гетероароматическую бициклическую кольцевую систему, причем каждое кольцо или кольцевая система содержат члены кольца, выбранные из атомов углерода и 1-4 гетероатомов, независимо выбранных из не более 2 атомов O, не более 2 атомов S и не более 4 атомов N, причем не более 3 членов кольца, представляющих собой атом углерода, независимо выбраны из C(=O) и C(=S), а члены кольца, представляющие собой атом серы, независимо выбраны из S(=O)u(=NR8)v, причем каждое кольцо или кольцевая система необязательно замещены не более 5 заместителями, независимо выбранными из R7' при членах кольца, представляющих собой атом углерода, и выбранными из R9 при членах кольца, представляющих собой атом азота; или C4-C10циклоалкилалкокси, C4-C10циклоалкилалкил, C2-C8алкенилокси, C2-C8галогеналкенилокси, C2-C8алкоксиалкокси, C2-C8алкилтиоалкил, C2-C8алкилсульфинилалкил, C2-C8алкилсульфонилалкил, C1-C8алкилсульфонилокси, C1-C8галогеналкилсульфонилокси, C1-C8алкилтио, C1-C8галогеналкилтио, C3-C8циклоалкилтио, C1-C8алкилсульфинил, C1-C8галогеналкилсульфинил, C1-C8алкилсульфонил, C1-C8галогеналкилсульфонил, C2-C8алкинил, C2-C8галогеналкинил, C2-C8алкоксиалкил, C2-C8галогеналкоксиалкил, C3-C8галогеналкоксиалкокси, C1-C8галогеналкил, C3-C8галогенциклоалкил, C2-C8алкилкарбонилокси или C2-C8галогеналкилкарбонилокси.

Вариант осуществления 20. Соединение согласно варианту осуществления 19, где J1 представляет собой фенильное кольцо или нафталинильную кольцевую систему, причем каждое кольцо или кольцевая система, необязательно замещены не более 4 заместителями, независимо выбранными из R7'.

Вариант осуществления 21. Соединение согласно варианту осуществления 20, где J1 представляет собой фенильное кольцо, необязательно замещенное не более 3 заместителями, независимо выбранными из R7'.

Вариант осуществления 22. Соединение согласно варианту осуществления 21, где J1 представляет собой фенильное кольцо, необязательно замещенное 1 заместителем, независимо выбранным из R7'.

Вариант осуществления 23. Соединение согласно варианту осуществления 22, где J1 представляет собой фенильное кольцо, незамещенное R7'.

Вариант осуществления 24. Соединение согласно варианту осуществления 19, где J1 представляет собой 4-6-членное гетероциклическое кольцо или 8-10-членную гетероароматическую бициклическую кольцевую систему, причем каждое кольцо или кольцевая система содержат члены кольца, выбранные из атомов углерода и 1-4 гетероатомов, независимо выбранных из не более 2 атомов O, не более 2 атомов S и не более 4 атомов N, причем не более 3 членов кольца, представляющих собой атом углерода, независимо выбраны из C(=O) и C(=S), а члены кольца, представляющие собой атом серы, независимо выбраны из S(=O)u(=NR8)v, причем каждое кольцо или кольцевая система необязательно замещены не более 5 заместителями, независимо выбранными из R7' при членах кольца, представляющих собой атом углерода, и выбранными из R9' при членах кольца, представляющих собой атом азота.

Вариант осуществления 25. Соединение согласно варианту осуществления 24, где J1 представляет собой 4-6-членное гетероциклическое кольцо, содержащее члены кольца, выбранные из атомов углерода и 1-3 гетероатомов, независимо выбранных из не более 2 атомов O, не более 2 атомов S и не более 3 атомов N, причем не более 2 членов кольца, представляющих собой атом углерода, независимо выбраны из C(=O) и C(=S), а члены кольца, представляющие собой атом серы, независимо выбраны из S(=O)u(=NR8)v, причем каждое кольцо или кольцевая система необязательно замещены не более 3 заместителями, независимо выбранными из R7' при членах кольца, представляющих собой атом углерода, и выбранными из R9' при членах кольца, представляющих собой атом азота.

Вариант осуществления 26. Соединение согласно варианту осуществления 25, где J1 представляет собой 5-6-членное гетероароматическое кольцо, необязательно замещенное 1 заместителем, выбранным из R7' при членах кольца, представляющих собой атом углерода.

Вариант осуществления 27. Соединение согласно варианту осуществления 26, где J1 представляет собой незамещенное пиридиновое кольцо.

Вариант осуществления 28. Соединение согласно варианту осуществления 19, где J1 представляет собой С4-C10циклоалкилалкокси, C4-C10циклоалкилалкил, C2-C8алкенилокси, C2-C8галогеналкенилокси, C2-C8алкоксиалкокси, C2-C8алкилтиоалкил, C2-C8алкилсульфинилалкил, C2-C8алкилсульфонилалкил, C1-C8алкилсульфонилокси, C1-C8галогеналкилсульфонилокси, C1-C8алкилтио, C1-C8галогеналкилтио, C3-C8циклоалкилтио, C1-C8алкилсульфинил, C1-C8галогеналкилсульфинил, C1-C8алкилсульфонил, C1-C8галогеналкилсульфонил, C2-C8алкинил, C2-C8галогеналкинил, C2-C8алкоксиалкил, C2-C8галогеналкоксиалкил, C3-C8галогеналкоксиалкокси, C2-C8галогеналкоксигалогеналкил, C1-C8галогеналкил, C3-C8галогенциклоалкил, C2-C8алкилкарбонилокси или C2-C8галогеналкилкарбонилокси.

Вариант осуществления 29. Соединение формулы 1 или согласно любому из варианта осуществления 1 - варианта осуществления 13, где T представляет собой R17ON=CR17a-, (R18)2C=NO-, (R19)2NN=CR17a-, (R18)2C=NNR20a-, R20N=CR17a-, (R18)2C=N-, R23ON=CR17aC(R23b)2- или (R18)2C=NOC(R24a)2-, при этом свободная связь, направленная вправо, указывает на точку соединения с Q1.

Вариант осуществления 30. Соединение согласно варианту осуществления 29, где каждый R17 независимо представляет собой H, C1-C6алкил, C3-C8циклоалкил, C4-C8циклоалкилалкил или C1-C6галогеналкил.

Вариант осуществления 31. Соединение согласно варианту осуществления 29, где каждый R17a независимо представляет собой H, C1-C6алкил, C3-C8циклоалкил, C4-C8циклоалкилалкил или C1-C6галогеналкил.

Вариант осуществления 32. Соединение согласно варианту осуществления 29, где каждый R18 независимо представляет собой H, гидрокси, C1-C6алкил, C3-C8циклоалкил, C4-C8циклоалкилалкил или C1-C6галогеналкил.

Вариант осуществления 33. Соединение согласно варианту осуществления 29, где каждый R19 независимо представляет собой H, C1-C6алкил, C3-C8циклоалкил, C4-C8циклоалкилалкил или C1-C6галогеналкил.

Вариант осуществления 34. Соединение согласно варианту осуществления 29, где каждый R20 независимо представляет собой H, гидрокси, амино, C1-C6алкил, C3-C8циклоалкил, C4-C8циклоалкилалкил или C1-C6галогеналкил.

Вариант осуществления 35. Соединение согласно варианту осуществления 29, где каждый R20a независимо представляет собой H, C1-C6алкил, C3-C8циклоалкил, C4-C8циклоалкилалкил или C1-C6галогеналкил.

Вариант осуществления 36. Соединение согласно варианту осуществления 29, где каждый R23b независимо представляет собой H, галоген, циано, гидрокси, C1-C4алкил, C3-C8циклоалкил, C4-C8циклоалкилалкил или C1-C4галогеналкил.

Вариант осуществления 37. Соединение согласно варианту осуществления 29, где каждый R24a независимо представляет собой H, C1-C4алкил, C3-C8циклоалкил, C4-C8циклоалкилалкил или C1-C4галогеналкил.

Вариант осуществления 38. Соединение формулы 1 или согласно любому из варианта осуществления 1 - варианта осуществления 37, где J2 представляет собой -CR2R3-.

Вариант осуществления 39. Соединение формулы 1 или согласно любому из варианта осуществления 1 - варианта осуществления 37, где J2 представляет собой -CR2R3-CR2aR3a-.

Вариант осуществления 40. Соединение формулы 1 или согласно любому из варианта осуществления 1 - варианта осуществления 39, где R1 представляет собой H, гидрокси, амино, C1-C6алкил, C1-C6галогеналкил, C2-C6алкенил, C3-C6алкинил, C2-C6цианоалкил, C3-C6циклоалкил или C4-C8циклоалкилалкил.

Вариант осуществления 41. Соединение согласно варианту осуществления 40, где R1 представляет собой H, C1-C6алкил или C1-C6галогеналкил.

Вариант осуществления 42. Соединение согласно варианту осуществления 41, где R1 представляет собой H, Me, Et или CHF2.

Вариант осуществления 43. Соединение согласно варианту осуществления 42, где R1 представляет собой H, Me или Et.

Вариант осуществления 44. Соединение согласно варианту осуществления 43, где R1 представляет собой H.

Вариант осуществления 45. Соединение согласно варианту осуществления 43, где R1 представляет собой Me.

Вариант осуществления 46. Соединение формулы 1 или согласно любому из варианта осуществления 1 - варианта осуществления 45, где R2 представляет собой H или CH3.

Вариант осуществления 47. Соединение согласно варианту осуществления 46, где R2 представляет собой H.

Вариант осуществления 48. Соединение формулы 1 или согласно любому из варианта осуществления 1 - варианта осуществления 47, где R3 представляет собой H или CH3.

Вариант осуществления 49. Соединение согласно варианту осуществления 48, где R3 представляет собой H.

Вариант осуществления 50. Соединение формулы 1 или согласно любому из варианта осуществления 1 - варианта осуществления 49, где R2a представляет собой H или CH3.

Вариант осуществления 51. Соединение согласно варианту осуществления 50, где R2a представляет собой H.

Вариант осуществления 52. Соединение формулы 1 или согласно любому из варианта осуществления 1 - варианта осуществления 51, где R3a представляет собой H или CH3.

Вариант осуществления 53. Соединение согласно варианту осуществления 52, где R3a представляет собой H.

Вариант осуществления 54. Соединение формулы 1 или согласно любому из варианта осуществления 1 - варианта осуществления 53, где R4 представляет собой H или CH3.

Вариант осуществления 55. Соединение согласно варианту осуществления 54, где R4 представляет собой H.

Вариант осуществления 56. Соединение формулы 1 или согласно любому из варианта осуществления 1 - варианта осуществления 55, где R5 представляет собой H или CH3.

Вариант осуществления 57. Соединение согласно варианту осуществления 56, где R5 представляет собой H.

Вариант осуществления 58. Соединение формулы 1 или согласно любому из варианта осуществления 1 - варианта осуществления 57, где R6 представляет собой H или CH3.

Вариант осуществления 59. Соединение согласно варианту осуществления 58, где R6 представляет собой H.

Вариант осуществления 60. Соединение формулы 1 или согласно любому из варианта осуществления 1 - варианта осуществления 59, где каждый R7 независимо представляет собой галоген, циано, нитро, C1-C4алкил, C1-C4цианоалкил, C1-C4цианоалкокси, C1-C4галогеналкил, C2-C4алкенил, C2-C4галогеналкенил, C2-C4алкинил, C2-C4галогеналкинил, C1-C4нитроалкил, C2-C4нитроалкенил, C2-C4алкоксиалкил, C2-C4галогеналкоксиалкил, C3-C4циклоалкил, C3-C4галогенциклоалкил, циклопропилметил, метилциклопропил, C1-C4алкокси, C1-C4галогеналкокси, C2-C4алкенилокси, C2-C4галогеналкенилокси, C3-C4алкинилокси, C3-C4галогеналкинилокси, C3-C4циклоалкокси, C1-C4алкилтио, C1-C4галогеналкилтио, C1-C4алкилсульфинил, C1-C4галогеналкилсульфинил, C1-C4алкилсульфонил, C1-C4галогеналкилсульфонил, гидрокси, формил, C2-C4алкилкарбонил, C2-C4алкилкарбонилокси, C1-C4алкилсульфонилокси, C1-C4галогеналкилсульфонилокси, амино, C1-C4алкиламино, C2-C4диалкиламино, формиламино, C2-C4алкилкарбониламино, -SF5, -SCN, C3-C4триалкилсилил, триметилсилилметил или триметилсилилметокси.

Вариант осуществления 61. Соединение согласно варианту осуществления 60, где каждый R7 независимо представляет собой галоген, циано, C1-C2алкил, C1-C3галогеналкил или C1-C3алкилсульфонил.

Вариант осуществления 62. Соединение согласно варианту осуществления 61, где каждый R7 независимо представляет собой галоген или C1-C2галогеналкил.

Вариант осуществления 63. Соединение согласно варианту осуществления 62, где каждый R7 независимо представляет собой галоген или CF3.

Вариант осуществления 64. Соединение согласно варианту осуществления 63, где каждый R7 независимо представляет собой F или CF3.

Вариант осуществления 65. Соединение формулы 1 или согласно любому из варианта осуществления 1 - варианта осуществления 64, где каждый R10 независимо представляет собой галоген, циано, нитро, C1-C2алкил, C1-C3галогеналкил или C1-C3алкилсульфонил.

Вариант осуществления 66. Соединение согласно варианту осуществления 65, где каждый R10 независимо представляет собой галоген или C1-C2галогеналкил.

Вариант осуществления 67. Соединение согласно варианту осуществления 66, где каждый R10 независимо представляет собой галоген или CF3.

Вариант осуществления 68. Соединение согласно варианту осуществления 67, где каждый R10 независимо представляет собой F или CF3.

Вариант осуществления 69. Соединение согласно варианту осуществления 68, где каждый R10 независимо представляет собой F.

Вариант осуществления 70. Соединение формулы 1 или согласно любому из варианта осуществления 1 - варианта осуществления 69, где каждый R7' независимо представляет собой галоген, циано, нитро, C1-C8алкил или C1-C8галогеналкил.

Вариант осуществления 71. Соединение согласно варианту осуществления 70, где каждый R7' независимо представляет собой галоген.

Вариант осуществления 72. Соединение формулы 1 или согласно любому из варианта осуществления 1 - варианта осуществления 71, где Y1 представляет собой O.

Вариант осуществления 73. Соединение формулы 1 или согласно любому из варианта осуществления 1 - варианта осуществления 72, где Y2 представляет собой O.

Вариант осуществления 74. Соединение формулы 1 или согласно любому из варианта осуществления 1 - варианта осуществления 73, где как Y1, так и Y2 представляет собой O.

Вариант осуществления 75. Соединение формулы 1 или согласно любому из варианта осуществления 1 - варианта осуществления 74, где каждый из R9, R9' и R11 независимо представляет собой C1-C3алкил или C3-C6циклоалкил.

Вариант осуществления 76. Соединение формулы 1, где T присоединен в 2- или 3-положении Q1.

Вариант осуществления 77. Соединение формулы 1, где T присоединен в 3-положении Q1.

Вариант осуществления 78. Соединение формулы 1, где T представляет собой R17ON=CR17a-, (R18)2C=NO- или (R19)2NN=CR17a-, при этом свободная связь, направленная вправо, указывает на точку соединения с Q1.

Вариант осуществления 79. Соединение согласно варианту осуществления 77, где T представляет собой R17ON=CR17a- или (R19)2NN=CR17a-, при этом свободная связь, направленная вправо, указывает на точку соединения с Q1.

Вариант осуществления 80. Соединение формулы 1, где J1 представляет собой фенильное кольцо или нафталинильную кольцевую систему, причем каждое кольцо или кольцевая система необязательно замещены не более 5 заместителями, независимо выбранными из R7'; или 4-6-членное гетероциклическое кольцо или 8-10-членную гетероароматическую бициклическую кольцевую систему, причем каждое кольцо или кольцевая система содержат члены кольца, выбранные из атомов углерода и 1-4 гетероатомов, независимо выбранных из не более 2 атомов O, не более 2 атомов S и не более 4 атомов N, причем не более 3 членов кольца, представляющих собой атом углерода, независимо выбраны из C(=O) и C(=S), а члены кольца, представляющие собой атом серы, независимо выбраны из S(=O)u(=NR8)v, причем каждое кольцо или кольцевая система необязательно замещены не более 5 заместителями, независимо выбранными из R7' при членах кольца, представляющих собой атом углерода, и выбранными из R9' при членах кольца, представляющих собой атом азота.

Вариант осуществления 81. Соединение формулы 1, где J1 представляет собой С4-C10циклоалкилалкокси, C4-C10циклоалкилалкил, C2-C8алкенилокси, C2-C8галогеналкенилокси, C2-C8алкоксиалкокси, C2-C8алкилтиоалкил, C2-C8алкилсульфинилалкил, C2-C8алкилсульфонилалкил, C1-C8алкилсульфонилокси, C1-C8галогеналкилсульфонилокси, C1-C8алкилтио, C1-C8галогеналкилтио, C3-C8циклоалкилтио, C1-C8алкилсульфинил, C1-C8галогеналкилсульфинил, C1-C8алкилсульфонил, C1-C8галогеналкилсульфонил, C2-C8алкинил, C2-C8галогеналкинил, C2-C8алкоксиалкил, C2-C8галогеналкоксиалкил, C3-C8галогеналкоксиалкокси, C2-C8галогеналкоксигалогеналкил, C1-C8галогеналкил, C3-C8галогенциклоалкил, C2-C8алкилкарбонилокси или C2-C8галогеналкилкарбонилокси.

Вариант осуществления 82. Соединение согласно варианту осуществления 80, где J1 представляет собой С4-C10циклоалкилалкокси, C2-C8алкенилокси, C2-C8галогеналкенилокси, C2-C8алкоксиалкокси, C2-C8алкилсульфонилалкил, C1-C8алкилсульфонилокси, C1-C8галогеналкилсульфонилокси, C1-C8алкилтио, C1-C8галогеналкилтио, C3-C8циклоалкилтио, C1-C8алкилсульфинил, C1-C8галогеналкилсульфинил, C1-C8алкилсульфонил, C1-C8галогеналкилсульфонил, C3-C8галогеналкоксиалкокси, C2-C8алкилкарбонилокси или C2-C8галогеналкилкарбонилокси.

Вариант осуществления 83. Соединение согласно варианту осуществления 81, где J1 представляет собой С4-C10циклоалкилалкил, C2-C8алкилтиоалкил, C2-C8алкилсульфинилалкил, C2-C8алкилсульфонилалкил, C2-C8алкинил, C2-C8галогеналкинил, C2-C8алкоксиалкил, C2-C8галогеналкоксиалкил, C1-C8галогеналкил или C3-C8галогенциклоалкил.

Вариант осуществления 84. Соединение согласно варианту осуществления 83, где J1 представляет собой С2-C8алкилтиоалкил, C2-C8алкилсульфинилалкил, C2-C8алкилсульфонилалкил, C2-C8алкоксиалкил или C2-C8галогеналкоксиалкил.

Вариант осуществления 85. Соединение формулы 1 или согласно варианту осуществления 15, где A представляет собой насыщенную, частично ненасыщенную или полностью ненасыщенную цепь, содержащую 2-3 атома, выбранных из не более 3 атомов углерода, не более 1 атома O, не более 1 атома S и не более 1 атома N, причем цепь необязательно замещена не более 2 заместителями, независимо выбранными из R15 при атомах углерода и R16 при атомах азота.

Вариант осуществления 86. Соединение согласно варианту осуществления 85, где A представляет собой насыщенную, частично ненасыщенную или полностью ненасыщенную цепь, содержащую 2-3 атома, выбранных из не более 3 атомов углерода, не более 1 атома O и не более 1 атома N, причем цепь необязательно замещена не более 2 заместителями, независимо выбранными из R15 при атомах углерода и R16 при атомах азота.

Вариант осуществления 87. Соединение согласно варианту осуществления 86, где A представляет собой цепь, содержащую 2-3 атома, выбранных из не более 2 атомов углерода, не более 1 атома O и не более 1 атома N, причем цепь необязательно замещена не более 2 заместителями, независимо выбранными из R15 при атомах углерода и R16 при атомах азота.

Вариант осуществления 88. Соединение формулы 1, где A представляет собой -CH2-, -CH2O-, -OCH2-, -CH2NH-, -CH2CH2-, -CH=CH-, -C≡C-, -NH-, -O-, -S-, -SO- или -SO2-.

Вариант осуществления 89. Соединение формулы 1, где A представляет собой -CH2-, -CH2O-, -OCH2-, или -O-, -SO-, или -SO2-.

Вариант осуществления 90. Соединение формулы 1, где A представляет собой -CH2O-, -OCH2-, -CH2CH2-, -CH=CH- или -C≡C-.

Вариант осуществления 91. Соединение формулы 1 или согласно любому из вариантов осуществления 16-19 или 88-90, где свободная связь, направленная вправо, указывает на точку соединения A с Q1, а свободная связь, направленная влево, указывает на точку соединения A с J1.

Вариант осуществления 92. Соединение формулы 1, где, если J2 представляет собой -CR2R3-, а J1 представляет собой фенильное кольцо, необязательно замещенное не более 5 заместителями, независимо выбранными из R7', то R7' является отличным от галогена, гидроксила, циано, нитро, C1-C6алкила, C1-C6галогеналкила, C2-C6алкенила, C2-C6алкинила, CHO, C2-C8алкилкарбонила, C2-C8галогеналкилкарбонила, -C(=O)OH, C2-C8алкоксикарбонила, C4-C10циклоалкоксикарбонила, C5-C12циклоалкилалкоксикарбонила, -C(=O)NH2, C2-C8алкиламинокарбонила, C3-C10диалкиламинокарбонила, гидрокси, C1-C6алкокси, C1-C6галогеналкокси, C2-C8алкилкарбонилокси, C1-C6алкилтио, C1-C6галогеналкилтио, C1-C6алкилсульфинила, C1-C6галогеналкилсульфинила, C1-C6алкиламино, C2-C8диалкиламино, C2-C8алкилкарбониламино, C1-C6алкилсульфониламино или C3-C10триалкилсилила.

Вариант осуществления 93. Соединение формулы 1, где, если J2 представляет собой -CR2R3-CR2aR3a-, а J1 представляет собой пиридильное кольцо (т. e. 6-членное гетероциклическое кольцо, необязательно замещенное не более 5 заместителями, независимо выбранными из R7' при членах кольца, представляющих собой атом углерода), то R7' является отличным от галогена, гидроксила, циано, нитро, C1-C6алкила, C1-C6галогеналкила, C2-C6алкенила, C2-C6алкинила, CHO, C2-C8алкилкарбонила, C2-C8галогеналкилкарбонила, -C(=O)OH, C2-C8алкоксикарбонила, C4-C10циклоалкоксикарбонила, C5-C12циклоалкилалкоксикарбонила, -C(=O)NH2, C2-C8алкиламинокарбонила, C3-C10диалкиламинокарбонила, гидрокси, C1-C6алкокси, C1-C6галогеналкокси, C2-C8алкилкарбонилокси, C1-C6алкилтио, C1-C6галогеналкилтио, C1-C6алкилсульфинила, C1-C6галогеналкилсульфинила, C1-C6алкиламино, C2-C8диалкиламино, C2-C8алкилкарбониламино, C1-C6алкилсульфониламино или C3-C10триалкилсилила.

Вариант осуществления 94. Соединение формулы 1, где Q1 представляет собой 5-6-членное гетероароматическое кольцо или 8-10-членную гетероароматическую бициклическую кольцевую систему, причем каждое кольцо или кольцевая система необязательно замещены не более 4 заместителями, независимо выбранными из R7 при членах кольца, представляющих собой атом углерода, и выбранными из R9 при членах кольца, представляющих собой атом азота.

Вариант осуществления 95. Соединение формулы 1, где Q1 представляет собой фенильное кольцо, необязательно замещенное 1-4 заместителями, независимо выбранными из R7; или 5-6-членное гетероароматическое кольцо, содержащее члены кольца, выбранные из атомов углерода и 1-4 гетероатомов, независимо выбранных из не более 2 атомов O, не более 2 атомов S и не более 4 атомов N, необязательно замещенное не более 4 заместителями, независимо выбранными из R7 при членах кольца, представляющих собой атом углерода, и выбранными из R9 при членах кольца, представляющих собой атом азота.

Вариант осуществления 96. Соединение формулы 1 или согласно варианту осуществления 95, где Q1 представляет собой фенильное кольцо, необязательно замещенное не более 4 заместителями, независимо выбранными из R7.

Вариант осуществления 97. Соединение формулы 1, где Q2 представляет собой фенильное кольцо, необязательно замещенное не более 5 заместителями, независимо выбранными из R10; или 5-6-членное гетероароматическое кольцо, содержащее члены кольца, выбранные из атомов углерода и 1-4 гетероатомов, независимо выбранных из не более 2 атомов O, не более 2 атомов S и не более 4 атомов N, необязательно замещенное не более 5 заместителями, независимо выбранными из R10 при членах кольца, представляющих собой атом углерода, и выбранными из R11 при членах кольца, представляющих собой атом азота.

Вариант осуществления 98. Соединение формулы 1 или варианта осуществления 97, где Q2 представляет собой фенильное кольцо, необязательно замещенное не более 4 заместителями, независимо выбранными из R10.

Вариант осуществления 99. Соединение формулы 1, где J1 представляет собой фенильное кольцо, необязательно замещенное не более 5 заместителями, независимо выбранными из R7'; или 4-6-членное гетероциклическое кольцо, содержащее члены кольца, выбранные из атомов углерода и 1-4 гетероатомов, независимо выбранных из не более 2 атомов O, не более 2 атомов S и не более 4 атомов N, необязательно замещенное не более 5 заместителями, независимо выбранными из R7' при членах кольца, представляющих собой атом углерода, и выбранными из R9' при членах кольца, представляющих собой атом азота.

Вариант осуществления 100. Соединение формулы 1 или согласно варианту осуществления 99, где J1 представляет собой фенильное кольцо, необязательно замещенное не более 4 заместителями, независимо выбранными из R7'; или 6-членное гетероциклическое кольцо, содержащее члены кольца, выбранные из атомов углерода и 1-3 гетероатомов, независимо выбранных из не более 3 атомов N, необязательно замещенное не более 4 заместителями, независимо выбранными из R7' при членах кольца, представляющих собой атом углерода, и выбранными из R9' при членах кольца, представляющих собой атом азота.

Вариант осуществления 101. Соединение формулы 1, где R7 независимо представляет собой галоген, CH3, CH2CH3 или CF3.

Вариант осуществления 102. Соединение формулы 1, где R10 независимо представляет собой галоген, CH3, CH2CH3 или CF3.

Вариант осуществления 103. Соединение формулы 1, где каждый R10 независимо представляет собой циано или CH3.

Вариант осуществления 104. Соединение формулы 1, где каждый R16 представляет собой H.

Вариант осуществления 105. Соединение формулы 1, где каждый R16 является отличным от H.

Варианты осуществления настоящего изобретения, включая вышеуказанные варианты осуществления 1-105, а также любые другие варианты осуществления, описанные в данном документе, могут быть объединены любым способом, и описание переменных в вариантах осуществления подходит не только для соединений формулы 1, но также для исходных соединений и промежуточных соединений, пригодных для получения соединений формулы 1. Кроме того, варианты осуществления настоящего изобретения, в том числе вышеизложенные варианты осуществления 1-105, а также любые другие варианты осуществления, описанные в данном документе, и любая их комбинация подходят для композиций и способов по настоящему изобретению.

Далее проиллюстрированы комбинации вариантов осуществления 1-105.

Вариант осуществления A. Соединение формулы 1, где

Q1 представляет собой фенильное кольцо, замещенное не более 2 заместителями, выбранными из R7;

Q2 представляет собой фенильное кольцо, замещенное 1-3 заместителями, независимо выбранными из R10; и

A представляет собой -CH2-, -CH2O-, -CH2NH-, -CH=CH-, -C≡C-, -NH-, -O-, -S-, -SO- или -SO2-.

Вариант осуществления B. Соединение согласно варианту осуществления A, где

J1 представляет собой фенильное кольцо, необязательно замещенное 1 заместителем, независимо выбранным из R7';

J2 представляет собой -CR2R3-;

как Y1, так и Y2 представляет собой O;

R1 представляет собой H, Me или Et;

R4 представляет собой H;

R5 представляет собой H;

R6 представляет собой H;

каждый R7 независимо представляет собой галоген или CF3;

каждый R7' независимо представляет собой галоген, циано, нитро, C1-C8алкил или C1-C8галогеналкил; и

каждый R10 независимо представляет собой галоген или CF3.

Вариант осуществления C. Соединение согласно варианту осуществления A, где

J1 представляет собой 5-6-членное гетероароматическое кольцо, необязательно замещенное 1 заместителем, выбранным из R7' при члене кольца, представляющем собой атом углерода;

J2 представляет собой -CR2R3-;

как Y1, так и Y2 представляет собой O;

R1 представляет собой H, Me или Et;

R4 представляет собой H;

R5 представляет собой H;

R6 представляет собой H;

каждый R7 независимо представляет собой галоген или CF3;

каждый R7' независимо представляет собой галоген, циано, нитро, C1-C8алкил или C1-C8галогеналкил; и

каждый R10 независимо представляет собой галоген или CF3.

Вариант осуществления D. Соединение согласно варианту осуществления B, где

Q1 представляет собой фенильное кольцо, незамещенное R7;

Q2 представляет собой фенильное кольцо, замещенное по меньшей мере двумя заместителями, выбранными из R10, причем по меньшей мере один заместитель находится в орто-положении, и по меньшей мере один заместитель находится в пара-положении фенильного кольца;

A представляет собой -CH2-, -CH2O-, -CH2NH-, -CH=CH-, -C≡C-, -NH- или O;

J1 представляет собой фенильное кольцо, незамещенное R7';

R2 представляет собой H; и

R3 представляет собой H.

Вариант осуществления E. Соединение согласно варианту осуществления D, где

A представляет собой -CH2O- или -O-.

Вариант осуществления F. Соединение согласно варианту осуществления C, где

Q1 представляет собой фенильное кольцо, незамещенное R7;

Q2 представляет собой фенильное кольцо, замещенное по меньшей мере двумя заместителями, выбранными из R10, причем по меньшей мере один заместитель находится в орто-положении, и по меньшей мере один заместитель находится в пара-положении фенильного кольца;

A представляет собой СH2, -CH2O-, -CH2NH-, -CH=CH-, -C≡C-, -NH- или O;

J1 представляет собой 5-6-членное гетероароматическое кольцо, необязательно замещенное не более 1 заместителем, выбранным из R7' при члене кольца, представляющем собой атом углерода;

R2 представляет собой H; и

R3 представляет собой H.

Вариант осуществления G. Соединение согласно варианту осуществления F, где

J1 представляет собой незамещенное пиридиновое кольцо;

Q2 представляет собой фенильное кольцо, замещенное тремя заместителями, выбранными из R10, и три заместителя находятся в орто-, мета- и пара-положениях (фенильного кольца); и

A представляет собой -CH2O- или -O-.

Вариант осуществления Н. Соединение формулы 1, где

Q1 представляет собой фенильное кольцо, необязательно замещенное 1-4 заместителями, независимо выбранными из R7; или 5-6-членное гетероароматическое кольцо, содержащее члены кольца, выбранные из атомов углерода и 1-4 гетероатомов, независимо выбранных из не более 2 атомов O, не более 2 атомов S и не более 4 атомов N, необязательно замещенное не более 4 заместителями, независимо выбранными из R7 при членах кольца, представляющих собой атом углерода, и выбранными из R9 при членах кольца, представляющих собой атом азота;

Q2 представляет собой фенильное кольцо, необязательно замещенное не более 5 заместителями, независимо выбранными из R10; или 5-6-членное гетероароматическое кольцо, содержащее члены кольца, выбранные из атомов углерода и 1-4 гетероатомов, независимо выбранных из не более 2 атомов O, не более 2 атомов S и не более 4 атомов N, необязательно замещенное не более 5 заместителями, независимо выбранными из R10 при членах кольца, представляющих собой атом углерода, и выбранными из R11 при членах кольца, представляющих собой атом азота;

J1 представляет собой фенильное кольцо, необязательно замещенное не более 5 заместителями, независимо выбранными из R7'; или 4-6-членное гетероциклическое кольцо, содержащее члены кольца, выбранные из атомов углерода и 1-4 гетероатомов, независимо выбранных из не более 2 атомов O, не более 2 атомов S и не более 4 атомов N, необязательно замещенное не более 5 заместителями, независимо выбранными из R7' при членах кольца, представляющих собой атом углерода, и выбранными из R9' при членах кольца, представляющих собой атом азота;

R1 представляет собой H, гидрокси, амино, C1-C6алкил, C1-C6галогеналкил, C2-C6алкенил, C3-C6алкинил, C2-C6цианоалкил, C3-C6циклоалкил или C4-C8циклоалкилалкил; и

A представляет собой насыщенную, частично ненасыщенную или полностью ненасыщенную цепь, содержащую 2-3 атома, выбранных из не более 3 атомов углерода, не более 1 атома O, не более 1 атома S и не более 1 атома N, причем цепь необязательно замещена не более 2 заместителями, независимо выбранными из R15 при атомах углерода и R16 при атомах азота.

Вариант осуществления I. Соединение формулы 1 или варианта осуществления H, где

Q1 представляет собой фенильное кольцо или нафталинильную кольцевую систему, причем каждое кольцо или кольцевая система необязательно замещены 1-4 заместителями, независимо выбранными из R7;

Q2 представляет собой фенильное кольцо, необязательно замещенное 1-5 заместителями, независимо выбранными из R10; и

J1 представляет собой фенильное кольцо или нафталинильную кольцевую систему, причем каждое кольцо или кольцевая система необязательно замещены не более 4 заместителями, независимо выбранными из R7'.

Вариант осуществления J. Соединение согласно варианту осуществления I, где

A представляет собой -CH2-, -CH2O-, -CH2NH-, -CH=CH-, -C≡C-, -NH-, -O-, -S-, -SO- или -SO2-;

каждый R7 независимо представляет собой галоген, циано, C1-C2алкил, C1-C3галогеналкил или C1-C3алкилсульфонил;

каждый R10 независимо представляет собой галоген, циано, нитро, C1-C2алкил, C1-C3галогеналкил или C1-C3алкилсульфонил;

каждый R7' независимо представляет собой галоген, циано, нитро, C1-C8алкил или C1-C8галогеналкил;

как Y1, так и Y2 представляет собой O.

Вариант осуществления K. Соединение формулы 1 или согласно варианту осуществления H, где

Q1 представляет собой фенильное кольцо или нафталинильную кольцевую систему, причем каждое кольцо или кольцевая система необязательно замещены 1-4 заместителями, независимо выбранными из R7;

Q2 представляет собой фенильное кольцо, необязательно замещенное 1-5 заместителями, независимо выбранными из R10; и

J1 представляет собой 4-6-членное гетероциклическое кольцо, содержащее члены кольца, выбранные из атомов углерода и 1-3 гетероатомов, независимо выбранных из не более 2 атомов O, не более 2 атомов S и не более 3 атомов N, причем не более 2 членов кольца, представляющих собой атом углерода, независимо выбраны из C(=O) и C(=S), а члены кольца, представляющие собой атом серы, независимо выбраны из S(=O)u(=NR8)v, причем каждое кольцо или кольцевая система необязательно замещены не более 3 заместителями, независимо выбранными из R7' при членах кольца, представляющих собой атом углерода, и выбранными из R9' при членах кольца, представляющих собой атом азота.

Вариант осуществления L. Соединение согласно варианту осуществления K, где

A представляет собой -CH2-, -CH2O-, -CH2NH-, -CH=CH-, -C≡C-, -NH-, -O-, -S-, -SO- или -SO2-;

каждый R7 независимо представляет собой галоген, циано, C1-C2алкил, C1-C3галогеналкил или C1-C3алкилсульфонил;

каждый R10 независимо представляет собой галоген, циано, нитро, C1-C2алкил, C1-C3галогеналкил или C1-C3алкилсульфонил;

каждый R7' независимо представляет собой галоген, циано, нитро, C1-C8алкил или C1-C8галогеналкил; и

как Y1, так и Y2 представляет собой O.

Вариант осуществления M. Соединение формулы 1 или согласно варианту осуществления H, где

Q1 представляет собой 5-6-членное гетероароматическое кольцо или 8-10-членную гетероароматическую бициклическую кольцевую систему, причем каждое кольцо или кольцевая система необязательно замещены не более 4 заместителями, независимо выбранными из R7 при членах кольца, представляющих собой атом углерода, и выбранными из R9 при членах кольца, представляющих собой атом азота;

Q2 представляет собой фенильное кольцо, необязательно замещенное 1-5 заместителями, независимо выбранными из R10; и

J1 представляет собой 4-6-членное гетероциклическое кольцо, содержащее члены кольца, выбранные из атомов углерода и 1-3 гетероатомов, независимо выбранных из не более 2 атомов O, не более 2 атомов S и не более 3 атомов N, причем не более 2 членов кольца, представляющих собой атом углерода, независимо выбраны из C(=O) и C(=S), а члены кольца, представляющие собой атом серы, независимо выбраны из S(=O)u(=NR8)v, причем каждое кольцо или кольцевая система необязательно замещены не более 3 заместителями, независимо выбранными из R7' при членах кольца, представляющих собой атом углерода, и выбранными из R9' при членах кольца, представляющих собой атом азота.

Вариант осуществления N. Соединение согласно варианту осуществления M, где

A представляет собой -CH2-, -CH2O-, -CH2NH-, -CH=CH-, -C≡C-, -NH-, -O-, -S-, -SO- или -SO2-;

каждый R7 независимо представляет собой галоген, циано, C1-C2алкил, C1-C3галогеналкил или C1-C3алкилсульфонил;

каждый R10 независимо представляет собой галоген, циано, нитро, C1-C2алкил, C1-C3галогеналкил или C1-C3алкилсульфонил;

каждый R7' независимо представляет собой галоген, циано, нитро, C1-C8алкил или C1-C8галогеналкил; и

как Y1, так и Y2 представляет собой O.

Вариант осуществления O. Соединение формулы 1 или согласно варианту осуществления H, где

Q1 представляет собой 5-6-членное гетероароматическое кольцо или 8-10-членную гетероароматическую бициклическую кольцевую систему, причем каждое кольцо или кольцевая система необязательно замещены не более 4 заместителями, независимо выбранными из R7 при членах кольца, представляющих собой атом углерода, и выбранными из R9 при членах кольца, представляющих собой атом азота;

Q2 представляет собой фенильное кольцо, необязательно замещенное 1-5 заместителями, независимо выбранными из R10; и

J1 представляет собой фенильное кольцо или нафталинильную кольцевую систему, причем каждое кольцо или кольцевая система необязательно замещены не более 4 заместителями, независимо выбранными из R7'.

Вариант осуществления P. Соединение согласно варианту осуществления O, где

A представляет собой -CH2-, -CH2O-, -CH2NH-, -CH=CH-, -C≡C-, -NH-, -O-, -S-, -SO- или -SO2-;

каждый R7 независимо представляет собой галоген, циано, C1-C2алкил, C1-C3галогеналкил или C1-C3алкилсульфонил;

каждый R10 независимо представляет собой галоген, циано, нитро, C1-C2алкил, C1-C3галогеналкил или C1-C3алкилсульфонил;

каждый R7' независимо представляет собой галоген, циано, нитро, C1-C8алкил или C1-C8галогеналкил; и

как Y1, так и Y2 представляет собой O.

Конкретные варианты осуществления включают соединения формулы 1, выбранные из группы, состоящей из:

N-(2,4-дифторфенил)-2-оксо-4-[3-(феноксиметил)фенил]-3-пирролидинкарбоксамида и

2-оксо-4-[3-(2-пиридинилокси)фенил]-N-(2,3,4-трифторфенил)-3-пирролидинкарбоксамида.

Настоящее изобретение также относится к способу контроля нежелательной растительности, предусматривающему внесение в месторасположение растительности гербицидно эффективных количеств соединений по настоящему изобретению (например, в виде композиции, описанной в данном документе). Примечательными в качестве вариантов осуществления, относящихся к способам применения, являются варианты осуществления, включающие соединения согласно описанным выше вариантам осуществления. Соединения по настоящему изобретению являются особенно полезными для селективного контроля сорняков сельскохозяйственных культур, таких как пшеница, ячмень, маис, соя, подсолнечник, хлопчатник, масличный рапс и рис, и особенно сельскохозяйственных культур, таких как сахарный тростник, цитрусовые, плодовые и орехоплодные культуры.

Также заслуживают внимания в качестве вариантов осуществления гербицидные композиции по настоящему изобретению, содержащие соединения согласно описанным выше вариантам осуществления.

Настоящее изобретение также включает гербицидную смесь, содержащую (a) соединение, выбранное из соединения формулы 1, его N-оксидов и солей, и (b) по меньшей мере один дополнительный активный ингредиент, выбранный из (b1) ингибиторов фотосистемы II, (b2) ингибиторов синтазы ацетогидроксикислот (AHAS), (b3) ингибиторов ацетил-CoA-карбоксилазы (ACCазы), (b4) миметиков ауксина, (b5) ингибиторов 5-енол-пирувилшикимат-3-фосфат (EPSP) синтазы, (b6) диверторов электронов фотосистемы I, (b7) ингибиторов протопорфириноген-оксидазы (PPO), (b8) ингибиторов глутамин-синтетазы (GS), (b9) ингибиторов элонгазы жирных кислот с очень длинной цепью (VLCFA), (b10) ингибиторов транспорта ауксина, (b11) ингибиторов фитоен-десатуразы (PDS), (b12) ингибиторов 4-гидроксифенил-пируватдиоксигеназы (HPPD), (b13) ингибиторов гомогентизат-соленезил-трансферазы (HST), (b14) ингибиторов биосинтеза целлюлозы, (b15) других гербицидов, в том числе средств, прерывающих митоз, органических мышьяковистых соединений, асулама, бромобутида, цинметилина, кумилурона, дазомета, дифензоквата, димрона, этобензанида, флуренола, фосамина, фосамин-аммония, гидантоцидина, метама, метилдимрона, олеиновой кислоты, оксазикломефона, пеларгоновой кислоты и пирибутикарба, и (b16) антидотов гербицидов; и солей соединений (b1)-(b16).

"Ингибиторы фотосистемы II" (b1) представляют собой химические соединения, которые связываются с белком D-1 в области связывания QB и, следовательно, блокируют транспорт электронов от QA к QB в тилакоидных мембранах хлоропластов. Электроны, перенос которых в фотосистеме II заблокирован, транспортируются посредством ряда реакций с образованием токсичных соединений, которые разрушают клеточные мембраны и вызывают набухание хлоропластов, просачивание через мембрану и, в конечном итоге, полное разрушение клетки. Область связывания QB имеет три различных сайта связывания: сайт связывания A связывает триазины, такие как атразин, триазиноны, такие как гексазинон, и урацилы, такие как бромацил, сайт связывания B связывает фенилмочевины, такие как диурон, и сайт связывания C связывает бензотиадиазолы, такие как бентазон, нитрилы, такие как бромоксинил, и фенилпиридазины, такие как пиридат. Примеры ингибиторов фотосистемы II включают аметрин, амикарбазон, атразин, бентазон, бромацил, бромофеноксим, бромоксинил, хлорбромурон, хлоридазон, хлоротолурон, хлороксурон, кумилурон, цианазин, даимурон, десмедифам, десметрин, димефурон, диметаметрин, диурон, этидимурон, фенурон, флуометурон, гексазинон, иоксинил, изопротурон, изоурон, ленацил, линурон, метамитрон, метабензтиазурон, метобромурон, метоксурон, метрибузин, монолинурон, небурон, пентанохлор, фенмедифам, прометон, прометрин, пропанил, пропазин, пиридафол, пиридат, сидурон, симазин, симетрин, тебутиурон, тербацил, тербуметон, тербутилазин, тербутрин и триэтазин.

"Ингибиторы AHAS" (b2) представляют собой химические соединения, которые ингибируют синтазу ацетогидроксикислот (AHAS), также известную как ацетолактат-синтаза (ALS), и, следовательно, уничтожают растения посредством ингибирования продуцирования разветвленных алифатических аминокислот, таких как валин, лейцин и изолейцин, которые требуются для синтеза белка и клеточного роста. Примеры ингибиторов AHAS включают амидосульфурон, азимсульфурон, бенсульфурон-метил, биспирибак-натрий, клорансулам-метил, хлоримурон-этил, хлорсульфурон, циносульфурон, циклосульфамурон, диклосулам, этаметсульфурон-метил, этоксисульфурон, флазасульфурон, флорасулам, флукарбазон-натрий, флуметсулам, флупирсульфурон-метил, флупирсульфурон-натрий, форамсульфурон, галосульфурон-метил, имазаметабенз-метил, имазамокс, имазапик, имазапир, имазаквин, имазетапир, имазосульфурон, йодосульфурон-метил (в том числе натриевую соль), иофенсульфурон (2-йод-N-[[(4-метокси-6-метил-1,3,5-триазин-2-ил)амино]карбонил]бензолсульфонамид), мезосульфурон-метил, метазосульфурон (3-хлор-4-(5,6-дигидро-5-метил-1,4,2-диоксазин-3-ил)-N-[[(4,6-диметокси-2-пиримидинил)амино]карбонил]-1-метил-1H-пиразол-5-сульфонамид), метосулам, метсульфурон-метил, никосульфурон, оксасульфурон, пеноксулам, примисульфурон-метил, пропоксикарбазон-натрий, пропирисульфурон (2-хлор-N-[[(4,6-диметокси-2-пиримидинил)амино]карбонил]-6-пропилимидазо[1,2-b]пиридазин-3-сульфонамид), просульфурон, пиразосульфурон-этил, пирибензоксим, пирифталид, пириминобак-метил, пиритиобак-натрий, римсульфурон, сульфометурон-метил, сульфосульфурон, тиенкарбазон, тифенсульфурон-метил, триафамон (N-[2-[(4,6-диметокси-1,3,5-триазин-2-ил)карбонил]-6-фторфенил]-1,1-дифтор-N-метилметансульфонамид), триасульфурон, трибенурон-метил, трифлоксисульфурон (в том числе натриевую соль), трифлусульфурон-метил и тритосульфурон.

"Ингибиторы ACCазы" (b3) представляют собой химические соединения, которые ингибируют фермент ацетил-CoA-карбоксилазу, которая отвечает за катализ на ранней стадии при синтезе липидов и жирных кислот у растений. Липиды представляют собой основные компоненты клеточных мембран, и без них невозможно образование новых клеток. Ингибирование ацетил-CoA-карбоксилазы и последующий дефицит образования липидов приводит к потере целостности клеточной мембраны, особенно в участках активного роста, таких как меристемы. В конечном счете рост побега и ризомы прекращается, и меристемы побега и почки ризомы начинают отмирать. Примеры ингибиторов ACCазы включают аллоксидим, бутроксидим, клетодим, клодинафоп, циклоксидим, цигалофоп, диклофоп, феноксапроп, флуазифоп, галоксифоп, пиноксаден, профоксидим, пропаквизафоп, квизалофоп, сетоксидим, тепралоксидим и тралкоксидим, в том числе разделенные формы, такие как феноксапроп-P, флуазифоп-P, галоксифоп-P и квизалофоп-P и сложноэфирные формы, такие как клодинафоп-пропаргил, цигалофоп-бутил, диклофоп-метил и феноксапроп-P-этил.

Ауксин представляет собой растительный гормон, который регулирует рост многих растительных тканей. "Миметики ауксина" (b4) представляют собой химические соединения, имитирующие растительный гормон роста ауксин, таким образом вызывая неконтролируемый и неорганизованный рост, приводящий к гибели чувствительных видов растений. Примеры миметиков ауксина включают аминоциклопирахлор (6-амино-5-хлор-2-циклопропил-4-пиримидинкарбоновую кислоту) и его метиловые и этиловые сложные эфиры, и его натриевые и калиевые соли, аминопиралид, беназолин-этил, хлорамбен, клацифос, кломепроп, клопиралид, дикамбу, 2,4-D, 2,4-DB, дихлорпроп, флуроксипир, галоксифен (4-амино-3-хлор-6-(4-хлор-2-фтор-3-метоксифенил)-2-пиридинкарбоновую кислоту), галоксифен-метил (метил-4-амино-3-хлор-6-(4-хлор-2-фтор-3-метоксифенил)-2-пиридинкарбоксилат), MCPA, MCPB, мекопроп, пиклорам, квинклорак, квинмерак, 2,3,6-TBA, триклопир и метил-4-амино-3-хлор-6-(4-хлор-2-фтор-3-метоксифенил)-5-фтор-2-пиридинкарбоксилат.

"Ингибиторы EPSP синтазы" (b5) представляют собой химические соединения, которые ингибируют фермент, 5-енол-пирувилшикимат-3-фосфат-синтазу, которая вовлечена в синтез ароматических аминокислот, таких как тирозин, триптофан и фенилаланин. Гербициды-ингибиторы EPSP легко абсорбируются листвой растений и переносятся по флоэме к точкам роста. Глифосат представляет собой относительно неселективный послевсходовый гербицид, который принадлежит к этой группе. Глифосат включает сложные эфиры и соли, такие как аммониевая, изопропиламмониевая, калиевая, натриевая (в том числе натриевая сесквисоль) и тримезиевая (альтернативно называемая сульфосатом).

"Диверторы электронов фотосистемы I" (b6) представляют собой химические соединения, которые принимают электроны от фотосистемы I и после нескольких циклов образуют гидроксильные радикалы. Эти радикалы являются чрезвычайно реакционноспособными и легко разрушают ненасыщенные липиды, в том числе жирные кислоты мембраны и хлорофилл. Это нарушает целостность клеточной мембраны так, что клетки и органеллы "протекают", что приводит к быстрому увяданию и засыханию листьев и, в конечном итоге, к гибели растения. Примеры этих ингибиторов фотосинтеза второго типа включают дикват и паракват.

"Ингибиторы PPO" (b7) представляют собой химические соединения, которые ингибируют фермент протопорфириногеноксидазу, что быстро приводит к образованию у растений чрезвычайно реакционноспособных соединений, которые разрушают клеточные мембраны, вызывая вытекание жидких компонентов клеток. Примеры ингибиторов PPO включают ацифлуорфен-натрий, азафенидин, бензфендизон, бифенокс, бутафенацил, карфентразон, карфентразон-этил, хлометоксифен, цинидон-этил, флуазолат, флуфенпир-этил, флумиклорак-пентил, флумиоксазин, флуорогликофен-этил, флутиацет-метил, фомесафен, галосафен, лактофен, оксадиаргил, оксадиазон, оксифлуорфен, пентоксазон, профлуазол, пираклонил, пирафлуфен-этил, сафлуфенацил, сульфентразон, тидиазимин, трифлудимозаксин (дигидро-1,5-диметил-6-тиоксо-3-[2,2,7-трифтор-3,4-дигидро-3-оксо-4-(2-пропин-1-ил)-2H-1,4-бензоксазин-6-ил]-1,3,5-триазин-2,4(1H, 3H)-дион) и тиафенацил (метил-N-[2-[[2-хлор-5-[3,6-дигидро-3-метил-2,6-диоксо-4-(трифторметил)-1(2H)-пиримидинил]-4-фторфенил]тио]-1-оксопропил]-β-аланинат).

"Ингибиторы GS" (b8) представляют собой химические соединения, которые ингибируют активность фермента глутамин-синтетазы, который растения используют для превращения аммиака в глутамин. Следовательно, аммиак накапливается, а уровни глутамина снижаются. Повреждение растения, вероятно, происходит вследствие суммарных эффектов токсичности аммиака и недостатка аминокислот, необходимых для других метаболических процессов. Ингибиторы GS включают глюфосинат и его сложные эфиры и соли, такие как глюфосинат аммония и другие производные фосфинотрицина, глюфосинат-P ((2S)-2-амино-4-(гидроксиметилфосфинил)бутановую кислоту) и биланафос.

"Ингибиторы элонгазы VLCFA" (b9) представляют собой гербициды с широким спектром химических структур, которые ингибируют элонгазу. Элонгаза представляет собой один из ферментов, расположенных в хлоропластах или рядом с ними, которые вовлечены в биосинтез VLCFA. У растений жирные кислоты с очень длинной цепью являются главными составляющими гидрофобных полимеров, которые предотвращают высыхание поверхности листьев и обеспечивают стабильность пыльцы. Такие гербициды включают ацетохлор, алахлор, анилофос, бутахлор, кафенстрол, диметахлор, диметенамид, дифенамид, феноксасульфон (3-[[(2,5-дихлор-4-этоксифенил)метил]сульфонил]-4,5-дигидро-5,5-диметилизоксазол), фентразамид, флуфенацет, инданофан, мефенацет, метазахлор, метолахлор, напроанилид, напропамид, напропамид-M ((2R)-N,N-диэтил-2-(1-нафталинилокси)пропанамид), петоксамид, пиперофос, претилахлор, пропахлор, пропизохлор, пироксасульфон и тенилхлор, в том числе разделенные формы, такие как S-метолахлор, и хлорацетамиды, и оксиацетамиды.

"Ингибиторы транспорта ауксина" (b10) представляют собой химические вещества, которые ингибируют транспорт ауксина у растений, как например, путем связывания с белком-переносчиком ауксина. Примеры ингибиторов транспорта ауксина включают дифлуфензопир, напталам (также известный как N-(1-нафтил)фталамовая кислота и 2-[(1-нафталиниламино)карбонил]бензойная кислота).

"Ингибиторы PDS" (b11) представляют собой химические соединения, которые ингибируют путь биосинтеза каротиноидов на стадии фитоен-десатуразы. Примеры ингибиторов PDS включают бефлубутамид, дифлуфеникан, флуридон, флурохлоридон, флуртамон, норфлурзон и пиколинафен.

"Ингибиторы HPPD" (b12) представляют собой химические вещества, которые ингибируют биосинтез при синтезе 4-гидроксифенилпируватдиоксигеназы. Примеры ингибиторов HPPD включают бензобициклон, бензофенап, бициклопирон (4-гидрокси-3-[[2-[(2-метоксиэтокси)метил]-6-(трифторметил)-3-пиридинил]карбонил]бицикло[3.2.1]окт-3-ен-2-он), фенквинотрион (2-[[8-хлор-3,4-дигидро-4-(4-метоксифенил)-3-оксо-2-хиноксалинил]карбонил]-1,3-циклогександион), изоксахлортол, изоксафлутол, мезотрион, пирасульфотол, пиразолинат, пиразоксифен, сулькотрион, тефурилтрион, темботрион, толпиралат (1-[[1-этил-4-[3-(2-метоксиэтокси)-2-метил-4-(метилсульфонил)бензоил]-1H-пиразол-5-ил]окси]этилметилкарбонат), топрамезон, 5-хлор-3-[(2-гидрокси-6-оксо-1-циклогексен-1-ил)карбонил]-1-(4-метоксифенил)-2(1H)-хиноксалинон, 4-(2,6-диэтил-4-метилфенил)-5-гидрокси-2,6-диметил-3(2H)-пиридазинон, 4-(4-фторфенил)-6-[(2-гидрокси-6-оксо-1-циклогексен-1-ил)карбонил]-2-метил-1,2,4-триазин-3,5(2H,4H)-дион, 5-[(2-гидрокси-6-оксо-1-циклогексен-1-ил)карбонил]-2-(3-метоксифенил)-3-(3-метоксипропил)-4(3H)-пиримидинон, 2-метил-N-(4-метил-1,2,5-оксадиазол-3-ил)-3-(метилсульфинил)-4-(трифторметил)бензамид и 2-метил-3-(метилсульфонил)-N-(1-метил-1H-тетразол-5-ил)-4-(трифторметил)бензамид.

"Ингибиторы HST" (b13) нарушают способность растения к превращению гомогентизата в 2-метил-6-соланил-1,4-бензохинон, тем самым нарушая биосинтез каротиноидов. Примеры ингибиторов HST включают галоксидин, пирихлор, циклопириморат (6-хлор-3-(2-циклопропил-6-метилфенокси)-4-пиридазинил-4-морфолинкарбоксилат), 3-(2-хлор-3,6-дифторфенил)-4-гидрокси-1-метил-1,5-нафтиридин-2(1H)-он, 7-(3,5-дихлор-4-пиридинил)-5-(2,2-дифторэтил)-8-гидроксипиридо[2,3-b]пиразин-6(5H)-он и 4-(2,6-диэтил-4-метилфенил)-5-гидрокси-2,6-диметил-3(2H)-пиридазинон.

Ингибиторы HST также включают соединения формул A и B:

где Rd1 представляет собой H, Cl или CF3; Rd2 представляет собой H, Cl или Br; Rd3 представляет собой H или Cl; Rd4 представляет собой H, Cl или CF3; Rd5 представляет собой CH3, CH2CH3 или CH2CHF2; и Rd6 представляет собой OH или -OC(=O)-i-Pr; и Re1 представляет собой H, F, Cl, CH3 или CH2CH3; Re2 представляет собой H или CF3; Re3 представляет собой H, CH3 или CH2CH3; Re4 представляет собой H, F или Br; Re5 представляет собой Cl, CH3, CF3, OCF3 или CH2CH3; Re6 представляет собой H, CH3, CH2CHF2 или C≡CH; Re7 представляет собой OH, -OC(=O)Et, -OC(=O)-i-Pr или -OC(=O)-t-Bu; и Ae8 представляет собой N или CH.

"Ингибиторы биосинтеза целлюлозы" (b14) ингибируют биосинтез целлюлозы у определенных растений. Они являются наиболее эффективными при использовании перед прорастанием или после прорастания на молодые или быстрорастущие растения. Примеры ингибиторов биосинтеза целлюлозы включают хлортиамид, дихлобенил, флупоксам, индазифлам (N2-[(1R,2S)-2,3-дигидро-2,6-диметил-1H-инден-1-ил]-6-(1-фторэтил)-1,3,5-триазин-2,4-диамин), изоксабен и триазифлам.

"Другие гербициды" (b15) включают гербициды, которые действуют посредством ряда различных способов действия, как например, средства, прерывающие митоз (например, флампроп-M-метил и флампроп-M-изопропил), органические мышьяковистые соединения (например, DSMA и MSMA), ингибиторы 7,8-дигидроптероат-синтазы, ингибиторы синтеза изопреноидов в хлоропластах и ингибиторы биосинтеза клеточной стенки. Другие гербициды включают такие гербициды с неизвестными способами действия, или не попадающие под конкретную категорию, перечисленную в (b1)-(b14), или действующие посредством комбинации вышеперечисленных способов действия. Примеры других гербицидов включают аклонифен, асулам, амитрол, бромобутид, цинметилин, кломазон, кумилурон, даимурон, дифензокват, этобензанид, флуометурон, флуренол, фосамин, фосамин-аммоний, дазомет, димрон, ипфенкарбазон (1-(2,4-дихлорфенил)-N-(2,4-дифторфенил)-1,5-дигидро-N-(1-метилэтил)-5-оксо-4H-1,2,4-триазол-4-карбоксамид), метам, метилдимрон, олеиновую кислоту, оксазикломефон, пеларгоновую кислоту, пирибутикарб и 5-[[(2,6-дифторфенил)метокси]метил]-4,5-дигидро-5-метил-3-(3-метил-2-тиенил)изоксазол.

"Антидоты гербицидов" (b16) представляют собой вещества, добавляемые в гербицидные составы для устранения или снижения фитотоксичных эффектов гербицида в отношении определенных сельскохозяйственных культур. Эти соединения защищают сельскохозяйственные культуры от повреждения гербицидами, но, как правило, не препятствуют контролю гербицидом нежелательной растительности. Примеры антидотов гербицидов включают без ограничения беноксакор, клоквинтосет-мексил, кумилурон, циометринил, ципросульфамид, даимурон, дихлормид, дициклонон, диэтолат, димепиперат, фенхлоразол-этил, фенклорим, флуразол, флуксофеним, фурилазол, изоксадифен-этил, мефенпир-диэтил, мефенат, метоксифенон, нафталиновый ангидрид, оксабетринил, N-(аминокарбонил)-2-метилбензолсульфонамид и N-(аминокарбонил)-2-фторбензолсульфонамид, 1-бром-4-[(хлорметил)сульфонил]бензол, 2-(дихлорметил)-2-метил-1,3-диоксолан (MG 191), 4-(дихлорацетил)-1-окса-4-азоспиро[4.5]декан (MON 4660), 2,2-дихлор-1-(2,2,5-триметил-3-оксазолидинил)этанон и 2-метокси-N-[[4-[[(метиламино)карбонил]амино]фенил]сульфонил]бензамид.

Соединения формулы 1 можно получать посредством основных способов, известных в области синтетической органической химии. Один или несколько из следующих способов и вариантов, которые описаны на схемах 1-18, можно применять для получения соединений формулы 1. Определения R1, R2, R3, R4, R5, R6, Q1, Q2, J1, J2, T, Y1 и Y2 в соединениях формул 1-19 ниже являются такими, как определено выше в кратком описании изобретения, если не указано иное.

Как показано на схеме 1, соединения формулы 1a (т. e. формулы 1, где T представляет собой -A-J1, R1, R4 и R5 представляют собой H, а Y1 и Y2 представляют собой O) можно получить путем проведения реакции кислот формулы 2 с аминами формулы 3 в присутствии обезвоживающего реагента для реакции сочетания, такого как пропилфосфоновый ангидрид, дициклогексилкарбодиимид, N-(3-диметиламинопропил)-N'-этилкарбодиимид, N,N'-карбонилдиимидазол, 2-хлор-1,3-диметилимидазолия хлорид или 2-хлор-1-метилпиридиния йодид. Реагенты на полимерной подложке, такие как циклогексилкарбодиимид на полимерной подложке, также являются подходящими. Данные реакции, как правило, проводят при значениях температуры в диапазоне 0-60°C, в растворителе, таком как дихлорметан, ацетонитрил, N,N-диметилформамид или этилацетат, в присутствии основания, такого как триэтиламин, N,N-диизопропиламин или 1,8-диазабицикло[5.4.0]ундец-7-ен. См. Organic Process Research & Development 2009, 13, 900-906 для условий сочетания, использующих пропилфосфоновый ангидрид. Способ согласно схеме 1, в котором применяют пропилфосфоновый ангидрид, проиллюстрирован стадией F примера синтеза 2.

Как показано на схеме 2, соединения формулы 2 можно получить путем гидролиза сложных эфиров формулы 4 с помощью способов, хорошо известных специалистам в данной области техники. Гидролиз проводят с помощью водного раствора основания или водного раствора кислоты, как правило, в присутствии сорастворителя. Подходящие для проведения реакции основания включают без ограничения гидроксиды, такие как гидроксид натрия и калия, и карбонаты, такие как карбонат натрия и калия. Подходящие для проведения реакции кислоты включают без ограничения неорганические кислоты, такие как хлористоводородная кислота, бромистоводородная кислота и серная кислота, и органические кислоты, такие как уксусная кислота и трифторуксусная кислота. Широкий спектр сорастворителей, являющихся подходящими для проведения реакции, включает без ограничения метанол, этанол и тетрагидрофуран. Реакцию проводят при значениях температуры в диапазоне от -20°C до температуры кипения растворителя и, как правило, от 0 до 100°C. Способ согласно схеме 2 проиллюстрирован стадией Е примера синтеза 2.

Как показано на схеме 3, соединение формулы 4a или 4b можно получить путем восстановления соединения формулы 5a и 5b, соответственно, и последующей in situ циклизации полученного в результате промежуточного амина. Из литературы известен широкий спектр способов восстановления алифатической нитро- или нитрильной группы в соединениях формулы 5a или 5b. Способы, хорошо известные специалистам в данной области техники, включают каталитическую гидрогенизацию в присутствии палладиевого катализатора на углеродном носителе или никеля Ренея, металлического железа или цинка в кислотной среде (см., например, Berichte der Deutschen Chemischen Gesellschaft 1904, 37, 3520-3525) и алюмогидрида лития. Восстановления алифатической нитрогруппы также можно достичь с помощью йодида самария(II) в присутствии источника протонов, такого как метанол (см., например, Tetrahedron Letters 1991, 32 (14), 1699-1702). В качестве альтернативы, можно использовать борогидрид натрия в присутствии никелевого катализатора, такого как ацетат никеля(II) или хлорид никеля(II) (см., например, Tetrahedron Letters 1985, 26 (52), 6413-6416). Способ согласно схеме 3, в котором применяют борогидрид натрия в присутствии хлорида никеля(II), проиллюстрирован стадией D примера синтеза 1.

Как показано на схеме 4, соединение формулы 5a или 5b можно получить путем проведения реакции сложных диэфиров формулы 6 с нитроалканами формулы 7a или с нитрилами формулы 7b, как правило, в присутствии основания. Подходящие для проведения реакции основания включают низшие алкоксиды щелочных металлов, такие как метоксид натрия в метаноле или этоксид натрия в этаноле. Соединения формулы 6 можно легко получить с помощью способов, известных специалистам в данной области техники, например, путем конденсации Кневенагеля альдегидов и малонатов (см., например, G. Jones, Organic Reactions Volume 15, John Wiley and Sons, 1967).

Соединения формул 5c или 5d (т. e. формул 5a или 5b, где R2 и R3 представляют собой H) можно получить путем проведения реакции соединений формул 8a или 8b с малонатами формулы 9 в присутствии основания, как показано на схеме 5. Подходящие для данной реакции основания включают без ограничения низшие алкоксиды щелочного металла, такие как метоксид натрия в метаноле или этоксид натрия в этаноле, или основания, такие как бис(триметилсилил)амид лития, бис(триметилсилил)амид натрия и диизопропиламид лития в растворителях, таких как тетрагидрофуран. Как правило, реакцию проводят в диапазоне от -78°C до 23°C. См. Synthesis 2005, 2239-2245 для условий с целью осуществления данного преобразования. Условия для осуществления данного преобразования в нагреваемой с обратным холодильником воде в отсутствие катализатора были изложены в Synthetic Communications 2013, 43, 744-748.

Соединения формулы 6 можно легко получить путем конденсации Кневенагеля альдегидов формулы 14 и малонатов 9, как показано на схеме 6. Также, как показано на схеме 6, соединения формул 8a и 8b можно получить путем конденсации Кневенагеля альдегидов формулы 14 и нитрометана.

Как показано на схеме 7, альдегиды формулы 14 можно получить путем проведения реакции альдегидов формулы 20 с соответствующими электрофилами формулы 21 в присутствии основания с металлическим катализатором или без такового. В формуле 21 G обозначает уходящую группу, т. е. нуклеофуг. В зависимости от выбора J1 подходящие для проведения реакции электрофилы могут включать арил- или алкилгалогениды, такие как хлориды, бромиды и йодиды, алкилсульфонаты, ангидриды кислот, такие как трет-бутоксикарбонилангидрид и уксусный ангидрид, и галогеналкилсиланы, такие как хлортриметилсилан. Подходящие для проведения реакции основания включают неорганические основания, такие как гидроксиды, алкоксиды, карбонаты и фосфаты щелочного или щелочноземельного металла (например, лития, натрия, калия и цезия), и органические основания, такие как триэтиламин, N,N-диизопропилэтиламин и 1,8-диазабицикло[5.4.0]ундец-7-ен. Подходящие катализаторы включают палладий, никель, родий или медь с лигандом или без, таким как фосфины или N-гетероциклические карбены. Широкий спектр растворителей, являющихся подходящими для проведения реакции, включают, например, без ограничения тетрагидрофуран, дихлорметан, N,N-диметилформамид, N,N-диметилацетамид, N-метилпирролидинон, ацетонитрил, C2-C6спирты и ацетон, а также смеси этих растворителей. Данную реакцию проводят при значениях температурах в диапазоне от -20 до 200°C и, как правило, от 0 до 50°C. Например, если A представляет собой -CH2OH, см. Organic and Biomolecular Chemistry 2013, 11, 3046-3056. Альдегиды формулы 20 являются коммерчески доступными или их легко получить из коммерчески доступного вещества специалистом в данной области техники.

Если A содержит 1-3 атома C, то специалист в данной области техники может получить соединение формулы 14 с использованием стандартных способов катализируемого переходными металлами кросс-сочетания. Для типичной процедуры катализируемого палладием сочетания Хека см.: Bioorg. Chem. 2010, 38, 139-143. Для примера процедуры катализируемой палладием реакции арилгалогенида и триалкилвисмута см.: Synlett 2010, 19, 2936-2940. Для катализируемых палладием реакций типа Сузуки см.: J. Med. Chem. 2000, 43, 3076, и J. Med. Chem. 2012, 43, 1831-1843.

Соединения формул 5a' и 5a'' можно получить стереоселективно путем проведения реакции нитроалкенов формулы с малонатами формулы 9 в присутствии хирального катализатора и необязательно в присутствии подходящего основания, как показано на схеме 7A. Подходящие катализаторы включают без ограничения Ni(II) с вицинальными диаминовыми лигандами, такими как Ni(II) бис[(R,R)-N,N'-дибензилциклогексан-1,2-диамин]дибромид, Ni(II) бис[(S,S)-N,N'-дибензилциклогексан-1,2-диамин]дибромид или бромид никеля(II) с диаминами хирального 1,1'-би(тетрагидроизохинолин) типа. Подходящие для данной реакции органические основания включают без ограничения пиперидин, морфолин, триэтиламин, 4-метилморфолин или N,N-диизопропилэтиламин. Данное преобразование можно осуществлять в чистом виде или в растворителях, таких как тетрагидрофуран, толуол или дихлорметан. Как правило, реакцию проводят в диапазоне от -78°C до 80°C с использованием 0-1 эквивалента катализатора и необязательно 0-1 эквивалента основания. Условия для осуществления данного преобразования были изложены в J. Am. Chem. Soc. 2005, 9958-9959, или в Eur. J. Org. Chem. 2011, 5441-5446 для условий. Нитроалкены формулы можно легко получить из альдегидов и нитрометана с помощью способов, известных специалистам в данной области техники.

Как показано на схеме 8, соединения формулы 1aa и 1ab также можно получить путем восстановительной циклизации соединений формулы 10a и 10b аналогично способу согласно схеме 3. Как также показано на схеме 8, соединения формулы 1ba и 1bb (т. е. формулы 1, где R1 представляет собой OH, R4 и R5 представляют собой H, а Y1 и Y2 представляют собой O) можно получить из соединений формулы 10b путем каталитической гидрогенизации с переносом водорода с формиатом аммония в присутствии палладиевого катализатора на углеродном носителе и последующей in situ циклизации промежуточного гидроксиламина. См. J. Med. Chem. 1993, 36, 1041-1047 для условий каталитической гидрогенизации/циклизации с переносом водорода с целью получения N-гидроксипирролидинонов.

Как показано на схеме 9, соединения формулы 10a и 10b можно получить путем проведения реакции соединений формулы 11 с соединением формулы 7a или с соединением формулы 7b в растворителе, в присутствии основания, аналогично способу, описанному на схеме 4.

Как показано на схеме 10, соединения формулы 10aа (т. е. формулы 10а, где R и R представляют собой H) можно получить, аналогично способу согласно схеме 5, путем проведения реакции нитроалкенов формулы 8 с малонатами формулы 12.

Как показано на схеме 11, соединения формулы 11 можно получить путем проведения реакции амида малоновой кислоты формулы 12 с альдегидами формулы 14 с помощью способов, известных специалистам в данной области техники. Как также показано на схеме 11, амиды малоновой кислоты формулы 12 можно легко получить из малонилхлоридов низшего алкила формулы 13, таких как метилмалонилхлорид и амины формулы 3, с помощью способов, известных специалистам в данной области техники.

Как показано на схеме 12, смеси соединений формулы 1c (т. е. формулы 1, где R1 и R5 представляют собой H, R4 представляет собой галоген, а Y1 и Y2 представляют собой O) и формулы 1d (т. е. формулы 1, где R1 и R4 представляют собой H, R5 представляет собой галоген, а Y1 и Y2 представляют собой O) можно получить путем проведения реакции соединений формулы 1a с источником галогена в растворителе, в присутствии или отсутствие инициатора. Разделения региоизомеров, полученных в данной реакции, можно достичь с помощью стандартных способов, таких как хроматография или фракционная кристаллизация. Подходящие источники галогена для данной реакции включают бром, хлор, N-хлорсукцинимид, N-бромсукцинимид и N-йодсукцинимид. Подходящие инициаторы для данной реакции включают 2,2'-азобисизобутиронитрил (AIBN) и пероксид бензоила. Как правило, реакцию проводят в растворителях, таких как дихлорметан в диапазоне от 0°C до температуры кипения растворителя.

As shown in Scheme 13, compounds of Formula 1e (i.e. Formula 1 wherein R1 is

NH2, R4 и R5 представляют собой H, а Y1 и Y2 представляют собой O) можно получить путем проведения реакции соединений формулы 1a с аминирующим реагентом, таким как O-(дифенилфосфинил)гидроксиламин и гидроксиламино-O-сульфокислота. Для процедур, условий и реагентов см. Bioorg. & Med. Chem. Lett. 2009, 19, 5924-5926, и J. of Org. Chem. 2002, 67, 6236-6239.

Как показано на схеме 14, соединения формулы 1f (т. е. формулы 1, где R4, R5 и R6 представляют собой H, а Y1 и Y2 представляют собой O) можно получить путем проведения реакции соединений формулы 15 с изоцианатами (т. е. формулы 16, где Y2 представляет собой O) или изотиоцианатами (т. е. формулы 16, где Y2 представляет собой S) в присутствии основания. Примеры основания, которое можно использовать для способа по настоящему изобретению, включают такие, перечисленные для способа согласно схеме 4. Температуру реакции можно выбрать из диапазона от -78°C до температуры кипения используемого инертного растворителя. Как правило, реакцию проводят при значениях температуры в диапазоне от -78°C до 100°C в растворителях, таких как толуол.

Как показано на схеме 15, соединения формулы 15 можно получить путем проведения реакции соединений формулы 17 с соответствующими электрофилами формулы 18 в присутствии основания. В формуле 18 G обозначает уходящую группу, т. е. нуклеофуг. В зависимости от выбора R1 подходящие для проведения реакции электрофилы могут включать алкилгалогениды, такие как хлориды, бромиды и йодиды, алкилсульфонаты, кислотные ангидриды, такие как трет-бутоксикарбонилангидрид и уксусный ангидрид, и галогеналкилсиланы, такие как хлортриметилсилан. Подходящие для проведения реакции основания включают неорганические основания, такие как гидроксиды, алкоксиды, карбонаты и фосфаты щелочного или щелочноземельного металла (например, лития, натрия, калия и цезия), и органические основания, такие как триэтиламин, N,N-диизопропилэтиламин и 1,8-диазабицикло[5.4.0]ундец-7-ен. Широкий спектр растворителей, являющихся подходящими для проведения реакции, включают, например, без ограничения тетрагидрофуран, дихлорметан, N,N-диметилформамид, N,N-диметилацетамид, N-метилпирролидинон, ацетонитрил, C2-C6спирты и ацетон, а также смеси этих растворителей. Данную реакцию проводят при значениях температуры в диапазоне от -20 до 200°C и, как правило, от 0 до 50°C.

Как показано на схеме 16, соединения формулы 17 можно получить путем декарбоксилирования кислот формулы 2 с помощью способов, хорошо известных специалистам в данной области техники. Декарбоксилирование проводят путем нагревания соединений формулы 2 в растворителе, как правило, в присутствии кислоты. Подходящие кислоты для реакции включают без ограничения п-толуолсульфокислоту. Широкий спектр сорастворителей, являющихся подходящими для реакции, включает без ограничения толуол, изопропанолацетат и изобутилметилкетон. Реакцию проводят при значениях температуры в диапазоне от -20°C до температуры кипения растворителя и, как правило, от 0 до 150°C.

Как показано на схеме 17, соединения формулы 1g (т. е. формулы 1, где R1 представляет собой H, R4 и R5 представляют собой H, а Y1 и Y2 представляют собой S) можно получить путем проведения реакции соединений формулы 1a по меньшей мере с двумя эквивалентами тионирующего реагента, такого как реагент Лавессона, тетрафосфорный декасульфид или дифосфорный пентасульфид в растворителе, таком как тетрагидрофуран или толуол. Как правило, реакцию проводят при значениях температуры в диапазоне от 0 до 115°C. Специалист в данной области техники понимает, что использование менее двух эквивалентов тионирующего реагента может обеспечить смеси, содержащие продукты формулы 1, где Y1 представляет собой O и Y2 представляет собой S, или Y1 представляет собой S и Y2 представляет собой O, которые можно разделить традиционными способами, такими как хроматография и кристаллизация.

Как показано на схеме 18, соединения формулы 1h (т. е. формулы 1, где R1, R4, R5 представляют собой H, Y2 представляет собой O, и Y1 представляет собой NH) можно получить путем алкилирования соединений формулы 1a триэтилоксония тетрафторборатом (реагентом Меервейна) с последующей обработкой полученного в результате иминоэфира формулы 19 водным аммиаком.

Специалисту в данной области техники будет понятно, что различные функциональные группы можно превращать в другие группы с получением различных соединений формулы 1. В качестве надежного источника, в котором просто и ясно проиллюстрировано взаимное превращение функциональных групп, см. Larock, R. C., Comprehensive Organic Transformations: A Guide to Functional Group Preparations, 2nd Ed., Wiley-VCH, New York, 1999. Например, промежуточные соединения для получения соединений формулы 1 могут содержать ароматические нитрогруппы, которые можно восстанавливать до аминогрупп и затем превращать посредством реакций, хорошо известных из уровня техники, таких как реакция Зандмейера, в различные галогениды с получением соединений формулы 1. Также во многих случаях вышеприведенные реакции можно осуществлять в альтернативном порядке.

Следует понимать, что некоторые вышеописанные реагенты и условия реакции для получения соединений формулы 1 могут быть несовместимыми с определенными функциональными группами промежуточных соединений. В таких случаях включение в синтез последовательностей для защиты/снятия защиты или взаимопревращений функциональных групп будет способствовать получению необходимых продуктов. Применение и выбор защитных групп будут очевидны для специалиста в области химического синтеза (см., например, Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis, 2nd ed.; Wiley: New York, 1991). Специалисту в данной области техники будет понятно, что, в некоторых случаях, после введения данного реагента, как показано на любой отдельной схеме, может быть необходимо осуществление дополнительных общепринятых стадий синтеза, не описанных подробно, для выполнения синтеза соединений формулы 1. Специалисту в данной области техники также будет понятно, что может быть необходимо осуществление комбинации стадий, проиллюстрированных на вышеуказанных схемах в порядке, отличном от предполагаемого конкретным порядком, представленным для получения соединений формулы 1.

Также специалисту в данной области техники будет понятно, что соединения формулы 1 и промежуточные соединения, описанные в данном документе, можно подвергнуть различным электрофильным, нуклеофильным, радикальным, металлоорганическим реакциям, реакциям окисления и восстановления с целью добавления заместителей или модификации существующих заместителей.

Без дополнительного уточнения предполагается, что специалист в данной области техники с применением предшествующего описания может использовать настоящее изобретение в наиболее полном его объеме. Следующие неограничивающие примеры иллюстрируют настоящее изобретение. Стадии в следующих примерах иллюстрируют процедуру для каждой стадии в суммарном синтетическом преобразовании, и исходное вещество для каждой стадии не обязательно должно быть получено посредством конкретного подготовительного этапа, процедура которого описывается в других примерах или стадиях. Значения процентного содержания приведены по весу, за исключением смесей хроматографических растворителей или случаев, когда указано иное. Доли и значения процентного содержания для смесей хроматографических растворителей приведены по объему, если не указано иное. 1H ЯМР спектры представлены в ppm в сторону слабого поля от тетраметилсилана в CDCl3 при 500 MГц, если не указано иное; "s" означает синглет, "d" означает дуплет, "t" означает триплет, "q" означает квартет, "m" означает мультиплет, "d" означает дуплет. Масс-спектры (MS) представлены в виде молекулярной массы исходного иона с наиболее высоким относительным содержанием изотопа (M+1), образованного при добавлении H+ (молекулярная масс 1) к молекуле, или (M-1), образованного при потере H+ (молекулярная масса 1) молекулой, наблюдаемого при применении жидкостной хроматографии совместно с масс-спектрометрией (LCMS) с применением химической ионизации при атмосферном давлении (AP+), где "amu" означает атомные единицы массы.

ПРИМЕР СИНТЕЗА 1

Получение N-(2-фторфенил)-2-оксо-4-[3-(2-пиридинилокси)фенил]-3-пирролидинкарбоксамида (соединения 34)

Стадия A. Получение 3-(2-пиридинилокси)бензальдегида

2-Фторпиридин (20,0 г, 164 ммоль) растворяли в 150 мл N,N-диметилформамида, а затем обрабатывали трет-бутоксидом калия (19,9 г, 177 ммоль). Реакционная смесь выделяла тепло до 57°C, а затем обеспечивали ее охлаждение до температуры окружающей среды в течение 1 часа. Добавляли 3-гидроксибензальдегид (13,9 мл, 162 ммоль) и смесь нагревали до 120°C в течение ночи. Обеспечивали охлаждение реакционной смеси до температуры окружающей среды, а затем разделяли между этилацетатом и 1 н. водным раствором HCl. Органический слой промывали солевым раствором, высушивали над сульфатом магния и концентрировали с получением коричневого остатка, который затем растирали с диэтиловым эфиром. Полученное в результате твердое вещество выделяли посредством фильтрации и высушивали на воздухе с получением 14,9 г указанного в заголовке соединения.

1H ЯМР (DMSO-d6) δ 10,01 (s, 1H), 8,17 (m, 1H), 7,91 (m, 1H), 7,78 (m, 1H), 7,66 (t, 1H), 7,63 (s, 1H), 7,50 (m, 1H), 7,16-7,20 (m, 1H), 7,13 (d, 1H).

Стадия B. Получение 2-[3-[(1E)-2-нитроэтенил]фенокси]пиридина

К раствору 3-(пирид-2-илокси)бензальдегида (также известного как 3-(2-пиридинилокси)бензальдегид, т. e. продукт со стадии A, 20,1 г, 101 ммоль) в 250 мл 1-хлорбутана добавляли нитрометан (6,54 мл, 121 ммоль), пиперидин (0,988 мл, 10,0 ммоль) и ледяную уксусную кислоту (0,577 мл, 10,0 ммоль). Затем смесь нагревали с обратным холодильником в течение 48 часов c азеотропным удалением воды. Обеспечивали охлаждение реакционной смеси до температуры окружающей среды. Реакционную смесь концентрировали на диатомитовом вспомогательном фильтрующем материале Celite®, а затем очищали с помощью жидкостной хроматографии среднего давления (0% - 15% этилацетат в смеси гексанов в качестве элюента) с получением 19,2 г указанного в заголовке соединения в виде желтого масла.

1H ЯМР δ 8,19 (m, 1H), 7,99 (d, 1H), 7,74 (m, 1H), 7,56 (m, 1H), 7,48 (t, 1H) 7,36 (m, 2H), 7,29 (m, 1H), 7,05 (m, 1H), 6,99 (d, 1H).

Стадия C. Получение 1,3-диэтил-2-[2-нитро-1-[3-(2-пиридинилокси)фенил]этил]пропандиоата

2-[3-[(1E)-2-Нитроэтенил]фенокси]пиридин (т. e. продукт со стадии B, 19,4 г, 105 ммоль), диэтилмалонат (14,5 мл, 95,2 ммоль) и Ni(II) бис[N,N'-дибензилциклогексан-1,2-диамин]дибромид (0,955 г, 1,19 ммоль) нагревали с обратным холодильником в дихлорметане в течение 48 часов. Реакционную смесь затем охлаждали до температуры окружающей среды, концентрировали на диатомитовом вспомогательном фильтрующем материале Celite® при пониженном давлении, а затем очищали с помощью жидкостной хроматографии среднего давления с элюированием 0% - 50% этилацетатом в смеси гексанов с получением 30,2 г указанного в заголовке соединения в виде бесцветного масла.

1H ЯМР (500 МГц, DMSO-d6) δ 8,15 (m, 1H) 7,86 (m, 1H) 7,34 (m, 1H) 7,15 (m, 3H) 7,03 (m, 1H) 6,96 (m, 1H) 4,99 (m, 2H) 4,17 (m, 2H) 4,09 (m, 1H) 4,03 (m, 1H) 3,89 (m, 2H) 1,18 (t, 3H) 0,92 (t, 3H).

Стадия D. Получение этил-2-оксо-4-[3-(2-пиридинилокси)фенил]-3-пирролидинкарбоксилата

1,3-Диэтил-2-[2-нитро-1-[3-(2-пиридинилокси)фенил]этил]пропандиоат (т. e. продукт со стадии C, 30,1 г, 74,9 ммоль) растворяли в 500 мл этанола при температуре окружающей среды. Добавляли NiCl2.6H2O (17,8 г, 74,9 ммоль) и смесь перемешивали до полного растворения. Реакционную массу затем охлаждали до 0°C в ледяной бане, а затем медленно добавляли борогидрид натрия (8,50 г, 225 ммоль) так, чтобы температура не превышала 5°C. По завершении добавления ледяную баню удаляли, а реакционную массу перемешивали при температуре окружающей среды в течение ночи. Затем этанол удаляли при пониженном давлении, добавляли 500 мл этилацетата и 1,25 л насыщенного раствора хлорида аммония и реакционную смесь перемешивали до следующего дня. Органический слой отделяли от водного слоя, а затем концентрировали на силикагеле при пониженном давлении, а затем очищали с помощью MPLC с элюированием 0% - 100% этилацетатом в смеси гексанов с получением 7,5 г указанного в заголовке соединения в виде желтого масла.

1H ЯМР δ 8,19 (m, 1H), 7,71 (m, 1H), 7,37 (m, 1H), 7,05 (m, 4H), 6,93 (m, 1H), 6,37 (bs, 1H), 4,24 (m, 2H), 4,13 (m, 1H), 3,82 (m, 1H), 3,55 (d, 1H), 3,45 (m, 1H), 1,27 (m, 3H).

Стадия E. Получение N-(2-фторфенил)-2-оксо-4-[3-(2-пиридинилокси)фенил]-3-пирролидинкарбоксамида

Этил-2-оксо-4-[3-(2-пиридинилокси)фенил]-3-пирролидинкарбоксилат (т. e. продукт со стадии D, 0,40 г, 1,2 ммоль) добавляли к 2-фторанилину (2,0 мл, 6,8 ммоль) и нагревали в реакторе CEM Microwave в течение 45 минут при 190°C. Реакционную смесь охлаждали до температуры окружающей среды, а затем разбавляли 200 мл дихлорметана. Данный раствор концентрировали при пониженном давлении на Celite®, а затем очищали с помощью MPLC (0% - 100% этилацетат в смеси гексанов в качестве элюента) с получением 0,23 г указанного в заголовке соединения, продукта согласно настоящему изобретению, в виде твердого вещества.

1H ЯМР δ 10,04 (s, 1H), 8,13 (m, 2H), 8,00 (m, 1H), 7,83 (m, 1H), 7,38 (m, 1H), 7,12 (m, 8H), 4,00 (m, 2H), 3,70 (t, 1H), 3,25 (t, 1H).

ПРИМЕР СИНТЕЗА 2

Получение N-(2,3-дифторфенил)-2-оксо-4-[3-[[3-(трифторметил)-1H-пиразол-1-ил]метил]фенил]-3-пирролидинкарбоксамида (соединения 25)

Стадия A. Получение 3-[[3-(трифторметил)-1H-пиразол-1-ил]метил]бензальдегида

3-(Трифторметил)пиразол (0,82 г, 6,0 ммоль), 3-(бромметил)бензальдегид (1,0 г, 5,0 ммоль) и карбонат калия (2,1 г, 15 ммоль) объединяли в 50 мл N,N-диметилформамида и нагревали до 80°C в течение 18 часов. Реакционную смесь охлаждали до температуры окружающей среды, а затем разделяли между этилацетатом и солевым раствором. Органический слой высушивали над сульфатом магния и концентрировали при пониженном давлении с получением зеленого масла, которое абсорбировали на силикагеле, а затем очищали с помощью MPLC с элюированием 0% - 100% этилацетатом в смеси гексанов с получением 0,82 г указанного в заголовке соединения.

1H ЯМР δ 10,01 (s, 1H), 7,86 (m, 1H), 7,76 (s, 1H), 7,56 (m, 1H), 7,50 (m, 1H), 7,45 (m, 1H), 6,58 (d, 1H), 5,44 (s, 2H).

Стадия B. Получение 1-[[3-[(1E)-2-нитроэтенил]фенил]метил]-3-(трифторметил)-1H-пиразола (т. e. 1-[[3-[(1E)-2-нитроэтенил]фенил]метил]-3-(трифторметил)-1H-пиразола)

К раствору 3-[[3-(трифторметил)-1H-пиразол-1-ил]метил]бензальдегида (т. e. продукта со стадии A, 16,5 г, 65 ммоль) в 100 мл 1-хлорбутана добавляли нитрометан (4,2 мл, 78 ммоль), пиперидин (0,64 мл, 6,5 ммоль) и ледяную уксусную кислоту (0,37 мл, 6,5 ммоль). Затем смесь нагревали с обратным холодильником в течение 48 часов c азеотропным удалением воды. Обеспечивали охлаждение реакционной смеси до температуры окружающей среды. Реакционную смесь концентрировали на диатомитовом вспомогательном фильтрующем материале Celite®, а затем очищали с помощью MPLC с элюированием 0% - 15% этилацетатом в смеси гексанов с получением 11,2 г указанного в заголовке соединения в виде желтого твердого вещества.

1H ЯМР (500 МГц, ХЛОРОФОРМ-d) δ 7,97 (d, 1H), 7,55 (m, 2H), 7,46 (m, 2H), 7,38 (m, 2H), 6,58 (d, 1H), 5,40 (s, 2H).

Стадия C. Получение 1,3-диэтил 2-[2-нитро-1-[3-[[3-(трифторметил)-1H-пиразол-1-ил]метил]фенил]этил]пропандиоата

1-[[3-[(1E)-2-Нитроэтенил]фенил]метил]-3-(трифторметил)-1H-пиразол (т. e. 1-[[3-[(1E)-2-нитроэтенил]фенил]метил]-3-(трифторметил)-1H-пиразол, т. e. продукт со стадии B, 11 г, 38 ммоль), диэтилмалонат (6,9 мл, 45 ммоль) и бис[N,N'-дибензилциклогексан-1,2-диамин]дибромид Ni(II) (0,46 г, 0,57 ммоль) перемешивали в дихлорметане в течение примерно 16 часов. Затем реакционную смесь охлаждали до температуры окружающей среды, концентрировали на диатомитовом вспомогательном фильтрующем материале Celite® при пониженном давлении, а затем очищали с помощью MPLC с элюированием 0% - 50% этилацетатом в смеси гексанов с получением 11 г указанного в заголовке соединения в виде желтого масла.

1H ЯМР δ 7,34 (m, 2H), 7,23 (d, 1H), 7,15 (m, 2H), 6,54 (d, 1H), 5,32 (m, 2H), 4,88 (m, 2H), 4,21 (m, 3H), 3,98 (q, 2H), 3,78 (d, 1H), 1,25 (t, 3H), 1,01 (t, 3H).

Стадия D. Получение этил-2-оксо-4-[3-[[3-(трифторметил)-1H-пиразол-1-ил]метил]фенил]-3-пирролидинкарбоксилата

1,3-Диэтил-2-[2-нитро-1-[3-[[3-(трифторметил)-1H-пиразол-1-ил]метил]фенил]этил]пропандиоат (т. e. продукт со стадии C, 30,1 г, 74,9 ммоль) растворяли в 500 мл этанола при температуре окружающей среды. Добавляли NiCl2-6H2O (17,8 г, 74,9 ммоль) и смесь перемешивали до полного растворения. Реакционную массу затем охлаждали до 0°C в ледяной бане, а затем медленно добавляли борогидрид натрия (8,50 г, 225 ммоль) так, чтобы температура не превышала 5°C. По завершении добавления ледяную баню удаляли, а реакционную массу перемешивали при температуре окружающей среды в течение 3 часов. Добавляли 300 мл этилацетата и 300 мл насыщенного раствора хлорида аммония и реакционную смесь перемешивали, пока органический слой не становился прозрачным, а водный слой голубым. Органический слой отделяли от водного слоя и водный слой снова экстрагировали этилацетатом. Объединенные органические слои промывали хлоридом аммония, высушивали над сульфатом магния, затем концентрировали на силикагеле при пониженном давлении, а затем очищали с помощью MPLC с элюированием 0% - 100% этилацетатом в смеси гексанов с получением 3,5 г указанного в заголовке соединения в виде желтого масла с некоторыми примесями, которое использовали без дополнительной очистки. MS (M-1)=380 amu.

Стадия E. Получение 2-оксо-4-[3-[[3-(трифторметил)-1H-пиразол-1-ил]метил]фенил]-3-пирролидинкарбоновой кислоты

Этил-2-оксо-4-[3-[[3-(трифторметил)-1H-пиразол-1-ил]метил]фенил]-3-пирролидинкарбоксилат (т. e. продукт со стадии D, 3,78 г, 9,1 ммоль) растворяли в 65 мл этанола, а затем в течение 5 минут добавляли 1,4 мл 50% раствора натрия гидроксида. Затем реакционную смесь перемешивали в течение ночи при температуре окружающей среды. Смесь разбавляли водой до растворения белого осадка. Органический слой дважды экстрагировали с помощью 125 мл диэтилового эфира, а затем подкисляли до pH 2 концентрированной хлористоводородной кислотой. Затем водный слой экстрагировали этилацетатом. Слой этилацетата промывали солевым раствором, высушивали над сульфатом магния и концентрировали при пониженном давлении с получением 1,9 г указанного в заголовке соединения в виде розового стеклообразного вещества.

1H ЯМР (DMSO-d6) δ 12,74 (bs, 1H), 8,09 (d, 2H), 7,33 (m, 3H), 7,12 (m, 1H), 6,74 (d, 1H), 5,41 (s, 2H), 3,83 (m, 2H), 3,51 (m, 2H).

Стадия F. Получение N-(2,3-дифторфенил)-2-оксо-4-[3-[[3-(трифторметил)-1H-пиразол-1-ил]метил]фенил]-3-пирролидинкарбоксамида

2-Оксо-4-[3-[[3-(трифторметил)-1H-пиразол-1-ил]метил]фенил]-3-пирролидинкарбоновую кислоту (т. e. продукт со стадии E, 0,33 г, 0,92 ммоль), триэтиламин (0,38 мл, 0,28 ммоль) и 2,3-дифторанилин (0,14 г, 1,1 ммоль) растворяли в 25 мл дихлорметана и перемешивали при температуре окружающей среды в течение 15 минут, а затем обрабатывали 50% пропилфосфоновым ангидридом (T3P®) в этилацетате (1,8 мл, 3,1 ммоль) и перемешивали в течение ночи. Реакционную смесь концентрировали при пониженном давлении, а затем очищали с помощью MPLC с элюированием 0% - 100% этилацетатом в смеси гексанов с получением 0,092 г указанного в заголовке соединения, продукта согласно настоящему изобретению, в виде твердого вещества.

1H ЯМР (DMSO-d6) δ 10,22 (s, 1H), 8,21 (s, 1H), 8,07 (d, 1H), 7,77 (m, 1H), 7,34 (m, 3H), 7,16 (m, 3H), 6,71 (d, 1H), 5,42 (s, 2H), 4,02 (m, 1H), 3,92 (m, 1H), 3,67 (t, 1H), 3,26 (t, 1H).

ПРИМЕР СИНТЕЗА 3

Получение N-(2-фторфенил)-4-[3-[(метоксиимино)метил]фенил]-1-метил-2-оксо-3-пирролидинкарбоксамида (соединения 53)

Стадия A. Получение 1,3-диэтил-2-[(3-йодфенил)метилен]пропандиоата

К раствору 3-йодбензальдегида (10 г, 43 ммоль) в бензоле (100 мл) добавляли диэтилмалонат (8,3 г, 52 ммоль) и пиперидин (0,73 г, 8,6 ммоль) при 5°C. Реакционную смесь нагревали до температуры флегмы растворителя с помощью прибор Дина-Старка для удаления воды в течение 24 часов. Реакционную смесь выпаривали с получением неочищенного продукта, который очищали с помощью колоночной хроматографии на силикагеле с элюированием 5% - 20% градиентом этилацетата в петролейном эфире с получением указанного в заголовке продукта (17 г).

1H ЯМР (400 МГц) δ 7,80 (s, 1H), 7,60 (s, 1H), 7,40 (m, 1H), 7,30 (s, 1H), 7,10 (m, 1H), 4,35 (m, 4H), 1,77 (m, 6 H).

Стадия B. Получение 1,3-диэтил-2-[1-(3-йодфенил)-2-нитроэтил]пропандиоата

К раствору 1,3-диэтил-2-[(3-йодфенил)метилен]пропандиоата (т. e. соединения, полученного на стадии A, 17 г, 45 ммоль) в этаноле (170 мл) добавляли нитрометан (28 г, 450 ммоль) и 20% метоксид натрия в метаноле (0,25 г, 4,55 ммоль) при 5°C и реакционную смесь перемешивали при температуре окружающей среды в течение 16 часов. Реакционную смесь выпаривали с получением указанного в заголовке неочищенного соединения (16 г), которое использовали без дополнительной очистки.

1H ЯМР (400 МГц) δ 7,60 (t, 2H), 7,20 (d, 1H), 7,10 (t, 1H), 4,95 (m, 2H), 4,20 (m, 3H), 4,00 (m, 2H), 3,75 (d, 1H), 1,20 (m, 6 H).

Стадия C. Получение этил-4-(3-йодфенил)-2-оксо-3-пирролидинкарбоксилата

К раствору 1,3-диэтил-2-[1-(3-йодфенил)-2-нитроэтил]пропандиоата (т. e. соединения, полученного на стадии B, 16 г, 36 ммоль) в этаноле (150 мл)/воде (32 мл) добавляли порошок железа (10 г, 180 ммоль), хлорид аммония (1,0 г, 18 ммоль) и реакционную смесь нагревали при 110°C в течение 24 часов. Реакционную смесь фильтровали через диатомитовый вспомогательный фильтрующий материал Celite® и фильтрат концентрировали. К неочищенному остатку добавляли воду и смесь экстрагировали (3 ×) этилацетатом. Объединенные органические слои промывали водой, солевым раствором, а затем высушивали над сульфатом натрия. Растворитель выпаривали с получением указанного в заголовке соединения в виде неочищенного промежуточного соединения (15 г). 500 мг образца неочищенного промежуточного соединения очищали с помощью препаративной тонкослойной хроматографии с получением 250 мг указанного в заголовке соединения.

1H ЯМР (400 МГц) δ 7,60 (m, 2H), 7,20 (m, 1H), 7,10 (m, 1H), 6,10 (s, 1H), 4,20 (m, 2H), 4,00 (m, 1H), 3,63 (t, 1H), 3,40 (m, 1H), 3,30 (m, 1H), 1,23 (m, 3H).

Стадия D. Получение 4-(3-йодфенил)-2-оксо-3-пирролидинкарбоновой кислоты

К раствору этил-4-(3-йодфенил)-2-оксо-3-пирролидинкарбоксилата (т. e. соединения, полученного на стадии C, 9,0 г, 25 ммоль) в тетрагидрофуране (50 мл) и воде (10 мл) добавляли моногидрат гидроксида лития (1,6 г, 38 ммоль) при 0°C и реакционную смесь перемешивали при температуре окружающей среды в течение 4 часов. Реакционную смесь затем выпаривали и твердое вещество смешивали с водой. Водную смесь экстрагировали этилацетатом и органический слой удаляли. Водный слой подкисляли концентрированной хлористоводородной кислотой при 0°C. Полученное в результате твердое вещество собирали посредством фильтрации и высушивали в вакууме с получением указанного в заголовке соединения (5 г) в виде грязно-белого твердого вещества.

1H ЯМР (400 МГц) δ 12,89 (s, 1H), 8,10 (s, 1H), 7,65 (d, 1H), 7,53 (d, 1H), 7,39 (d, 1H), 7,18 (t, 1H), 3,81 (m, 1H), 3,50 (m, 2H), 3,20 (m, 1H).

Стадия E. Получение 4-(3-йодфенил)-1-метил-2-оксо-3-пирролидинкарбоновой кислоты

Трет-бутоксид калия (37 мл, 1 M раствор в тетрагидрофуране) охлаждали до 0°C. К данному раствору медленно добавляли 4-(3-йодфенил)-2-оксо-3-пирролидинкарбоновую кислоту (т. e. соединение, полученное на стадии D, 5,0 г, 15 ммоль) в тетрагидрофуране и перемешивали в течение 10 минут. Добавляли метилбромид (25% в ацетонитриле, 14 мл, 38 ммоль) и реакционную смесь перемешивали в течение 4 часов. Реакционную смесь разбавляли ацетонитрилом и подкисляли 1 н. водной хлористоводородной кислотой при 0°C. Реакционную смесь затем экстрагировали (3 ×) этилацетатом, объединенные органические вещества промывали солевым раствором и высушивали над сульфатом натрия с получением неочищенного остатка, который промывали диэтиловым эфиром с получением указанного в заголовке соединения (2,3 г) в виде грязно-белого твердого вещества.

1H ЯМР (400 МГц) δ 12,77 (s, 1H), 7,74 (s, 1H), 7,65 (d, 1H), 7,38 (d, 1H), 7,15 (t, 1H), 3,81 (m, 2H), 3,62 (m, 1H), 3,45 (d, 1H), 2,80 (s, 3H).

Стадия F. Получение N-(2-фторфенил)-4-(3-йодфенил)-1-метил-2-оксо-3-пирролидинкарбоксамида

К раствору 4-(3-йодфенил)-1-метил-2-оксо-3-пирролидинкарбоновой кислоты (т. e. соединения, полученного на стадии E, 0,5 г, 1,4 ммоль) и 2-фторанилина (0,15 мл, 1,6 ммоль) в N,N-диметилформамиде (10 мл) добавляли триэтиламин (0,6 мл, 4,3 ммоль) и перемешивали при температуре окружающей среды в течение 10 минут. Затем добавляли раствор пропилфосфонового ангидрида (T3P®) (50% в этилацетате, 1,7 мл, 2,89 ммоль) при 0°C и перемешивали в течение 2 часов. Реакционную смесь затем разбавляли водой и экстрагировали этилацетатом. Объединенные органические слои промывали водой и солевым раствором, а затем высушивали над сульфатом натрия. Растворитель выпаривали с получением неочищенного остатка, который промывали диэтиловым эфиром/пентаном с получением указанного в заголовке соединения (0,4 г) в виде грязно-белого твердого вещества.

1H ЯМР (400 МГц) δ 10,08 (s, 1H), 8,00 (m, 1H), 7,75 (s, 1H), 7,63 (d, 1H), 7,37 (d, 1H), 7,35 (m, 1H), 7,15 (m, 3H), 3,95 (m, 2H), 3,77 (m, 1H), 3,41 (m, 1H), 2,80 (s, 3H).

Стадия G. Получение N-(2-фторфенил)-4-(3-формилфенил)-1-метил-2-оксо-3-пирролидинкарбоксамида

Раствор N-(2-фторфенил)-4-(3-йодфенил)-1-метил-2-оксо-3-пирролидинкарбоксамида (т. e. соединения, полученного на стадии F, 0,5 г, 1,1 ммоль) и тетракис(трифенилфосфин)палладия(0) (0,086 г, 0,075 ммоль) в N,N-диметилформамиде (5 мл) в сосуде высокого давления перемешивали в атмосфере газообразного монооксида углерода (100 фунтов/кв. дюйм) в течение 30 минут. Давление понижали, добавляли трибутилсилан (0,83 мл) и реакционную смесь перемешивали в атмосфере газообразного монооксида углерода (100 фунтов/кв. дюйм) при температуре окружающей среды в течение 48 часов. Реакционную смесь затем разбавляли водой и экстрагировали этилацетатом. Объединенные органические слои промывали водой и солевым раствором и высушивали над сульфатом натрия. Растворитель выпаривали с получением неочищенного остатка, который очищали с помощью колоночной хроматографии на силикагеле с элюированием 20% этилацетатом в петролейном эфире с получением указанного в заголовке соединения (0,27 г) в виде светло-коричневого твердого вещества.

1H ЯМР (400 МГц) δ 10,15 (s, 1H), 10,00 (s, 1H), 8,15 (t, 1H), 7,82 (m, 1H), 7,64 (m, 1H), 7,55 (m, 1H), 7,39 (m, 1H), 7,12 (m, 3H), 4,20 (m, 1H), 3,80 (t, 1H), 3,31 (d, 1H), 3,22 (m, 1H), 3,10 (s, 3H).

Стадия H. Получение N-(2-фторфенил)-4-[3-[(метоксиимино)метил]фенил]-1-метил-2-оксо-3-пирролидинкарбоксамида

К раствору N-(2-фторфенил)-4-(3-формилфенил)-1-метил-2-оксо-3-пирролидинкарбоксамида (т. e. соединения, полученного на стадии G, 0,15 г, 0,41 ммоль) и гидрохлорида метоксиламина (0,054 г, 0,64 ммоль) в тетрагидрофуране (10 мл) добавляли ацетат натрия (0,047 г, 0,57 ммоль) и перемешивали при температуре окружающей среды в течение 2 часов. Реакционную смесь затем разбавляли водой и экстрагировали этилацетатом. Объединенные органические слои промывали водой и солевым раствором и высушивали над сульфатом натрия. Растворитель выпаривали с получением неочищенного продукта, который очищали с помощью препаративной тонкослойной хроматографии на силикагеле в 40% этилацетате/петролейном эфире с получением (0,07 г) указанного в заголовке соединения, соединения по настоящему изобретению, в виде грязно-белого твердого вещества.

1H ЯМР (400 МГц) δ 9,85 (s, 1H), 8,25 (t, 1H), 8,10 (s, 1H), 7,55 (s, 1H), 7,45 (s, 1H), 7,25 (s, 2H), 6,99 (m, 3H), 4,25 (m, 1H), 4,10 (s, 3H), 3,75 (d, 1H), 3,50 (m, 1H), 3,33 (m, 1H), 3,00 (s, 3H).

ПРИМЕР СИНТЕЗА 4

Получение (3S,4S)-4-[3-[(5-фтор-2-пиридинил)окси]фенил]-1-метил-2-оксо-N-(2,3,4-трифторфенил)-3-пирролидинкарбоксамида (соединения 87)

Стадия A. Получение 3-[(5-фтор-2-пиридинил)окси]бензальдегида

Раствор 3-гидроксибензальдегида (20 г, 164 ммоль) в N,N-диметилформамиде (150 мл) обрабатывали трет-бутоксидом калия (23,0 г, 205 ммоль) в течение периода 1 часа. Полученную в результате смесь перемешивали при 25°C в течение 1 часа, а затем обрабатывали 2,5-дифторпиридином (18,64 г, 162 ммоль). Полученную в результате реакционную смесь перемешивали при 120°C в течение 18 часов. Реакционную смесь затем охлаждали и разделяли между этилацетатом и солевым раствором. Органическую фазу промывали солевым раствором, высушивали над MgSO4 и концентрировали при пониженном давлении на диатомитовом вспомогательном фильтрующем материале Celite®. Очистка с помощью твердофазной хроматографии с элюированием с градиентом этилацетата в смеси гексанов (0-35%) обеспечивала 10,0 г указанного в заголовке соединения в виде белого твердого вещества.

1H ЯМР (DMSO-d6) δ 10,00 (s, 1H), 8,18 (d, 1H), 7,88 (m, 1H), 7,78 (m, 1H), 7,66 (t,1H), 7,62 (m, 1H), 7,50 (m, 1H), 7,23 (m, 1H).

Стадия B. Получение 5-фтор-2-[3-[(1E)-2-нитроэтенил]фенокси]пиридина

Раствор 3-[(5-фтор-2-пиридинил)окси]бензальдегида (т. e. продукта, полученного на стадии A, 10 г, 46,0 ммоль) в 1-хлорбутане (250 мл) обрабатывали нитрометаном (3,36 г, 55,2 ммоль), а затем пиперидином (391 мг, 4,6 ммоль) и уксусной кислотой (276 мг, 4,6 ммоль). Полученную в результате реакционную массу перемешивали при нагревании с обратным холодильником c азеотропным удалением воды в течение 18 часов. Неочищенную реакционную смесь затем концентрировали при пониженном давлении и очищали с помощью хроматографии (0-25% этилацетат в смеси гексанов в качестве элюента) с получением 8,7 г желтого масла.

1H ЯМР δ 8,02 (d, 1H), 7,98 (d, 1H), 7,55 (d, 1H), 7,49 (m, 2H), 7,38 (d, 1H), 7,31 (m, 1H), 7,26 (m, 1H), 6,98 (m, 1H).

Стадия C. Получение 1,3-диметил-2-[(1S)-1-[3-[(5-фтор-2-пиридинил)окси]фенил]-2-нитроэтил]пропандиоата

Перемешанную смесь 5-фтор-2-[3-[(1E)-2-нитроэтенил]фенокси]пиридина (т. e. продукта, полученного на стадии B, 8,67 г, 33,3 ммоль) и диметилмалоната (5,5 г, 41,7 ммоль) в толуоле (150 мл) обрабатывали бис[(R,R)-N,N'-дибензилциклогексан-1,2-диамин]бромидом Ni(II) (полученным, как описано в J. Am. Chem. Soc. 2005, 127, 9958-9959; 0,400 г, 0,499 ммоль). Реакционную массу перемешивали при 80°C в течение 18 часов. Полученную в результате смесь охлаждали до 25°C, фильтровали и концентрировали при пониженном давлении с получением 13,0 г масла янтарного цвета, которое использовали без дополнительной очистки на следующей стадии.

1H ЯМР δ 8,05 (d, 1H), 7,45 (m, 1H), 7,35 (t, 1H), 7,06 (m, 2H), 6,99 (m, 1H), 6,87 (m, 1H), 4,90 (m, 2H), 4,25 (m, 1H), 3,85 (d, 1H), 3,75 (s, 3H), 3,62 (s, 3H).

Стадия D. Получение метил-(3R,4S)-4-[3-[(5-фтор-2-пиридинил)окси]фенил]-2-оксо-3-пирролидинкарбоксилата

Перемешанную смесь 1,3-диметил 2-[(1S)-1-[3-[(5-фтор-2-пиридинил)окси]фенил]-2-нитроэтил]пропандиоата (13,0 г, 33,1 ммоль), гексагидрата хлорида никеля(II) (7,88 г, 33,1 ммоль) и метанола (300 мл) охлаждали на ледяной бане и обрабатывали борогидридом натрия (т. e. продуктом, полученным на стадии C, 3,76 г, 99,3 ммоль) путем добавления в течение 60 минут 0,5 г порций. Полученную в результате смесь перемешивали при 25°C в течение 18 часов. Затем добавляли насыщенную этилендиаминтетрауксусную кислоту, раствор динатриевой соли (800 мл) и этилацетат (500 мл) и смесь перемешивали в течение 18 часов, а затем фильтровали через подушку из диатомитового вспомогательного фильтрующего материала Celite® для удаления нерастворимых частиц. Слои фильтрата разделяли и водный слой экстрагировали этилацетатом (2 × 500 мл). Объединенные органические экстракты промывали насыщенным раствором хлорида аммония (800 мл) и солевым раствором (1000 мл). Органический экстракт высушивали над MgSO4 и концентрировали при пониженном давлении с получением вязкого серого масла (8,99 г), которое использовали без дополнительной очистки.

1H ЯМР δ 8,02 (d, 1H), 7,45 (m, 1H), 7,37 (t, 1H), 7,09 (m, 1H), 7,02 (m, 2H), 6,94 (m, 2H), 4,13 (m, 1H), 3,82 (m, 1H), 3,78 (s, 3H), 3,58 (d, 1H), 3,42 (m, 1H).

Стадия E. Получение (3R,4S)-4-[3-[(5-фтор-2-пиридинил)окси]фенил]-2-оксо-3-пирролидинкарбоновой кислоты

Смесь метил-(3R,4S)-4-[3-[(5-фтор-2-пиридинил)окси]фенил]-2-оксо-3-пирролидинкарбоксилата (т. e. продукта, полученного на стадии D, 8,49 г, 25,7 ммоль) и водного раствора гидроксида натрия (50 вес. %, 6,16 г, 77,2 ммоль) в метаноле (125 мл) перемешивали при 25°C в течение 18 часов. Затем реакционную смесь разбавляли водой (250 мл) и экстрагировали диэтиловым эфиром (2 × 150 мл). Эфирный экстракт удаляли и водную фазу подкисляли концентрированной хлористоводородной кислотой до pH 2. Подкисленную водную фазу экстрагировали этилацетатом (2 × 300 мл). Объединенные органические экстракты промывали солевым раствором, высушивали (MgSO4) и концентрировали при пониженном давлении с получением 5,5 г бежевого стеклообразного вещества, которое использовали на следующей стадии без дополнительной очистки.

1H ЯМР (DMSO-d6) δ 12,7 (s, 1H), 8,16 (d, 1H), 8,07 (s, 1H), 7,83 (m, 1H), 7,37 (m, 1H), 7,17 (m, 1H), 7,12 (m, 2H), 7,01 (m, 1H), 3,88 (m, 1H), 3,62 (m, 1H), 3,51 (d, 1H), 3,21 (t, 1H).

Стадия F. Получение (3R,4S)-4-[3-[(5-фтор-2-пиридинил)окси]фенил]-1-метил-2-оксо-3-пирролидинкарбоновой кислоты

К раствору трет-бутоксида калия (4,75 г, 42,4 ммоль) в 42,4 мл тетрагидрофурана при 0°C добавляли раствор (3R,4S)-4-[3-[(5-фтор-2-пиридинил)окси]фенил]-2-оксо-3-пирролидинкарбоновой кислоты (т. e. продукта, полученного на стадии E, 5,5 г, 17,4 ммоль) в тетрагидрофуране (50 мл). Полученную в результате реакционную массу перемешивали в течение 15 минут при 0°C. Каплями добавляли йодметан (6,24 г, 44 ммоль) в 40 мл тетрагидрофурана в течение 20 минут. Обеспечивали нагревание полученной в результате смеси до 25°C и перемешивали в течение ночи. Реакционную массу концентрировали при пониженном давлении и разделяли между этиловым эфиром и водой. Органическую фазу удаляли, а водную подкисляли до pH 1 концентрированной хлористоводородной кислотой. Подкисленный водный слой экстрагировали этилацетатом. Органический экстракт высушивали (MgSO4) и концентрировали при пониженном давлении с получением 4,0 г желтого стеклообразного вещества, которое использовали без дополнительной очистки.

1H ЯМР δ 9,29 (s, 1H), 8,03 (d, 1H), 7,46 (m, 1H), 7,37 (m, 1H), 7,13 (m, 1H), 7,06 (m, 1H), 7,02 (m, 1H), 6,92 (m, 1H), 3,96 (m, 1H), 3,79 (m, 1H), 3,57 (d, 1H), 3,50 (m, 1H), 2,97 (d, 3H).

Стадия G. Получение (3S,4S)-4-[3-[(5-фтор-2-пиридинил)окси]фенил]-1-метил-2-оксо-N-(2,3,4-трифторфенил)-3-пирролидинкарбоксамида

К раствору (3R,4S)-4-[3-[(5-фтор-2-пиридинил)окси]фенил]-1-метил-2-оксо-3-пирролидинкарбоновой кислоты (т. e. продукта, полученного на стадии F, 500 мг, 1,51 ммоль) в 5,0 мл тетрагидрофурана при 25°C добавляли триэтиламин (632 мкл, 4,54 ммоль). Реакционную смесь перемешивали в течение 5 минут, а затем обрабатывали 2,3,4-трифторанилином (208 мкл, 1,97 ммоль). После перемешивания в течение еще 5 минут смесь обрабатывали пропилфосфоновым ангидридом (50% в этилацетате, 1,63 г, 2,57 ммоль). Полученную в результате смесь перемешивали в течение ночи при 25°C. Неочищенную смесь концентрировали при пониженном давлении и очищали с помощью хроматографии на силикагеле с элюированием 0-15% этилацетатом дихлорметане с получением 278 мг указанного в заголовке соединения, соединения по настоящему изобретению, в виде вязкого желтого масла.

1H ЯМР δ 9,86 (s, 1H), 8,02 (d, 1H), 7,93 (m, 1H), 7,45 (m, 1H), 7,39 (t, 1H), 7,19 (m, 1H), 7,12 (m, 1H), 7,03 (m, 1H), 6,93 (m, 1H), 6,90 (m, 1H), 4,11 (m, 1H), 3,80 (m, 1H), 3,62 (d, 1H), 3,50 (m, 1H), 2,99 (d, 3H).

С помощью процедур, описанных в данном документе, совместно со способами, известными из уровня техники, можно получить следующие соединения из таблиц 1-6120. Далее приведены сокращения, применяемые в следующих таблицах: t означает третичный, s означает вторичный, n означает нормальный, i означает изо, c означает цикло, Me означает метил, Et означает этил, Pr означает пропил, Bu означает бутил, i-Pr означает изопропил, c-Pr циклопропил, t-Bu означает третичный бутил, c-Bu означает циклобутил, Ph означает фенил, OMe означает метокси, OEt означает этокси, SMe означает метилтио, NHMe означает метиламино, CN означает циано, NO2 означает нитро, TMS означает триметилсилил, SOMe означает метилсульфинил, C2F5 означает CF2CF3 и SO2Me означает метилсульфонил.

Таблица 1

J2 представляет собой -CH2-; A представляет собой -CH2-; Q2 представляет собой Ph(2-F); и J1 представляет собой

Таблица 2 составлена таким же образом, за исключением того, что заголовок строки "J2 представляет собой -CH2-; A представляет собой -CH2-; Q2 представляет собой Ph(2-F); и J1 представляет собой" заменен на заголовок строки, приведенный в таблице 2 ниже (т. e. "J2 представляет собой -CH2-; A представляет собой -CH2-; Q2 представляет собой Ph(2,3-ди-F); и J1 представляет собой"). Таким образом, первая запись в таблице 2 представляет собой соединение формулы 1, где J2 представляет собой -CH2-; A представляет собой -CH2-; Q2 представляет собой Ph(2,3-ди-F); и J1 представляет собой Ph(3-Cl) (т. e. 3-хлорфенил). Таблицы 3-360 составлены подобным образом.

Таблица Заголовок строки
2 J2 представляет собой -CH2-; A представляет собой -CH2-; Q2 представляет собой Ph(2,3-ди-F); и J1 представляет собой
3 J2 представляет собой -CH2-; A представляет собой -CH2-; Q2 представляет собой Ph(2,4-ди-F); и J1 представляет собой
4 J2 представляет собой -CH2-; A представляет собой -CH2-; Q2 представляет собой Ph(2,3,4-три-F); и J1 представляет собой
5 J2 представляет собой -CH2-; A представляет собой -CH2-; Q2 представляет собой Ph(2-CF3); и J1 представляет собой
6 J2 представляет собой -CH2-; A представляет собой -CH2-; Q2 представляет собой Ph(2-Me); и J1 представляет собой
7 J2 представляет собой -CH2-; A представляет собой -CH2-; Q2 представляет собой Ph(2-NO2); и J1 представляет собой
8 J2 представляет собой -CH2-; A представляет собой -CH2-; Q2 представляет собой Ph(2-Cl); и J1 представляет собой
9 J2 представляет собой -CH2-; A представляет собой -CH2-; Q2 представляет собой Ph(2-SO2Me); и J1 представляет собой
10 J2 представляет собой -CH2-; A представляет собой -CH2-; Q2 представляет собой Ph(2-F,3-Cl); и J1 представляет собой
11 J2 представляет собой -CH2-; A представляет собой -CH2CH2-; Q2 представляет собой Ph(2-F); и J1 представляет собой
12 J2 представляет собой -CH2-; A представляет собой -CH2CH2-; Q2 представляет собой Ph(2,3-ди-F); и J1 представляет собой
13 J2 представляет собой -CH2-; A представляет собой -CH2CH2-; Q2 представляет собой Ph(2,4-ди-F); и J1 представляет собой
14 J2 представляет собой -CH2-; A представляет собой -CH2CH2-; Q2 представляет собой Ph(2,3,4-три-F); и J1 представляет собой
15 J2 представляет собой -CH2-; A представляет собой -CH2CH2-; Q2 представляет собой Ph(2-CF3); и J1 представляет собой
16 J2 представляет собой -CH2-; A представляет собой -CH2CH2-; Q2 представляет собой Ph(2-Me); и J1 представляет собой
17 J2 представляет собой -CH2-; A представляет собой -CH2CH2-; Q2 представляет собой Ph(2-NO2); и J1 представляет собой
18 J2 представляет собой -CH2-; A представляет собой -CH2CH2-; Q2 представляет собой Ph(2-Cl); и J1 представляет собой
19 J2 представляет собой -CH2-; A представляет собой -CH2CH2-; Q2 представляет собой Ph(2-SO2Me); и J1 представляет собой
20 J2 представляет собой -CH2-; A представляет собой -CH2CH2-; Q2 представляет собой Ph(2-F,3-Cl); и J1 представляет собой
21 J2 представляет собой -CH2-; A представляет собой -CH2CH2CH2-; Q2 представляет собой Ph(2-F); и J1 представляет собой
22 J2 представляет собой -CH2-; A представляет собой -CH2CH2CH2-; Q2 представляет собой Ph(2,3-ди-F); и J1 представляет собой
23 J2 представляет собой -CH2-; A представляет собой -CH2CH2CH2-; Q2 представляет собой Ph(2,4-ди-F); и J1 представляет собой
24 J2 представляет собой -CH2-; A представляет собой -CH2CH2CH2-; Q2 представляет собой Ph(2,3,4-три-F); и J1 представляет собой
25 J2 представляет собой -CH2-; A представляет собой -CH2CH2CH2-; Q2 представляет собой Ph(2-CF3); и J1 представляет собой
26 J2 представляет собой -CH2-; A представляет собой -CH2CH2CH2-; Q2 представляет собой Ph(2-Me); и J1 представляет собой
27 J2 представляет собой -CH2-; A представляет собой -CH2CH2CH2-; Q2 представляет собой Ph(2-NO2); и J1 представляет собой
28 J2 представляет собой -CH2-; A представляет собой -CH2CH2CH2-; Q2 представляет собой Ph(2-Cl); и J1 представляет собой
29 J2 представляет собой -CH2-; A представляет собой -CH2CH2CH2-; Q2 представляет собой Ph(2-SO2Me); и J1 представляет собой
30 J2 представляет собой -CH2-; A представляет собой -CH2CH2CH2-; Q2 представляет собой Ph(2-F,3-Cl); и J1 представляет собой
31 J2 представляет собой -CH2-; A представляет собой -O-; Q2 представляет собой Ph(2-F); и J1 представляет собой
32 J2 представляет собой -CH2-; A представляет собой -O-; Q2 представляет собой Ph(2,3-ди-F); и J1 представляет собой
33 J2 представляет собой -CH2-; A представляет собой -O-; Q2 представляет собой Ph(2,4-ди-F); и J1 представляет собой
34 J2 представляет собой -CH2-; A представляет собой -O-; Q2 представляет собой Ph(2,3,4-три-F); и J1 представляет собой
35 J2 представляет собой -CH2-; A представляет собой -O-; Q2 представляет собой Ph(2-CF3); и J1 представляет собой
36 J2 представляет собой -CH2-; A представляет собой -O-; Q2 представляет собой Ph(2-Me); и J1 представляет собой
37 J2 представляет собой -CH2-; A представляет собой -O-; Q2 представляет собой Ph(2-NO2); и J1 представляет собой
38 J2 представляет собой -CH2-; A представляет собой -O-; Q2 представляет собой Ph(2-Cl); и J1 представляет собой
39 J2 представляет собой -CH2-; A представляет собой -O-; Q2 представляет собой Ph(2-SO2Me); и J1 представляет собой
40 J2 представляет собой -CH2-; A представляет собой -O-; Q2 представляет собой Ph(2-F,3-Cl); и J1 представляет собой
41 J2 представляет собой -CH2-; A представляет собой -OCH2-; Q2 представляет собой Ph(2-F); и J1 представляет собой
42 J2 представляет собой -CH2-; A представляет собой -OCH2-; Q2 представляет собой Ph(2,3-ди-F); и J1 представляет собой
43 J2 представляет собой -CH2-; A представляет собой -OCH2-; Q2 представляет собой Ph(2,4-ди-F); и J1 представляет собой
44 J2 представляет собой -CH2-; A представляет собой -OCH2-; Q2 представляет собой Ph(2,3,4-три-F); и J1 представляет собой
45 J2 представляет собой -CH2-; A представляет собой -OCH2-; Q2 представляет собой Ph(2-CF3); и J1 представляет собой
46 J2 представляет собой -CH2-; A представляет собой -OCH2-; Q2 представляет собой Ph(2-Me); и J1 представляет собой
47 J2 представляет собой -CH2-; A представляет собой -OCH2-; Q2 представляет собой Ph(2-NO2); и J1 представляет собой
48 J2 представляет собой -CH2-; A представляет собой -OCH2-; Q2 представляет собой Ph(2-Cl); и J1 представляет собой
49 J2 представляет собой -CH2-; A представляет собой -OCH2-; Q2 представляет собой Ph(2-SO2Me); и J1 представляет собой
50 J2 представляет собой -CH2-; A представляет собой -OCH2-; Q2 представляет собой Ph(2-F,3-Cl); и J1 представляет собой
51 J2 представляет собой -CH2-; A представляет собой -OCH2CH2-; Q2 представляет собой Ph(2-F); и J1 представляет собой
52 J2 представляет собой -CH2-; A представляет собой -OCH2CH2-; Q2 представляет собой Ph(2,3-ди-F); и J1 представляет собой
53 J2 представляет собой -CH2-; A представляет собой -OCH2CH2-; Q2 представляет собой Ph(2,4-ди-F); и J1 представляет собой
54 J2 представляет собой -CH2-; A представляет собой -OCH2CH2-; Q2 представляет собой Ph(2,3,4-три-F); и J1 представляет собой
55 J2 представляет собой -CH2-; A представляет собой -OCH2CH2-; Q2 представляет собой Ph(2-CF3); и J1 представляет собой
56 J2 представляет собой -CH2-; A представляет собой -OCH2CH2-; Q2 представляет собой Ph(2-Me); и J1 представляет собой
57 J2 представляет собой -CH2-; A представляет собой -OCH2CH2-; Q2 представляет собой Ph(2-NO2); и J1 представляет собой
58 J2 представляет собой -CH2-; A представляет собой -OCH2CH2-; Q2 представляет собой Ph(2-Cl); и J1 представляет собой
59 J2 представляет собой -CH2-; A представляет собой -OCH2CH2-; Q2 представляет собой Ph(2-SO2Me); и J1 представляет собой
60 J2 представляет собой -CH2-; A представляет собой -OCH2CH2-; Q2 представляет собой Ph(2-F,3-Cl); и J1 представляет собой
61 J2 представляет собой -CH2-; A представляет собой -CH2O-; Q2 представляет собой Ph(2-F); и J1 представляет собой
62 J2 представляет собой -CH2-; A представляет собой -CH2O-; Q2 представляет собой Ph(2,3-ди-F); и J1 представляет собой
63 J2 представляет собой -CH2-; A представляет собой -CH2O-; Q2 представляет собой Ph(2,4-ди-F); и J1 представляет собой
64 J2 представляет собой -CH2-; A представляет собой -CH2O-; Q2 представляет собой Ph(2,3,4-три-F); и J1 представляет собой
65 J2 представляет собой -CH2-; A представляет собой -CH2O-; Q2 представляет собой Ph(2-CF3); и J1 представляет собой
66 J2 представляет собой -CH2-; A представляет собой -CH2O-; Q2 представляет собой Ph(2-Me); и J1 представляет собой
67 J2 представляет собой -CH2-; A представляет собой -CH2O-; Q2 представляет собой Ph(2-NO2); и J1 представляет собой
68 J2 представляет собой -CH2-; A представляет собой -CH2O-; Q2 представляет собой Ph(2-Cl); и J1 представляет собой
69 J2 представляет собой -CH2-; A представляет собой -CH2O-; Q2 представляет собой Ph(2-SO2Me); и J1 представляет собой
70 J2 представляет собой -CH2-; A представляет собой -CH2O-; Q2 представляет собой Ph(2-F,3-Cl); и J1 представляет собой
71 J2 представляет собой -CH2-; A представляет собой -CH2CH2O-; Q2 представляет собой Ph(2-F); и J1 представляет собой
72 J2 представляет собой -CH2-; A представляет собой -CH2CH2O-; Q2 представляет собой Ph(2,3-ди-F); и J1 представляет собой
73 J2 представляет собой -CH2-; A представляет собой -CH2CH2O-; Q2 представляет собой Ph(2,4-ди-F); и J1 представляет собой
74 J2 представляет собой -CH2-; A представляет собой -CH2CH2O-; Q2 представляет собой Ph(2,3,4-три-F); и J1 представляет собой
75 J2 представляет собой -CH2-; A представляет собой -CH2CH2O-; Q2 представляет собой Ph(2-CF3); и J1 представляет собой
76 J2 представляет собой -CH2-; A представляет собой -CH2CH2O-; Q2 представляет собой Ph(2-Me); и J1 представляет собой
77 J2 представляет собой -CH2-; A представляет собой -CH2CH2O-; Q2 представляет собой Ph(2-NO2); и J1 представляет собой
78 J2 представляет собой -CH2-; A представляет собой -CH2CH2O-; Q2 представляет собой Ph(2-Cl); и J1 представляет собой
79 J2 представляет собой -CH2-; A представляет собой -CH2CH2O-; Q2 представляет собой Ph(2-SO2Me); и J1 представляет собой
80 J2 представляет собой -CH2-; A представляет собой -CH2CH2O-; Q2 представляет собой Ph(2-F,3-Cl); и J1 представляет собой
81 J2 представляет собой -CH2-; A представляет собой -S-; Q2 представляет собой Ph(2-F); и J1 представляет собой
82 J2 представляет собой -CH2-; A представляет собой -S-; Q2 представляет собой Ph(2,3-ди-F); и J1 представляет собой
83 J2 представляет собой -CH2-; A представляет собой -S-; Q2 представляет собой Ph(2,4-ди-F); и J1 представляет собой
84 J2 представляет собой -CH2-; A представляет собой -S-; Q2 представляет собой Ph(2,3,4-три-F); и J1 представляет собой
85 J2 представляет собой -CH2-; A представляет собой -S-; Q2 представляет собой Ph(2-CF3); и J1 представляет собой
86 J2 представляет собой -CH2-; A представляет собой -S-; Q2 представляет собой Ph(2-Me); и J1 представляет собой
87 J2 представляет собой -CH2-; A представляет собой -S-; Q2 представляет собой Ph(2-NO2); и J1 представляет собой
88 J2 представляет собой -CH2-; A представляет собой -S-; Q2 представляет собой Ph(2-Cl); и J1 представляет собой
89 J2 представляет собой -CH2-; A представляет собой -S-; Q2 представляет собой Ph(2-SO2Me); и J1 представляет собой
90 J2 представляет собой -CH2-; A представляет собой -S-; Q2 представляет собой Ph(2-F,3-Cl); и J1 представляет собой
91 J2 представляет собой -CH2-; A представляет собой -SCH2-; Q2 представляет собой Ph(2-F); и J1 представляет собой
92 J2 представляет собой -CH2-; A представляет собой -SCH2-; Q2 представляет собой Ph(2,3-ди-F); и J1 представляет собой
93 J2 представляет собой -CH2-; A представляет собой -SCH2-; Q2 представляет собой Ph(2,4-ди-F); и J1 представляет собой
94 J2 представляет собой -CH2-; A представляет собой -SCH2-; Q2 представляет собой Ph(2,3,4-три-F); и J1 представляет собой
95 J2 представляет собой -CH2-; A представляет собой -SCH2-; Q2 представляет собой Ph(2-CF3); и J1 представляет собой
96 J2 представляет собой -CH2-; A представляет собой -SCH2-; Q2 представляет собой Ph(2-Me); и J1 представляет собой
97 J2 представляет собой -CH2-; A представляет собой -SCH2-; Q2 представляет собой Ph(2-NO2); и J1 представляет собой
98 J2 представляет собой -CH2-; A представляет собой -SCH2-; Q2 представляет собой Ph(2-Cl); и J1 представляет собой
99 J2 представляет собой -CH2-; A представляет собой -SCH2-; Q2 представляет собой Ph(2-SO2Me); и J1 представляет собой
100 J2 представляет собой -CH2-; A представляет собой -SCH2-; Q2 представляет собой Ph(2-F,3-Cl); и J1 представляет собой
101 J2 представляет собой -CH2-; A представляет собой -CH2S-; Q2 представляет собой Ph(2-F); и J1 представляет собой
102 J2 представляет собой -CH2-; A представляет собой -CH2S-; Q2 представляет собой Ph(2,3-ди-F); и J1 представляет собой
103 J2 представляет собой -CH2-; A представляет собой -CH2S-; Q2 представляет собой Ph(2,4-ди-F); и J1 представляет собой
104 J2 представляет собой -CH2-; A представляет собой -CH2S-; Q2 представляет собой Ph(2,3,4-три-F); и J1 представляет собой
105 J2 представляет собой -CH2-; A представляет собой -CH2S-; Q2 представляет собой Ph(2-CF3); и J1 представляет собой
106 J2 представляет собой -CH2-; A представляет собой -CH2S-; Q2 представляет собой Ph(2-Me); и J1 представляет собой
107 J2 представляет собой -CH2-; A представляет собой -CH2S-; Q2 представляет собой Ph(2-NO2); и J1 представляет собой
108 J2 представляет собой -CH2-; A представляет собой -CH2S-; Q2 представляет собой Ph(2-Cl); и J1 представляет собой
109 J2 представляет собой -CH2-; A представляет собой -CH2S-; Q2 представляет собой Ph(2-SO2Me); и J1 представляет собой
110 J2 представляет собой -CH2-; A представляет собой -CH2S-; Q2 представляет собой Ph(2-F,3-Cl); и J1 представляет собой
111 J2 представляет собой -CH2-; A представляет собой -NH-; Q2 представляет собой Ph(2-F); и J1 представляет собой
112 J2 представляет собой -CH2-; A представляет собой -NH-; Q2 представляет собой Ph(2,3-ди-F); и J1 представляет собой
113 J2 представляет собой -CH2-; A представляет собой -NH-; Q2 представляет собой Ph(2,4-ди-F); и J1 представляет собой
114 J2 представляет собой -CH2-; A представляет собой -NH-; Q2 представляет собой Ph(2,3,4-три-F); и J1 представляет собой
115 J2 представляет собой -CH2-; A представляет собой -NH-; Q2 представляет собой Ph(2-CF3); и J1 представляет собой
116 J2 представляет собой -CH2-; A представляет собой -NH-; Q2 представляет собой Ph(2-Me); и J1 представляет собой
117 J2 представляет собой -CH2-; A представляет собой -NH-; Q2 представляет собой Ph(2-NO2); и J1 представляет собой
118 J2 представляет собой -CH2-; A представляет собой -NH-; Q2 представляет собой Ph(2-Cl); и J1 представляет собой
119 J2 представляет собой -CH2-; A представляет собой -NH-; Q2 представляет собой Ph(2-SO2Me); и J1 представляет собой
120 J2 представляет собой -CH2-; A представляет собой -NH-; Q2 представляет собой Ph(2-F,3-Cl); и J1 представляет собой
121 J2 представляет собой -CH2-; A представляет собой -CH2NH-; Q2 представляет собой Ph(2-F); и J1 представляет собой
122 J2 представляет собой -CH2-; A представляет собой -CH2NH-; Q2 представляет собой Ph(2,3-ди-F); и J1 представляет собой
123 J2 представляет собой -CH2-; A представляет собой -CH2NH-; Q2 представляет собой Ph(2,4-ди-F); и J1 представляет собой
124 J2 представляет собой -CH2-; A представляет собой -CH2NH-; Q2 представляет собой Ph(2,3,4-три-F); и J1 представляет собой
125 J2 представляет собой -CH2-; A представляет собой -CH2NH-; Q2 представляет собой Ph(2-CF3); и J1 представляет собой
126 J2 представляет собой -CH2-; A представляет собой -CH2NH-; Q2 представляет собой Ph(2-Me); и J1 представляет собой
127 J2 представляет собой -CH2-; A представляет собой -CH2NH-; Q2 представляет собой Ph(2-NO2); и J1 представляет собой
128 J2 представляет собой -CH2-; A представляет собой -CH2NH-; Q2 представляет собой Ph(2-Cl); и J1 представляет собой
129 J2 представляет собой -CH2-; A представляет собой -CH2NH-; Q2 представляет собой Ph(2-SO2Me); и J1 представляет собой
130 J2 представляет собой -CH2-; A представляет собой -CH2NH-; Q2 представляет собой Ph(2-F,3-Cl); и J1 представляет собой
131 J2 представляет собой -CH2-; A представляет собой -NHCH2-; Q2 представляет собой Ph(2-F); и J1 представляет собой
132 J2 представляет собой -CH2-; A представляет собой -NHCH2-; Q2 представляет собой Ph(2,3-ди-F); и J1 представляет собой
133 J2 представляет собой -CH2-; A представляет собой -NHCH2-; Q2 представляет собой Ph(2,4-ди-F); и J1 представляет собой
134 J2 представляет собой -CH2-; A представляет собой -NHCH2-; Q2 представляет собой Ph(2,3,4-три-F); и J1 представляет собой
135 J2 представляет собой -CH2-; A представляет собой -NHCH2-; Q2 представляет собой Ph(2-CF3); и J1 представляет собой
136 J2 представляет собой -CH2-; A представляет собой -NHCH2-; Q2 представляет собой Ph(2-Me); и J1 представляет собой
137 J2 представляет собой -CH2-; A представляет собой -NHCH2-; Q2 представляет собой Ph(2-NO2); и J1 представляет собой
138 J2 представляет собой -CH2-; A представляет собой -NHCH2-; Q2 представляет собой Ph(2-Cl); и J1 представляет собой
139 J2 представляет собой -CH2-; A представляет собой -NHCH2-; Q2 представляет собой Ph(2-SO2Me); и J1 представляет собой
140 J2 представляет собой -CH2-; A представляет собой -NHCH2-; Q2 представляет собой Ph(2-F,3-Cl); и J1 представляет собой
141 J2 представляет собой -CH2-; A представляет собой -HC=CH-; Q2 представляет собой Ph(2-F); и J1 представляет собой
142 J2 представляет собой -CH2-; A представляет собой -HC=CH-; Q2 представляет собой Ph(2,3-ди-F); и J1 представляет собой
143 J2 представляет собой -CH2-; A представляет собой -HC=CH-; Q2 представляет собой Ph(2,4-ди-F); и J1 представляет собой
144 J2 представляет собой -CH2-; A представляет собой -HC=CH-; Q2 представляет собой Ph(2,3,4-три-F); и J1 представляет собой
145 J2 представляет собой -CH2-; A представляет собой -HC=CH-; Q2 представляет собой Ph(2-CF3); и J1 представляет собой
146 J2 представляет собой -CH2-; A представляет собой -HC=CH-; Q2 представляет собой Ph(2-Me); и J1 представляет собой
147 J2 представляет собой -CH2-; A представляет собой -HC=CH-; Q2 представляет собой Ph(2-NO2); и J1 представляет собой
148 J2 представляет собой -CH2-; A представляет собой -HC=CH-; Q2 представляет собой Ph(2-Cl); и J1 представляет собой
149 J2 представляет собой -CH2-; A представляет собой -HC=CH-; Q2 представляет собой Ph(2-SO2Me); и J1 представляет собой
150 J2 представляет собой -CH2-; A представляет собой -HC=CH-; Q2 представляет собой Ph(2-F,3-Cl); и J1 представляет собой
151 J2 представляет собой -CH2-; A представляет собой -HC≡CH-; Q2 представляет собой Ph(2-F); и J1 представляет собой
152 J2 представляет собой -CH2-; A представляет собой -HC≡CH-; Q2 представляет собой Ph(2,3-ди-F); и J1 представляет собой
153 J2 представляет собой -CH2-; A представляет собой -HC≡CH-; Q2 представляет собой Ph(2,4-ди-F); и J1 представляет собой
154 J2 представляет собой -CH2-; A представляет собой -HC≡CH-; Q2 представляет собой Ph(2,3,4-три-F); и J1 представляет собой
155 J2 представляет собой -CH2-; A представляет собой -HC≡CH-; Q2 представляет собой Ph(2-CF3); и J1 представляет собой
156 J2 представляет собой -CH2-; A представляет собой -HC≡CH-; Q2 представляет собой Ph(2-Me); и J1 представляет собой
157 J2 представляет собой -CH2-; A представляет собой -HC≡CH-; Q2 представляет собой Ph(2-NO2); и J1 представляет собой
158 J2 представляет собой -CH2-; A представляет собой -HC≡CH-; Q2 представляет собой Ph(2-Cl); и J1 представляет собой
159 J2 представляет собой -CH2-; A представляет собой -HC≡CH-; Q2 представляет собой Ph(2-SO2Me); и J1 представляет собой
160 J2 представляет собой -CH2-; A представляет собой -HC≡CH-; Q2 представляет собой Ph(2-F,3-Cl); и J1 представляет собой
161 J2 представляет собой -CH2-; A представляет собой -HNN=CH-; Q2 представляет собой Ph(2-F); и J1 представляет собой
162 J2 представляет собой -CH2-; A представляет собой -HNN=CH-; Q2 представляет собой Ph(2,3-ди-F); и J1 представляет собой
163 J2 представляет собой -CH2-; A представляет собой -HNN=CH-; Q2 представляет собой Ph(2,4-ди-F); и J1 представляет собой
164 J2 представляет собой -CH2-; A представляет собой -HNN=CH-; Q2 представляет собой Ph(2,3,4-три-F); и J1 представляет собой
165 J2 представляет собой -CH2-; A представляет собой -HNN=CH-; Q2 представляет собой Ph(2-CF3); и J1 представляет собой
166 J2 представляет собой -CH2-; A представляет собой -HNN=CH-; Q2 представляет собой Ph(2-Me); и J1 представляет собой
167 J2 представляет собой -CH2-; A представляет собой -HNN=CH-; Q2 представляет собой Ph(2-NO2); и J1 представляет собой
168 J2 представляет собой -CH2-; A представляет собой -HNN=CH-; Q2 представляет собой Ph(2-Cl); и J1 представляет собой
169 J2 представляет собой -CH2-; A представляет собой -HNN=CH-; Q2 представляет собой Ph(2-SO2Me); и J1 представляет собой
170 J2 представляет собой -CH2-; A представляет собой -HNN=CH-; Q2 представляет собой Ph(2-F,3-Cl); и J1 представляет собой
171 J2 представляет собой -CH2-; A представляет собой -CHN=NH-; Q2 представляет собой Ph(2-F); и J1 представляет собой
172 J2 представляет собой -CH2-; A представляет собой -CHN=NH-; Q2 представляет собой Ph(2,3-ди-F); и J1 представляет собой
173 J2 представляет собой -CH2-; A представляет собой -CHN=NH-; Q2 представляет собой Ph(2,4-ди-F); и J1 представляет собой
174 J2 представляет собой -CH2-; A представляет собой -CHN=NH-; Q2 представляет собой Ph(2,3,4-три-F); и J1 представляет собой
175 J2 представляет собой -CH2-; A представляет собой -CHN=NH-; Q2 представляет собой Ph(2-CF3); и J1 представляет собой
176 J2 представляет собой -CH2-; A представляет собой -CHN=NH-; Q2 представляет собой Ph(2-Me); и J1 представляет собой
177 J2 представляет собой -CH2-; A представляет собой -CHN=NH-; Q2 представляет собой Ph(2-NO2); и J1 представляет собой
178 J2 представляет собой -CH2-; A представляет собой -CHN=NH-; Q2 представляет собой Ph(2-Cl); и J1 представляет собой
179 J2 представляет собой -CH2-; A представляет собой -CHN=NH-; Q2 представляет собой Ph(2-SO2Me); и J1 представляет собой
180 J2 представляет собой -CH2-; A представляет собой -CHN=NH-; Q2 представляет собой Ph(2-F,3-Cl); и J1 представляет собой
181 J2 представляет собой -CH2CH2-; A представляет собой -CH2-; Q2 представляет собой Ph(2-F); и J1 представляет собой
182 J2 представляет собой -CH2CH2-; A представляет собой -CH2-; Q2 представляет собой Ph(2,3-ди-F); и J1 представляет собой
183 J2 представляет собой -CH2CH2-; A представляет собой -CH2-; Q2 представляет собой Ph(2,4-ди-F); и J1 представляет собой
184 J2 представляет собой -CH2CH2-; A представляет собой -CH2-; Q2 представляет собой Ph(2,3,4-три-F); и J1 представляет собой
185 J2 представляет собой -CH2CH2-; A представляет собой -CH2-; Q2 представляет собой Ph(2-CF3); и J1 представляет собой
186 J2 представляет собой -CH2CH2-; A представляет собой -CH2-; Q2 представляет собой Ph(2-Me); и J1 представляет собой
187 J2 представляет собой -CH2CH2-; A представляет собой -CH2-; Q2 представляет собой Ph(2-NO2); и J1 представляет собой
188 J2 представляет собой -CH2CH2-; A представляет собой -CH2-; Q2 представляет собой Ph(2-Cl); и J1 представляет собой
189 J2 представляет собой -CH2CH2-; A представляет собой -CH2-; Q2 представляет собой Ph(2-SO2Me); и J1 представляет собой
190 J2 представляет собой -CH2CH2-; A представляет собой -CH2-; Q2 представляет собой Ph(2-F,3-Cl); и J1 представляет собой
191 J2 представляет собой -CH2CH2-; A представляет собой -CH2CH2-; Q2 представляет собой Ph(2-F); и J1 представляет собой
192 J2 представляет собой -CH2CH2-; A представляет собой -CH2CH2-; Q2 представляет собой Ph(2,3-ди-F); и J1 представляет собой
193 J2 представляет собой -CH2CH2-; A представляет собой -CH2CH2-; Q2 представляет собой Ph(2,4-ди-F); и J1 представляет собой
194 J2 представляет собой -CH2CH2-; A представляет собой -CH2CH2-; Q2 представляет собой Ph(2,3,4-три-F); и J1 представляет собой
195 J2 представляет собой -CH2CH2-; A представляет собой -CH2CH2-; Q2 представляет собой Ph(2-CF3); и J1 представляет собой
196 J2 представляет собой -CH2CH2-; A представляет собой -CH2CH2-; Q2 представляет собой Ph(2-Me); и J1 представляет собой
197 J2 представляет собой -CH2CH2-; A представляет собой -CH2CH2-; Q2 представляет собой Ph(2-NO2); и J1 представляет собой
198 J2 представляет собой -CH2CH2-; A представляет собой -CH2CH2-; Q2 представляет собой Ph(2-Cl); и J1 представляет собой
199 J2 представляет собой -CH2CH2-; A представляет собой -CH2CH2-; Q2 представляет собой Ph(2-SO2Me); и J1 представляет собой
200 J2 представляет собой -CH2CH2-; A представляет собой -CH2CH2-; Q2 представляет собой Ph(2-F,3-Cl); и J1 представляет собой
201 J2 представляет собой -CH2CH2-; A представляет собой -CH2CH2CH2-; Q2 представляет собой Ph(2-F); и J1 представляет собой
202 J2 представляет собой -CH2CH2-; A представляет собой -CH2CH2CH2-; Q2 представляет собой Ph(2,3-ди-F); и J1 представляет собой
203 J2 представляет собой -CH2CH2-; A представляет собой -CH2CH2CH2-; Q2 представляет собой Ph(2,4-ди-F); и J1 представляет собой
204 J2 представляет собой -CH2CH2-; A представляет собой -CH2CH