×
21.12.2019
219.017.f027

Результат интеллектуальной деятельности: Способ получения гелей для медицинских целей на основе L-цистеина, нитрата серебра и поливинилового спирта

Вид РИД

Изобретение

Аннотация: Изобретение относится к получению гелей на основе L-цистеина, нитрата серебра и поливинилового спирта. Способ включает смешение водного раствора L-цистеина с водным раствором нитрата серебра так, чтобы концентрация L-цистеина в смеси составляла от 1,5 до 4,5 мМ, а отношение молярных концентраций нитрата серебра к L-цистеину в смеси находилось в диапазоне от 1,25 до 1,30, где далее смесь оставляют в защищенном от света месте при температуре 18-28 С на 4-12 часов для формирования L-цистеин-серебряного раствора, затем последовательно смешивают L-цистеин-серебряный раствор с водным раствором поливинилового спирта, так что его концентрация в смеси находится в пределах от 1,0 до 2,0 мас. %, и водным раствором сульфата с катионом из ряда Na, K, Mg, Zn, Ni, Co при концентрации сульфата в смеси в пределах 0,075-0,750 мМ, через определенное время, зависящее от концентрации сульфата и типа катиона, система переходит из жидкого состояния в гель. Изобретение позволяет получить гели на основе L-цистеина, нитрата серебра и поливинилового спирта, пригодные для использования в качестве матрицы для инкапсулирования лекарственных препаратов. 3 ил., 1 пр.

Изобретение относится к области получения гелей на основе L-цистеина, нитрата серебра и поливинилового спирта, а именно к получению средств для медицинских целей.

Известно получение супрамолекулярных структур на основе серосодержащих аминокислот и солей серебра RU 2317305, опубл. 20.02.2008; RU 2432937, опубл. 10.11.2011; RU 2641111, опубл. 16.01.2018. Показан способ получения гелеобразующей системы, состоящей из аминокислоты L-цистеина и некоторых солей серебра, причем процесс гелеобразования инициируется добавлением в цистеин-серебряный раствор ряда электролитов (водных растворов различных солей металлов). Известные гидрогели тиксотропны, т.е. восстанавливают свою структуру после механического разрушения. Известным супрамолекулярным гидрогелям свойственны низкая вязкость и низкая стойкость к механическому воздействию, а известная возможность изменения эффективной вязкости геля в зависимости от концентрации добавляемого электролита весьма ограниченна.

Для преодоления низких, присущих известным супрамолекулярным гидрогелям, предлагается использовать в качестве дополнительного прекурсора водорастворимый полимер, что позволяет создать матрицу, пригодную для инкапсулирования лекарственных препаратов.

В качестве водорастворимого полимера предлагается использовать поливиниловый спирт - «дружественный» организму человека. Так известно использование гидрогелей и криогелей ПВС для адресной доставки биоактивных веществ Lozinsky V.I., Zubov A.L., Titova E.F. // Enzyme Microb. Technol. 1997. V. 20. P. 182. Однако такие системы из-за больших значений концентрации полимера ≥10% обладают сравнительно низкой степенью пористости. Известно, что поливиниловый спирт хорошо сочетается с аминокислотами, улучшая доставку веществ к сердцу и скелетной мускулатуре, т.е. способствует минимизации отторжения имплантированных материалов Lok Chum-Nam, Ho Chi-Ming, Chen Rong // J. Biol.Inorg. Chem. 2007. V. 12. P. 527. Кроме того, поливиниловый спирт может применяться в качестве заменителя плазмы при переливании крови DeMerlis C.C., Schoneker D.R. // Food Chem. Toxicol. 2003. V. 41. P. 319.

Известен ряд способов получения пористых гелей на основе ПВС. Так в RU 2328313, опубл. 10.07.2008 и RU 2543895, опубл. 10.03.1015, описан способ получения макропористых гелей ПВС путем сшивания макромолекулярных цепей в ходе полимеризации водных замороженных растворов модифицированного поливинилового спирта. Недостатками присущими известным способам получения макропористых гелей ПВС являются необходимость начальной модификации ПВС и дальнейшее проведение полимеризации при критических условиях, как и выделение токсичных веществ при их биодеградации. Известен способ получения криогеля ПВС с взаимосвязанными макропорами от 2 до 10 мкм при добавлении ионогенно - катионного, анионного или амфотерного, или неионогенного поверхностно-активного вещества RU 2252945, опубл. 27.05.2005. Недостатком этого известного способа является использование критических условий и большое количество циклов замораживания-оттаивания.

Прототипом заявляемого изобретения является способ получения супрамолекулярного гидрогеля, RU 2641111, опубл. 16.01.2018. Согласно прототипу, водный раствор L-цистеина смешивают с водным раствором ацетата серебра так, чтобы концентрация L-цистеина в смеси составляла от 1,0 до 6,0 мМ, а отношение молярных концентраций ацетата серебра к L-цистеину в смеси находилось в диапазоне от 1,23 до 1,33, далее смесь оставляют в защищенном от света месте при комнатной температуре на 4 часа для формирования L-цистеин-серебряного раствора, смешением L-цистеин-серебряного раствора с водным раствором сульфата с катионом из ряда Na+, K+, Cu2+, Fe2+, Mg2+, Zn2+, Al3+, Ni2+, Со2+, Mn2+, при концентрации сульфата в смеси в пределах 0,075-0,750 мМ через определенное время, зависящее от концентрации сульфата и типа катиона, жидкая система превращается в гель.

Технический результат настоящего изобретения заключается в том, что разработан способ получения гелей для медицинских целей на основе L-цистеина, нитрата серебра и поливинилового спирта, пригодных для использования в качестве матрицы для инкапсулирования лекарственных препаратов, за счет модифицирования морфологии гелей с повышением стойкости к внешним механическим воздействиям.

Технический результат достигается тем, что смешивают водный раствор L-цистеина с водным раствором нитрата серебра так, чтобы концентрация L-цистеина в смеси составляла от 1,5 до 4,5 мМ, а отношение молярных концентраций нитрата серебра к L-цистеину в смеси находилось в диапазоне от 1,25 до 1,30, где далее смесь оставляют в защищенном от света месте при температуре на 4-12 часов для формирования L-цистеин-серебряного раствора, затем последовательно смешивают созревший L-цистеин-серебряный раствор с водным раствором поливинилового спирта, при концентрации поливинилового спирта в смеси в пределах от 1,0 до 2,0 мас. %, и водным раствором сульфата с катионом из ряда Na+, K+, Mg2+, Zn2+, Ni2+, Co2+, при концентрации сульфата в смеси в пределах 0,075-0,750 мМ, через определенное время, зависящее от концентрации сульфата и типа катиона, жидкая система превращается в гель.

Исследованием уровня техники установлено, что способов получения гелей для медицинских целей на основе L-цистеина, нитрата серебра и поливинилового спирта не обнаруживается.

Изобретение поясняется графическими материалами:

Фиг. 1. Вязкость гидрогеля через 1 сутки после приготовления в зависимости от концентрации поливинилового спирта.

Фиг. 2. Схема взаимодействия макромолекулы поливинилового спирта с фрактальным кластером.

Фиг. 3. Микрофотографии образцов: L-цистеин-серебряный раствор (а), 2% ПВС (б), гидрогелей: ЦСР–Na2SO4 (в), ЦСР–0,02%ПВС–Na2SO4 (г), ЦСР–1,0%ПВС–Na2SO4 (д), ЦСР–2.0%ПВС–Na2SO4 (е).

Сущность изобретения заключается в следующем.

Опытным путем установлено, что гель, приготовленный из растворов L-цистеина и нитрата серебра, при добавлении водного раствора сульфата с катионом из ряда Na+, K+, Mg2+, Zn2+, Ni2+, Со2+, представляет собой агрегированные в определенную сетчатую структуру фрактальные кластеры, скрепленные между собой сульфат-ионами. Гель является оптически прозрачным.

Опытным путем было установлено, что изменение аниона соли серебра, по сравнению с прототипом, с ацетата на нитрат приводит к изменению концентрационных интервалов прекурсоров, в пределах которых возможно получение геля, позволяющего достичь заявляемого технического результата. И заявляемый гель получается смешением водного раствора L-цистеина с водным раствором нитрата серебра так, чтобы концентрация L-цистеина в смеси составляла от 1,5 до 4,5 мМ, а отношение молярных концентраций нитрата серебра к L-цистеину в смеси находилось в диапазоне от 1,25 до 1,30, где далее смесь выдерживают в защищенном от света месте при температуре от 18 до 28оС в течение от 4 до 12 часов, для формирования L-цистеин-серебряного раствора; дальнейшим последовательным смешением L-цистеин-серебряного раствора с водным раствором поливинилового спирта, так что его концентрация в смеси находится в пределах от 1,0 до 2,0 мас. %, и водным раствором сульфата с катионом из ряда Na+, K+, Mg2+, Zn2+, Ni2+, Со2+, при концентрации сульфата в смеси в пределах 0,075-0,750 мМ, и через определенное время, зависящее от концентрации сульфата и типа катиона, система переходит из жидкого состояния в гель.

Временной интервал при формировании L-цистеин-серебряного раствора обусловлен влиянием температуры смеси на продолжительность его формирования. Так при 18 оС продолжительность формирования L-цистеин-серебряного раствора составляет 12 часов, а при 28 оС – 4 часа.

При этом, при повышении концентрации поливинилового спирта выше 2,0 мас. % не удается получить гель.

Для определения эффективной нижней концентрационной границы добавляемого раствора поливинилового спирта были проведены реологические испытания гидрогелей. На Рис. 1 приведена зависимость вязкости гидрогелей от концентрации поливинилового спирта. Увеличение концентрации поливинилового спирта до 1,0 мас. % слабо влияет на вязкость системы (отрезок AB), тогда как повышение концентрации полимера от 1,0 до 2,0 мас. % оказывает существенное влияние на вязкость (отрезок BC). Таким образом подтверждено, что допускаемый диапазон концентраций поливинилового спирта находится в интервале от 1,0 до 2,0 мас. %.

Экспериментально было установлено, что добавление поливинилового спирта с концентрацией 2,0 мас. % повышает стабильность геля во времени с 7 до 60 суток.

Измерение pH заявляемых гидрогелей показало, что увеличение концентрации поливинилового спирта ведет к сдвигу pH в щелочную область. Это может быть следствием образования водородной связи между гидроксильными группами поливинилового спирта и карбоксильной группой фрактальных кластеров Фиг. 2 при формировании морфологии позволяющей достичь заявляемого технического результата.

Для оценки морфологии гидрогелей, полученных заявляемым способом, они, как и прекурсоры, были исследованы способом электронной микроскопии Рис. 3. На Рис. 3а, соответствующему L-цистеин-серебряный раствору, отсутствует пространственный каркас, но видна плотная ламелярно-цепочечная структура, а у раствора поливинилового спирта Рис. 3б отсутствует какая-либо пространственная организация. Для геля, изготовленному без добавления поливинилового спирта Рис. 3в, наблюдается выраженная сетчатая структура со средним диаметром пор 5 мкм и средней толщиной нитей сетки 0,7 мкм. Добавление, согласно заявляемому способу, поливинилового спирта при концентрации 0,02 мас. % Рис. 3г приводит к изменению формы пор от сферической к эллиптической, а также увеличению средней толщины нитей пространственной сетки до 2 мкм, при сохранении среднего диаметра пор ∼5 мкм. Для геля с содержанием поливинилового спирта 1,0 мас. % Рис. 3д при сохранении средних размеров наблюдется образование пористо-слоистой структуры. Увеличение концентрации поливинилового спирта до 2,0 мас. % Рис. 3е приводит к утолщению нитей до 4 мкм и уменьшению среднего диаметра пор до 2 мкм, при сохранении пористо-слоистой структуры. Таким образом, при увеличении концентрации полимера прослеживается утолщение нитей пространственной сетки и уменьшение размера пор, что согласуется с результатами реологических испытаний Рис. 1, когда при повышении концентрации полимера вязкость геля росла за счет наличия более плотной пространственной сетки.

Проведенные способом электронной микроскопии исследования также подтвердили заявляемый концентрационный интервал добавления поливинилового спирта в качестве прекурсора образования геля, а именно от 1,0 до 2,0 мас. %.

Способ осуществляется следующим образом.

Смешивают водный раствор L-цистеина с водным раствором нитрата серебра так, чтобы концентрация L-цистеина в смеси составляла от 1,5 до 4,5 мМ, а отношение молярных концентраций нитрата серебра к L-цистеину в смеси находилось в диапазоне от 1,25 до 1,30 и смесь оставляют в защищенном от света месте при температуре от 18 до 28 оС в течение от 4 до 12 часов для формирования L-цистеин-серебряного раствора; далее L-цистеин-серебряный раствор последовательно смешивается с водным раствором поливинилового спирта, так что его концентрация в смеси находится в пределах от 0,002 до 2,0 мас. % и водным раствором сульфата с катионом из ряда Na+, K+, Mg2+, Zn2+, Ni2+, Со2+, при концентрации сульфата в смеси в пределах 0,075-0,750 мМ, и через определенное время, зависящее от концентрации сульфата и типа катиона, система переходит из жидкого состояния в гель.

Пример выполнения заявляемого способа.

К 0,6 мл 0,01 М водного раствора L-цистеина приливают 0,65 мл бидистиллированной воды, смесь перемешивают и добавляют 0,75 мл 0,01 М водного раствора нитрата серебра. В результате получают бледно-желтый опалесцирующий раствор, который при созревании в течение 4 часов в темноте, при температуре 28 оС, становится прозрачным, приобретая желтый оттенок. В полученный L-цистеин-серебряный раствор приливают 0,5 мл 0,4 мМ водного раствора поливинилового спирта. Для получения геля в полученный раствор добавляют раствор электролита – 0,1 мл сульфата натрия концентрации 0,25 мМ. За 60 минут формируется устойчивый супрамолекулярный гидрогель.

Для изготовления заявляемого геля не требуется специального оборудования, он может быть изготовлен на стандартном оборудовании химической лаборатории.

Гель найдет практическое применение в качестве матрицы для инкапсулирования лекарственных препаратов.

Способ получения гелей для медицинских целей на основе L-цистеина, нитрата серебра и поливинилового спирта, характеризующийся тем, что водный раствор L-цистеина смешивают с водным раствором соли серебра так, чтобы концентрация L-цистеина в смеси и отношение молярных концентраций соли серебра к L-цистеину в смеси находились в определенном диапазоне, далее смесь оставляют в защищенном от света месте при определенной температуре на определенное время для формирования L-цистеин-серебряного раствора с дальнейшим смешением L-цистеин-серебряного раствора с водным раствором сульфата с катионом из определенного ряда металлов при концентрации сульфата в смеси в пределах 0,075-0,750 мМ, через определенное время, зависящее от концентрации сульфата и типа катиона, жидкая система превращается в гель, отличающийся тем, что в качестве соли серебра используется нитрат, при этом концентрация L-цистеина в смеси находится в диапазоне от 1,5 до 4,5 мМ, а отношение молярных концентраций нитрата серебра к L-цистеину в смеси находится в диапазоне от 1,25 до 1,30; так что время для формирования L-цистеин-серебряного раствора при температуре 18-28С находится в интервале от 4 до 12 часов, при этом в L-цистеин-серебряный раствор, перед смешением с водным раствором сульфата с катионом из следующего ряда: Na, K, Mg, Zn, Ni, Со, добавляется водный раствор поливинилового спирта, так что его концентрация в смеси находится в пределах от 1,0 до 2,0 мас. %.
Способ получения гелей для медицинских целей на основе L-цистеина, нитрата серебра и поливинилового спирта
Способ получения гелей для медицинских целей на основе L-цистеина, нитрата серебра и поливинилового спирта
Способ получения гелей для медицинских целей на основе L-цистеина, нитрата серебра и поливинилового спирта
Источник поступления информации: Роспатент

Показаны записи 21-30 из 58.
25.08.2017
№217.015.a3fc

Способ синтеза наночастиц полупроводников

Изобретение относится к коллоидной химии и нанотехнологии и может быть использовано в производстве люминесцентных материалов, сверхминиатюрных светодиодов, источников белого света, одноэлектронных транзисторов, нелинейно-оптических устройств, фоточувствительных и фотогальванических устройств....
Тип: Изобретение
Номер охранного документа: 0002607405
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.b308

Щавелевокислый электролит для осаждения сплава медь-олово

Изобретение относится к области гальванотехники и может быть использовано для нанесения защитно-декоративных покрытий. Электролит содержит, моль/л: сульфат меди пятиводный (8-10)10, сульфат олова (1-5)10, аммоний щавелевокислый (3-4)10, ацетат натрия (1,81-2,00)10, желатин (1-5)10, ванилин...
Тип: Изобретение
Номер охранного документа: 0002613838
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.b6dd

Способ выращивания монокристаллов парателлурита из расплава по чохральскому

Изобретение относится к технологии получения монокристаллов парателлурита из расплава методом Чохральского. Выращивание осуществляют из неподвижного тигля с программированием скоростей вытягивания и вращения затравки, при этом после выхода на требуемый диаметр вытягивание цилиндрической части...
Тип: Изобретение
Номер охранного документа: 0002614703
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.be20

Кристалломорфологический способ диагностики и профилактики опухолевых заболеваний поджелудочной железы

Изобретение относится к области медицины и представляет собой кристалломорфологический способ диагностики опухолевых заболеваний поджелудочной железы, включающий введение в пробу мочи пациента нингидрина с добавкой тинктуры болиголова и горечавки, высушивание смеси методом испарения,...
Тип: Изобретение
Номер охранного документа: 0002616900
Дата охранного документа: 18.04.2017
26.08.2017
№217.015.d5a6

Кристалломорфологический способ диагностики и профилактики опухолевых заболеваний

Изобретение относится к области медицины и касается способа определения профилактических мероприятий опухолевых заболеваний. Сущность способа заключается в том, что у пациента отбирается вторая утренняя проба мочи, 5 мл мочи помещается в чашку Петри, добавляется раствор нингидрина и несколько...
Тип: Изобретение
Номер охранного документа: 0002623077
Дата охранного документа: 21.06.2017
26.08.2017
№217.015.d9fc

Способ получения периодических профилей на поверхности кристаллов парателлурита

Изобретение относится к области дифракционной оптики и может быть использовано для разработки новых дифракционных оптических элементов для диапазона 0,35-5,5 мкм. В основу изобретения поставлена задача получения периодических профилей на поверхности кристаллов парателлурита методом...
Тип: Изобретение
Номер охранного документа: 0002623681
Дата охранного документа: 28.06.2017
26.08.2017
№217.015.e827

Электролит для осаждения цинк-никелевых покрытий

Изобретение относится к области гальванотехники и может быть использовано в машиностроении, приборостроении и автомобилестроении для защиты от коррозии стальных изделий. Электролит для электроосаждения цинк-никелевых покрытий содержит оксид цинка, едкий натр, никель сернокислый, триэтаноламин,...
Тип: Изобретение
Номер охранного документа: 0002627319
Дата охранного документа: 07.08.2017
26.08.2017
№217.015.edfd

Электрохимическая твердотельная топливная ячейка

Изобретение относится к способам прямого преобразования химической энергии топлив в электрическую и устройствам для их осуществления. Электрохимическая твердотельная топливная ячейка включает корпус 1, газожидкостной тракт 2, электроды 3, которые могут быть выполнены из активированного угля или...
Тип: Изобретение
Номер охранного документа: 0002628760
Дата охранного документа: 22.08.2017
19.01.2018
№218.016.02e6

Новая ионная жидкость производная бис-(n,n-диметиламида) метилфосфоновой кислоты с высокими термическими свойствами

Изобретение относится к ионной жидкости с катионом бис-(N,N,N-триметиламида) метилфосфоновой кислоты и гексафторфосфат анионом, которая может быть использована в химической промышленности. Предложена новая ионная жидкость с высокими термическими свойствами, устойчивая к влаге. 1 пр., 1 ил.
Тип: Изобретение
Номер охранного документа: 0002630226
Дата охранного документа: 06.09.2017
19.01.2018
№218.016.0429

Способ оценки риска развития простудных заболеваний у лиц пожилого возраста

Изобретение относится к медицине и представляет собой способ оценки риска развития простудных заболеваний у лиц пожилого возраста, заключающийся в исследовании ротовой жидкости пациента пожилого возраста с определением концентрации иммуноглобулина А и концентрации иммуноглобулина G,...
Тип: Изобретение
Номер охранного документа: 0002630587
Дата охранного документа: 11.09.2017
Показаны записи 21-25 из 25.
19.07.2019
№219.017.b666

Способ определения степени однородности одноосных кристаллов

Изобретение относится к области оптики, а именно к способам определения оптической однородности и выявления структурных дефектов оптических кристаллов, и может быть использовано для контроля качества одноосных кристаллов. Целью изобретения является разработка способа определения степени...
Тип: Изобретение
Номер охранного документа: 0002694790
Дата охранного документа: 16.07.2019
19.12.2019
№219.017.ef43

Ик-спектроскопический способ контроля качества прекурсоров для ориентационного вытягивания пленочных нитей из сверхвысокомолекулярного полиэтилена

Изобретение относится к области контроля технологических процессов и касается ИК-спектроскопического способа контроля качества прекурсоров для ориентационного вытягивания пленочных нитей из сверхвысокомолекулярного полиэтилена. Способ включает в себя направление на прекурсор потока света, прием...
Тип: Изобретение
Номер охранного документа: 0002709407
Дата охранного документа: 17.12.2019
12.04.2023
№223.018.4813

Способ получения стандартов сравнения для измерения электрокинетического (дзета) потенциала

Изобретение относится к способам приготовления стандартов сравнения для измерения электрокинетического (дзета) потенциала наночастиц коллоидных систем на основе супрамолекулярных растворов серосодержащих аминокислот, например, L-цистеина и N-ацетил-L-цистеина, и ацетата серебра. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002746992
Дата охранного документа: 23.04.2021
12.04.2023
№223.018.4820

Способ получения макропористой пленки для регенеративной медицины на основе l-цистеина, нитрата серебра и поливинилового спирта

Изобретение относится к области фармацевтики и медицины, а именно к способу получения макропористой пленки для регенеративной медицины на основе L-цистеина, нитрата серебра и поливинилового спирта. Способ включает смешивание водного раствора L-цистеина с водным раствором нитрата серебра при...
Тип: Изобретение
Номер охранного документа: 0002746882
Дата охранного документа: 21.04.2021
16.05.2023
№223.018.5e82

Способ выделения границ водных объектов и ареалов распространения воздушно-водной растительности по многоспектральным данным дистанционного зондирования земли

Изобретение относится к области изучения окружающей среды и касается способа выделения границ водных объектов и ареалов распространения воздушно-водной растительности по многоспектральным данным дистанционного зондирования Земли. Способ включает в себя радиометрическую калибровку снимка земной...
Тип: Изобретение
Номер охранного документа: 0002750853
Дата охранного документа: 05.07.2021
+ добавить свой РИД