×
27.12.2019
219.017.f2b0

Результат интеллектуальной деятельности: ДИФФЕРЕНЦИАЛЬНЫЙ КАСКАД НА КОМПЛЕМЕНТАРНЫХ JFET ПОЛЕВЫХ ТРАНЗИСТОРАХ С ПОВЫШЕННЫМ ОСЛАБЛЕНИЕМ ВХОДНОГО СИНФАЗНОГО СИГНАЛА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области радиотехники. Технический результат: создание условий, при которых обеспечиваются более высокие значения коэффициента ослабления входных синфазных сигналов и коэффициента подавления помех по шинам питания. Для этого предложен дифференциальный каскад на комплементарных JFET полевых транзисторах с повышенным ослаблением входного синфазного сигнала, который содержит первый (1) и второй (2) входы устройства, первый (3) входной полевой транзистор, первый (4) токовый выход устройства, первую (5) шину источника питания, второй (6) входной полевой транзистор, второй (7) токовый выход устройства, третий (8) входной полевой транзистор, третий (9) токовый выход устройства, вторую (10) шину источника питания, четвертый (11) входной полевой транзистор, четвертый (12) токовый выход устройства, первый (13) дополнительный полевой транзистор, первый (14) вспомогательный двухполюсник. 1 з.п. ф-лы, 12 ил.

Изобретение относится к области радиотехники и связи и может быть использовано в качестве устройства усиления аналоговых сигналов, в структуре аналоговых микросхем различного функционального назначения, например, операционных усилителях (ОУ), компараторах, мостовых усилителях мощности и т.п., в т.ч. работающих при низких температурах и воздействии радиации [1].

Известны схемы классических дифференциальных каскадов на комплементарных транзисторах [2-28], в т.ч. на комплементарных КМОП полевых транзисторах [3-28] и комплементарных полевых транзисторах с управляющим p-n переходом (JFet) [2], которые стали основой многих серийных аналоговых микросхем. В литературе по аналоговой микроэлектронике этот класс ДК имеет специальное обозначение – dual-input-stage [29].

Для работы при низких температурах и жестких ограничениях на уровень шумов перспективно использование JFet полевых транзисторов [30-32]. ДК данного класса активно применяются в структуре малошумящих аналоговых интерфейсов для обработки сигналов датчиков [33-35].

Ближайшим прототипом (фиг. 1) заявляемого устройства является дифференциальный каскад, описанный в патенте US 5.291.149, fig.4, 1994г., который содержит первый 1 и второй 2 входы устройства, первый 3 входной полевой транзистор, затвор которого соединен с первым 1 входом устройства, сток соединен с первым 4 токовым выходом устройства, согласованным с первой 5 шиной источника питания, второй 6 входной полевой транзистор, затвор которого соединен со вторым 2 входом устройства, а сток соединен со вторым 7 токовым выходом устройства, согласованным с первой 5 шиной источника питания, причем истоки первого 3 и второго 6 входных полевых транзисторов связаны друг с другом, третий 8 входной полевой транзистор, затвор которого соединен с первым 1 входом устройства, сток соединен с третьим 9 токовым выходом устройства, согласованным со второй 10 шиной источника питания, четвертый 11 входной полевой транзистор, затвор которого соединен со вторым 2 входом устройства, а сток соединен с четвертым 12 токовым выходом устройства, согласованным со второй 10 шиной источника питания, причем истоки третьего 8 и четвертого 11 входных полевых транзисторов связаны друг с другом.

Существенный недостаток известного ДК фиг. 1 состоит в том, что статический режим его входных полевых транзисторов (ПТ) определяется двумя независимыми источниками опорного тока I1 (I2), которые, как правило, неидентичны из-за разных напряжений отсечки ПТ c p- и n-каналами. Это становится источником дополнительных погрешностей при усилении сигналов, ухудшает коэффициент ослабления входных синфазных сигналов ДК (Кос.сф), а также коэффициент подавления помех по шинам питания (Кпп). В прецизионных устройствах требования к этим параметрам иногда доминируют.

Основная задача предполагаемого изобретения состоит в создании условий, при которых в ДК фиг. 1 обеспечиваются более высокие значения Кос.сф и Кпп, в т.ч. при отрицательных температурах (до -197̊С).

Поставленная задача решается тем, что в дифференциальном каскаде фиг. 1, содержащем первый 1 и второй 2 входы устройства, первый 3 входной полевой транзистор, затвор которого соединен с первым 1 входом устройства, сток соединен с первым 4 токовым выходом устройства, согласованным с первой 5 шиной источника питания, второй 6 входной полевой транзистор, затвор которого соединен со вторым 2 входом устройства, а сток соединен со вторым 7 токовым выходом устройства, согласованным с первой 5 шиной источника питания, причем истоки первого 3 и второго 6 входных полевых транзисторов связаны друг с другом, третий 8 входной полевой транзистор, затвор которого соединен с первым 1 входом устройства, сток соединен с третьим 9 токовым выходом устройства, согласованным со второй 10 шиной источника питания, четвертый 11 входной полевой транзистор, затвор которого соединен со вторым 2 входом устройства, а сток соединен с четвертым 12 токовым выходом устройства, согласованным со второй 10 шиной источника питания, причем истоки третьего 8 и четвертого 11 входных полевых транзисторов связаны друг с другом, предусмотрены новые элементы и связи – в схему введен первый 13 дополнительный полевой транзистор, затвор которого соединен с объединенными истоками первого 3 и второго 6 входных полевых транзисторов, сток подключен к объединенным истокам третьего 8 и четвертого 11 входных полевых транзисторов, а исток связан с объединенными истоками первого 3 и второго 6 входных полевых транзисторов через первый 14 вспомогательный двухполюсник.

На чертеже фиг. 1 представлена схема ДК-прототипа по патенту US 5.291.149, fig.4, 1994г., а на чертеже фиг. 2 - схема заявляемого дифференциального каскада на комплементарных полевых транзисторах с управляющим p-n переходом в соответствии с п.1 формулы изобретения.

На чертеже фиг. 3 показана схема заявляемого дифференциального каскада в соответствии с п.2 формулы изобретения.

На чертеже фиг. 4 приведен статический режим ДК фиг. 3 при t=-197ᵒC в среде LTSpice на моделях CJFet транзисторов ОАО «Интеграл» (г. Минск).

На чертеже фиг. 5 представлены проходные характеристики ДК фиг. 4 при температуре 27ᵒС, сопротивлениях резисторов R1=R2=10 кОм, напряжениях питания V1=V2=±5В для токовых выходов Out.1, Out.2, Out.3, Out.4 при входном напряжении V3=Uвх, изменяющимся в пределах -5÷5В.

На чертеже фиг. 6 показаны проходные характеристики ДК фиг. 4 при температуре -197ᵒС, сопротивлениях резисторов R1=R2=10 кОм, напряжениях питания V1=V2=±5В для токовых выходов Out.1, Out.2, Out.3, Out.4 при входном напряжении V3=Uвх, изменяющимся в пределах -5÷5В.

На чертеже фиг. 7 представлен статический режим ДК фиг. 2 в режиме измерения проводимости передачи входного синфазного сигнала uc при эквивалентном сопротивлении резистора R15(R1)=13,5 кОм, обеспечивающего идентичные статические токи стоков входных полевых транзисторов J1-J4 по 100 мкА при температуре 25ᵒС.

На чертеже фиг. 8 приведена частотная зависимость крутизны передачи входного синфазного сигнала (Sсф) дифференцильного каскада фиг. 7 со входов 1, 2 до первого 4 (Вых.i1) и второго 7 (Вых.i2) токовых выходов.

На чертеже фиг. 9 показана частотная зависимость крутизны передачи помех на шинах питания Sп(+), Sп(-) (синусоидальное напряжение с амплитудой 100 мВ на положительной и отрицательной шинах) в ДК фиг. 7 по первому 4 (Вых.i1) и второму 7 (Вых.i2) токовым выходам.

На чертеже фиг. 10 представлены статические токи в заявляемом ДК фиг. 2 в режиме измерения проводимостей передачи входного синфазного сигнала при температуре 25ᵒС.

На чертеже фиг. 11 приведена частотная зависимость крутизны передачи Sсф входного синфазного сигнала ДК фиг. 10 для первого 4 (Вых.i1) и второго 7 (Вых.i2) токовых выходов при статических токах входных полевых транзисторов по 100 мкА, идентичных токам ПТ в схеме фиг. 7.

На чертеже фиг. 12 показана частотная зависимость крутизны передачи помех по шинам питания Sп(+), Sп(-) с амплитудой 100 мВ в ДК фиг. 10 для первого 4 (Вых.i1) и второго 7 (Вых.i2) токовых выходов.

Дифференциальный каскад на комплементарных JFET полевых транзисторах с повышенным ослаблением входного синфазного сигнала фиг. 2 содержит первый 1 и второй 2 входы устройства, первый 3 входной полевой транзистор, затвор которого соединен с первым 1 входом устройства, сток соединен с первым 4 токовым выходом устройства, согласованным с первой 5 шиной источника питания, второй 6 входной полевой транзистор, затвор которого соединен со вторым 2 входом устройства, а сток соединен со вторым 7 токовым выходом устройства, согласованным с первой 5 шиной источника питания, причем истоки первого 3 и второго 6 входных полевых транзисторов связаны друг с другом, третий 8 входной полевой транзистор, затвор которого соединен с первым 1 входом устройства, сток соединен с третьим 9 токовым выходом устройства, согласованным со второй 10 шиной источника питания, четвертый 11 входной полевой транзистор, затвор которого соединен со вторым 2 входом устройства, а сток соединен с четвертым 12 токовым выходом устройства, согласованным со второй 10 шиной источника питания, причем истоки третьего 8 и четвертого 11 входных полевых транзисторов связаны друг с другом. В схему введен первый 13 дополнительный полевой транзистор, затвор которого соединен с объединенными истоками первого 3 и второго 6 входных полевых транзисторов, сток подключен к объединенным истокам третьего 8 и четвертого 11 входных полевых транзисторов, а исток связан с объединенными истоками первого 3 и второго 6 входных полевых транзисторов через первый 14 вспомогательный двухполюсник.

Резистор 15 в схеме фиг. 2 соответствует эквивалентному сопротивлению между истоками транзисторов 3 и (6) и 8 (11). Его введение необходимо для оценки эффективности предлагаемого схемотехнического решения по величине реализуемых Кос.сф и Кпп.

Кроме этого, на чертеже фиг. 2 двухполюсники 16, 17, 18 и 19 моделируют свойства нагрузки ДК. В практических аналоговых микросхемах в качестве таких нагрузок используются входы токовых зеркал, обеспечивающих дальнейшее преобразование токовых сигналов по выходам 4, 7, 9, 12.

На чертеже фиг. 3, в соответствии с п. 2 формулы изобретения, в схему введен второй 20 дополнительный полевой транзистор, затвор которого соединен с объединенными истоками третьего 8 и четвертого 11 входных полевых транзисторов, сток подключен к объединенным истокам первого 3 и второго 6 входных полевых транзисторов, а исток связан с объединенными истоками третьего 8 и четвертого 11 входных полевых транзисторов через второй 21 вспомогательный двухполюсник.

Рассмотрим работу ДУ фиг. 2 с учетом результатов сравнительного компьютерного моделирования, представленных на чертежах фиг. 8, фиг. 9, фиг. 11 и фиг. 12.

Компьютерное моделирование проходной характеристики ДК фиг. 4 в среде LTspice при комнатной (фиг. 5) и криогенной (фиг. 8) температурах показывает, что рассматриваемое схемотехнические решение обеспечивает преобразование входного синфазного напряжения ДК uc в токи выходов ДК (Out.1, Out.2, Out.3, Out.4) в диапазоне Vin=±1В. Это достаточно для многих применений.

Коэффициент ослабления входного синфазного сигнала ДК фиг.2 для первого 4 выхода (Вых.i1) определяется по формуле

(1)

где Ксф=R16Sсф – коэффициент преобразования входного синфазного сигнала ДК (uc=uc1=uc2) в напряжение на эквивалентном двухполюснике нагрузки 16;

S=iвых.1/uc – проводимость передачи входного синфазного сигнала uc по первому 4 токовому выходу;

Kd=R16(S3+S6) – дифференциальный коэффициент усиления по напряжению от дифференциального входа ДК (входы 1, 2) к первому 4 токовому выходу;

S3≈S6 – крутизна стоко-затворной характеристики первого 3 и второго 6 входных полевых транзисторов.

Из уравнения (1) можно получить

(2)

Похожие формулы можно получить и для коэффициентов подавления помех по шинам питания

(3)

(4)

Таким образом, для повышения помехоустойчивости ДК необходимо минимизировать схемотехническим путем проводимости передачи по входному синфазному сигналу (Sсф=0) и проводимости передачи помех по шинам питания (Sп(+)=0, Sп(-)=0).

Результаты сравнительного компьютерного моделирования схемы фиг. 2 с дополнительными элементами 13 и 14, которые введены в соответствии с п.1 формулы изобретения, а также без элементов 13 и 14 (только с резистором 15, обеспечивающим идентичный статический режим входных полевых транзисторов ДК по 100 мкА), представлены на чертежах фиг. 8 и фиг. 11. Их анализ показывает, что предлагаемое схемотехническое решение обеспечивает на низких частотах следующие проводимости передачи Sсф=376 пСм и Sп(+)=Sп(-)=900 пСм.

В то же время схема ДК-аналога дает Sсф*=48 нСм, Sп(+)*=Sп(-)*=128 нСм.

Таким образом, в заявляемом устройстве коэффициенты Кос.сф и Кпп улучшаются не менее чем на два порядка:

(5)

(6)

(7)

Следовательно, заявляемое устройство имеет существенные преимущества в сравнении с известными схемотехническими решениями ДК класса dual-input-stage [2-28] по величине коэффициента ослабления входного синфазного сигнала и уровню подавления помех по шинам питания. Это позволяет рекомендовать рассмотренные схемы ДК для практического использования в прецизионных ОУ и построения малошумящих, низкотемпературных и радиационно-стойких аналоговых микросхем по техпроцессу CJFet ОАО «Интеграл» (г. Минск), а также комплементарному биполярно-полевому технологическому процессу АО «НПП «Пульсар» (г. Москва).

Библиографический список

1. Dvornikov O. V., Dziatlau V. L., Prokopenko N. N., Petrosiants K. O., Kozhukhov N. V. and Tchekhovski V. A. The accounting of the simultaneous exposure of the low temperatures and the penetrating radiation at the circuit simulation of the BiJFET analog interfaces of the sensors // 2017 International Siberian Conference on Control and Communications (SIBCON), Astana, 2017, pp. 1-6. DOI: 10.1109/SIBCON.2017.7998507

2. Патент US 5.291.149 fig. 4, 1994 г.

1. Патент US 4.377.789, fig. 1, 1983 г.

2. Патентная заявка US 2006/0125522, 2006 г.

3. Патент US 7.907.011, 2011

4. US 2008/0024217, fig. 1, 2008 г.

5. Патент EP 0318263,1989 г.

6. Патент US 5.907.259, fig. 1, 1999 г.

7. Патент US 7.408.410, 2008 г.

8. Патент US 6.628.168, fig.2, 2003 г.

9. Патентная заявка US 2009/0302895, 2009 г.

10. Патент US 5.714.906, fig. 4, 1998 г.

11. Патент US 2005/0285677, 2005 г.

12. Патент US 5.070.306, fig. 3, 1991 г.

13. Патент US 2010/001797, 2010 г.

14. Патент US 6.972.623, fig. 4, fig. 6, 2005 г.

15. Патент US 2008/0252374, 2008 г.

16. Патент US 7.586.373, 2009 г.

17. Патент US 2006/0215787, 2006 г.

18. Патент US 7.453.319, 2008 г.

19. Патент US 2004/0174216, fig. 2, 2004 г.

20. Патент US 7.215.200, fig. 6, 2007 г.

21. Патент US № 6.433.637, fig. 2, 2002 г.

22. Патент US № 6.392.485, 2002 г.

23. Патент US 5.963.085, fig. 3, 1999 г.

24. Патент US 6.788.143, 2004 г.

25. Патент US 4.390.850, 1983 г.

26. Патент US 6.696.894, fig. 1, 2004 г.

29. Prokopenko N. N., Butyrlagin N. V., Bugakova A. V. and Ignashin A. A.  Method for speeding the micropower CMOS operational amplifiers with dual-input-stages // 2017 24th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Batumi, 2017, pp. 78-81.

30. Petrosyants K.O., Ismail-zade M.R., Sambursky L. M., Dvornikov O.V., Lvov B. G. and Kharitonov I. A. Automation of parameter extraction procedure for Si JFET SPICE model in the −200…+110°C temperature range // 2018 Moscow Workshop on Electronic and Networking Technologies (MWENT), Moscow, 2018, pp. 1-5. DOI: 10.1109/MWENT.2018.8337212

31. Создание низкотемпературных аналоговых ИС для обработки импульсных сигналов датчиков. Часть 2 / О. Дворников, В. Чеховский, В. Дятлов, Н. Прокопенко // Современная электроника, 2015, № 5. С. 24-28

32. Dvornikov O.V., Prokopenko N.N., Butyrlagin N.V. and Pakhomov I.V. The differential and differential difference operational amplifiers of sensor systems based on bipolar-field technological process AGAMC // 2016 International Siberian Conference on Control and Communications (SIBCON), Moscow, 2016, pp. 1-6. DOI: 10.1109/SIBCON.2016.7491792

33. Дворников О.В., Чеховский В.А., Дятлов В.Л., Прокопенко Н.Н. Малошумящий электронный модуль обработки сигналов лавинных фотодиодов // Приборы и методы измерений, № 2 (7), 2013, pp. 42-46.

34. Дворников О. Чеховский В., Дятлов В., Прокопенко Н. Применение структурных кристаллов для создания интерфейсов датчиков // Современная электроника. – 2014. – №. 1. – С. 32-37.

35. Dvornikov O. V., Bugakova A. V., Prokopenko N. N., Dziatlau V. L. and Pakhomov I. V. The microcircuits MH2XA010-02/03 for signal processing of optoelectronic sensors // 2017 18th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM), Erlagol, 2017, pp. 396-402. DOI: 10.1109/EDM.2017.7981781


ДИФФЕРЕНЦИАЛЬНЫЙ КАСКАД НА КОМПЛЕМЕНТАРНЫХ JFET ПОЛЕВЫХ ТРАНЗИСТОРАХ С ПОВЫШЕННЫМ ОСЛАБЛЕНИЕМ ВХОДНОГО СИНФАЗНОГО СИГНАЛА
ДИФФЕРЕНЦИАЛЬНЫЙ КАСКАД НА КОМПЛЕМЕНТАРНЫХ JFET ПОЛЕВЫХ ТРАНЗИСТОРАХ С ПОВЫШЕННЫМ ОСЛАБЛЕНИЕМ ВХОДНОГО СИНФАЗНОГО СИГНАЛА
ДИФФЕРЕНЦИАЛЬНЫЙ КАСКАД НА КОМПЛЕМЕНТАРНЫХ JFET ПОЛЕВЫХ ТРАНЗИСТОРАХ С ПОВЫШЕННЫМ ОСЛАБЛЕНИЕМ ВХОДНОГО СИНФАЗНОГО СИГНАЛА
ДИФФЕРЕНЦИАЛЬНЫЙ КАСКАД НА КОМПЛЕМЕНТАРНЫХ JFET ПОЛЕВЫХ ТРАНЗИСТОРАХ С ПОВЫШЕННЫМ ОСЛАБЛЕНИЕМ ВХОДНОГО СИНФАЗНОГО СИГНАЛА
ДИФФЕРЕНЦИАЛЬНЫЙ КАСКАД НА КОМПЛЕМЕНТАРНЫХ JFET ПОЛЕВЫХ ТРАНЗИСТОРАХ С ПОВЫШЕННЫМ ОСЛАБЛЕНИЕМ ВХОДНОГО СИНФАЗНОГО СИГНАЛА
ДИФФЕРЕНЦИАЛЬНЫЙ КАСКАД НА КОМПЛЕМЕНТАРНЫХ JFET ПОЛЕВЫХ ТРАНЗИСТОРАХ С ПОВЫШЕННЫМ ОСЛАБЛЕНИЕМ ВХОДНОГО СИНФАЗНОГО СИГНАЛА
ДИФФЕРЕНЦИАЛЬНЫЙ КАСКАД НА КОМПЛЕМЕНТАРНЫХ JFET ПОЛЕВЫХ ТРАНЗИСТОРАХ С ПОВЫШЕННЫМ ОСЛАБЛЕНИЕМ ВХОДНОГО СИНФАЗНОГО СИГНАЛА
ДИФФЕРЕНЦИАЛЬНЫЙ КАСКАД НА КОМПЛЕМЕНТАРНЫХ JFET ПОЛЕВЫХ ТРАНЗИСТОРАХ С ПОВЫШЕННЫМ ОСЛАБЛЕНИЕМ ВХОДНОГО СИНФАЗНОГО СИГНАЛА
ДИФФЕРЕНЦИАЛЬНЫЙ КАСКАД НА КОМПЛЕМЕНТАРНЫХ JFET ПОЛЕВЫХ ТРАНЗИСТОРАХ С ПОВЫШЕННЫМ ОСЛАБЛЕНИЕМ ВХОДНОГО СИНФАЗНОГО СИГНАЛА
ДИФФЕРЕНЦИАЛЬНЫЙ КАСКАД НА КОМПЛЕМЕНТАРНЫХ JFET ПОЛЕВЫХ ТРАНЗИСТОРАХ С ПОВЫШЕННЫМ ОСЛАБЛЕНИЕМ ВХОДНОГО СИНФАЗНОГО СИГНАЛА
Источник поступления информации: Роспатент

Показаны записи 71-80 из 186.
14.12.2018
№218.016.a6e8

Быстродействующий буферный усилитель

Изобретение относится к области радиотехники. Технический результат - повышение максимальной скорости нарастания выходного напряжения и уменьшение времени установления переходного процесса в буферном усилителе (БУ) при больших импульсных входных сигналах. Для этого предложен быстродействующий...
Тип: Изобретение
Номер охранного документа: 0002674885
Дата охранного документа: 13.12.2018
26.12.2018
№218.016.ab0f

Быстродействующий операционный усилитель

Изобретение относится к области радиотехники. Технический результат: повышение скорости нарастания выходного напряжения и уменьшение времени установления переходного процесса. Для этого предложен операционный усилитель, который содержит четыре входных транзистора, первый двухполюсник,...
Тип: Изобретение
Номер охранного документа: 0002676014
Дата охранного документа: 25.12.2018
18.01.2019
№219.016.b0db

Биполярно-полевой буферный усилитель

Изобретение относится к области радиотехники и связи и может быть использовано в качестве выходного каскада для усиления быстроизменяющихся аналоговых сигналов по мощности (буферного усилителя - БУ), в структуре аналоговых микросхем различного функционального назначения, например операционных...
Тип: Изобретение
Номер охранного документа: 0002677401
Дата охранного документа: 16.01.2019
18.01.2019
№219.016.b0e7

Входной каскад быстродействующего операционного усилителя

Изобретение относится к области аналоговой микроэлектроники и может быть использовано в различных аналоговых микросхемах. Технический результат заключается в расширении диапазона активной работы входного дифференциального каскада, повышении максимальной скорости нарастания выходного напряжения...
Тип: Изобретение
Номер охранного документа: 0002677364
Дата охранного документа: 16.01.2019
18.01.2019
№219.016.b15d

Активный rc-фильтр

Изобретение относится к области аналоговой микросхемотехники и может быть использовано в качестве устройства частотной селекции в современных системах связи и телекоммуникации. Технический результат заключается в уменьшение влияния площади усиления применяемых операционных усилителей (ОУ) на...
Тип: Изобретение
Номер охранного документа: 0002677362
Дата охранного документа: 16.01.2019
16.02.2019
№219.016.bb79

Дифференциальный усилитель на комплементарных полевых транзисторах с управляемым напряжением ограничения проходной характеристики

Изобретение относится к области радиотехники и связи и может быть использовано в качестве устройства усиления аналоговых сигналов. Технический результат заключается в повышении стабильности статического режима при отрицательных температурах и изменении напряжений питания, также обеспечивается...
Тип: Изобретение
Номер охранного документа: 0002679970
Дата охранного документа: 14.02.2019
26.02.2019
№219.016.c822

Способ определения драпируемости материалов

Изобретение относится к легкой промышленности и может быть использовано для определения драпируемости различных материалов для женской поясной одежды. Заявленный способ определения драпируемости материалов заключается в подготовке пробы материала в форме круга, фиксации ее между двумя дисками...
Тип: Изобретение
Номер охранного документа: 0002680611
Дата охранного документа: 25.02.2019
29.03.2019
№219.016.edf0

Быстродействующий операционный усилитель с повышенной скоростью нарастания выходного напряжения

Изобретение относится к области радиотехники. Технический результат: повышение максимальной скорости нарастания выходного напряжения и уменьшение времени установления переходного процесса. Для этого предложен быстродействующий операционный усилитель, содержащий первый (1) и второй (2) входные...
Тип: Изобретение
Номер охранного документа: 0002683160
Дата охранного документа: 26.03.2019
30.03.2019
№219.016.f921

Компенсационный стабилизатор напряжения

Изобретение относится к области вторичных источников электропитания и может быть использовано в структуре систем на кристалле (СнК). Технический результат: уменьшение амплитуды «провалов» и «всплесков» выходного напряжения компенсационного стабилизатора напряжения (КСН) при импульсных токах...
Тип: Изобретение
Номер охранного документа: 0002683249
Дата охранного документа: 27.03.2019
30.03.2019
№219.016.fa12

Способ биологической очистки сточных вод

Изобретение относится к области биотехнологии. Предложен способ биологической очистки сточных вод. Способ включает обработку воды в аэротенках, причём перед вводом воду разбавляют очищенной водой 1:3, затем вводят микроводоросли Chlorella Vulgaris, смесь аэрируют, а процесс очистки...
Тип: Изобретение
Номер охранного документа: 0002683522
Дата охранного документа: 28.03.2019
Показаны записи 71-80 из 216.
27.08.2016
№216.015.505c

Биполярно-полевой операционный усилитель

Изобретение относится к области радиоэлектроники. Технический результат заключается в расширении диапазона изменения выходного напряжения до уровней, близких к напряжениям на положительной и отрицательной шинах питания. Устройство содержит: входной дифференциальный каскад, общая истоковая цепь...
Тип: Изобретение
Номер охранного документа: 0002595927
Дата охранного документа: 27.08.2016
27.08.2016
№216.015.50b8

Биполярно-полевой операционный усилитель

Изобретение относится к области радиоэлектроники, а именно к прецизионным устройствам усиления сигналов. Технический результат - повышение коэффициента усиления дифференциального сигнала в разомкнутом состоянии ОУ до уровня 90÷100 дБ. Биполярно-полевой операционный усилитель содержит первый (1)...
Тип: Изобретение
Номер охранного документа: 0002595926
Дата охранного документа: 27.08.2016
27.08.2016
№216.015.50ee

Быстродействующий операционный усилитель на основе "перегнутого" каскода

Изобретение относится к области радиоэлектроники в качестве быстродействующего устройства усиления сигналов. Технический результат заключается в обеспечении более высоких уровней выходного тока «перегнутого каскода», это повышает быстродействие ОУ в режиме большого сигнала, уменьшает время...
Тип: Изобретение
Номер охранного документа: 0002595923
Дата охранного документа: 27.08.2016
12.01.2017
№217.015.64cc

Биполярно-полевой операционный усилитель

Изобретение относится к области радиоэлектроники. Технический результат - повышение коэффициента усиления разомкнутого операционного усилителя. Биполярно-полевой операционный усилитель содержит входной дифференциальный каскад, общая истоковая цепь которого связана с первой шиной источника...
Тип: Изобретение
Номер охранного документа: 0002589323
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.65ae

Биполярно-полевой операционный усилитель на основе "перегнутого" каскода

Изобретение относится к области радиоэлектроники и может быть использовано в качестве прецизионного устройства усиления сигналов. Технический результат: уменьшение статического тока, потребляемого ОУ от источников питания (без нагрузки), и уменьшение напряжения смещения нуля. Биполярно-полевой...
Тип: Изобретение
Номер охранного документа: 0002592429
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.6622

Биполярно-полевой операционный усилитель на основе "перегнутого" каскода

Изобретение относится к области радиоэлектроники, в частности усиления сигналов. Технический результат - уменьшение статического тока, потребляемого ОУ при отключенной нагрузке. Биполярно-полевой операционный усилитель на основе «перегнутого» каскода содержит входной дифференциальный каскад,...
Тип: Изобретение
Номер охранного документа: 0002592455
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.8bc2

Дифференциальный усилитель двуполярных токов

Изобретение относится к области радиотехники. Технический результат: создание энергоэкономичного устройства для усиления разности двух входных токов и подавления их синфазной составляющей. Для этого предложен дифференциальный усилитель двуполярных токов, который содержит первый и второй входы,...
Тип: Изобретение
Номер охранного документа: 0002604683
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.8bfd

Rs-триггер

Изобретение относится к области вычислительной техники, автоматики, связи и может использоваться в специализированных цифровых структурах, системах автоматического управления и передачи цифровой информации. Технический результат: заключается в повышении быстродействия систем обработки...
Тип: Изобретение
Номер охранного документа: 0002604682
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.8c5d

Биполярно-полевой операционный усилитель на основе "перегнутого" каскода

Изобретение относится к области радиоэлектроники и может быть использовано в качестве прецизионного устройства усиления сигналов. Технический результат - уменьшение напряжения смещения нуля. Биполярно-полевой операционный усилитель содержит входной дифференциальный каскад, общая истоковая цепь...
Тип: Изобретение
Номер охранного документа: 0002604684
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.b3bb

Дифференциальный операционный усилитель с малым напряжением питания

Изобретение относится к области радиоэлектроники и может быть использовано в качестве прецизионного устройства усиления широкополосных сигналов. Техническим результатом является расширение диапазона изменения выходного напряжения устройства до уровней, близких к напряжениям на положительной и...
Тип: Изобретение
Номер охранного документа: 0002613842
Дата охранного документа: 21.03.2017
+ добавить свой РИД