×
21.12.2019
219.017.efdd

ЗАЩИТА ОТ ПЕРЕХОДОВ В НОРМАЛЬНОЕ СОСТОЯНИЕ В СВЕРХПРОВОДЯЩИХ МАГНИТАХ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002709627
Дата охранного документа
19.12.2019
Краткое описание РИД Свернуть Развернуть
Аннотация: Способ защиты сверхпроводящего магнита от переходов в нормальное состояние, причем сверхпроводящий магнит имеет по меньшей мере одну первичную катушку, содержащую материал-высокотемпературный сверхпроводник, ВТСП. Обеспечивают вторичную ВТСП-ленту, находящуюся в непосредственной близости от первичной катушки и электрически изолированную от нее и выполненную с возможностью прекращать сверхпроводимость при более низкой температуре, чем первичная катушка, во время работы магнита. Обнаруживают потерю сверхпроводимости во вторичной ВТСП-ленте. В ответ на упомянутое обнаружение сбрасывают энергию из первичной катушки во внешнюю резистивную нагрузку. 2 н. и 7 з.п. ф-лы, 3 ил.
Реферат Свернуть Развернуть

Область изобретения

Изобретение относится к защите от переходов в нормальное состояние в сверхпроводящих магнитах. В частности, изобретение относится к способам и прибору для идентификации возможных переходов в нормальное состояние с тем, чтобы можно было принять превентивные меры в магнитах, содержащих высокотемпературный сверхпроводник.

Предпосылки изобретения

Сверхпроводящий магнит представляет собой электромагнит, образованный из катушек сверхпроводящего материала. Поскольку эти катушки магнита имеют нулевое сопротивление, сверхпроводящие магниты могут переносить большие токи с нулевыми потерями (хотя будут некоторые потери от несверхпроводящих компонентов) и могут в связи с этим достигать сильных полей с меньшими потерями, нежели обычные электромагниты.

Сверхпроводимость возникает только в некоторых материалах и только при низких температурах. Сверхпроводящий материал будет вести себя как сверхпроводник в области, определяемой критической температурой сверхпроводника (наивысшей температурой, при которой материал является сверхпроводником в нулевом магнитном поле) и критическим полем сверхпроводника (наибольшим магнитным полем, в котором материал является сверхпроводником при 0 К). Температура сверхпроводника и присутствующее магнитное поле ограничивают ток, который может переноситься сверхпроводником без перехода сверхпроводника в резистивное состояние.

Вообще говоря, существуют два типа сверхпроводящего материала. Низкотемпературные сверхпроводники (НТСП) имеют критические температуры ниже 30-40 К, а высокотемпературные сверхпроводники (ВТСП) имеют критические температуры выше 30-40 К. Многие существующие ВТСП-материалы имеют критические температуры выше 77 К, что позволяет использовать жидкий азот для охлаждения.

Одной проблемой, которая может возникнуть в сверхпроводящих магнитах, является подавление. Подавление возникает, когда часть сверхпроводящей катушки входит в резистивное состояние. Это может возникнуть из-за флуктуаций температуры или магнитного поля, или физического повреждения, или дефектов в сверхпроводнике (например, при нейтронном облучении, если магнит используется в термоядерном реакторе). Из-за больших токов, присутствующих в магните, когда даже небольшая часть сверхпроводника становится резистивной, она быстро нагревается. В НТСП-магнитах это быстро повышает температуру окружающих областей. Это приводит к тому, что окружающие области также становятся резистивными, и это продолжается по цепной реакции, которая может обратить весь магнит в резистивный очень быстро (до нескольких секунд, в зависимости от размера катушки).

Ввиду больших температурных пределов для ВТСП-магнитов и более высоких удельных теплоемкостей материалов при более высоких температурах переходы в нормальное состояние в ВТСП-магнитах не распространяются так быстро. Это может приводить к большему повреждению магнита, поскольку вся энергия в магните выделяется в очень малом резистивном объеме.

Переход в нормальное состояние приводит к тому, что энергия в магните превращается в тепло, которое испарит любой жидкий охладитель и может вызвать необратимое повреждение магнита. Энергия, запасенная в магнитном поле, дается как:

То есть чем больше плотность потока и чем больше объем, тем больше запасенная энергия магнита. Энергия, высвобождаемая мощным магнитом, может быть того же порядка, что и у патрона взрывающегося динамита.

Обычный подход к управлению переходами состоит в обеспечении внешней резистивной нагрузки, в которую ток может быть «сброшен» при обнаружении локализованного перехода в нормальное состояние. Упрощенная схема этого показана на Фигуре 1. Во время нормальной работы ключ 1 замкнут, а ключ 2 разомкнут, что закорачивает сброс напряжения. При обнаружении перехода в нормальное состояние ключ 2 замыкается, а ключ 1 размыкается. Это закорачивает источник 4 питания и направляет ток от сверхпроводящего магнита 3 через сброс 5 постоянного напряжения (т. е. внешнюю резистивную нагрузку). Для ВТСП-магнитов ток может быть сброшен в секции магнита далеко от исходного горячего места, чтобы распределить выделение энергии на большую часть катушки и, таким образом, ограничить повышение температуры в любом одном месте.

Как показано на Фигуре 2, ВТСП-лента 11 зажата между слоями меди 12 для формирования проводника, такого как кабель. Медный стабилизатор 12 выступает в роли внешней резистивной нагрузки для ВТСП-ленты 11. Медный стабилизатор 12 работает на отвод избыточного тока во время перехода в нормальное состояние (показан протеканием 14 тока), а также удаляет часть тепла. Скорость, при которой первоначальная горячая зона 13 перехода в нормальное состояние нагревается, может быть уменьшена за счет увеличения количества меди в ВТСП-проводнике, что снижает сопротивление меди и увеличивает ее теплоемкость.

Однако в приложениях, где требуются проводники малого диаметра, медный стабилизатор значительно увеличивает размер проводников. Например, в термоядерном реакторе типа сферического токамака центральная колонна должна быть как можно меньше, чтобы сохранить размер и стоимость устройства как можно меньшими и повысить эффективность реактора (как путем увеличения соотношения сторон, так и путем увеличения магнитного поля на внутренней поверхности плазмы). Более тонкие проводники означают, что магниты могут быть сделаны более компактными в любом приложении, и увеличивают поле, доступное в определенных геометриях (т. е. для геометрий, в которых магнитное поле изменяется с расстоянием от тока, в этом случае наличие толстого слоя меди увеличит расстояние между током и областью, в которой используется поле).

Если переход в нормальное состояние может быть быстро обнаружен и система сброса быстро активирована, то количество требуемой меди может быть уменьшено. Однако чрезмерно чувствительная система обнаружения будет иметь тенденцию создавать ложные триггеры, которые вызывают отключение магнита без необходимости. Поэтому важно получить максимально быстрое обнаружение переходов в нормальное состояние с минимальным шумом.

Фигура 3 показывает график температуры горячего места во время перехода в нормальное состояние с временем активации сброса в 2 с. Температура увеличивается от 30 К до 217 К. Однако если бы переход в нормальное состояние мог быть обнаружен, а ключ сброса разомкнут в течение 1 с, количество меди могло быть значительно уменьшено для такого же повышения температуры (в данном случае уменьшено до 83% от исходной площади поперечного сечения).

Обычный подход к обнаружению переходов в нормальное состояние состоит в использовании снятия напряжения на сверхпроводящей катушке. По существу, напряжение на катушке измеряется, и если любое напряжение обнаружено вне указанного диапазона напряжений, то это знак того, что часть катушки стала резистивной и переход в нормальное состояние начинается. Однако первоначальная горячая зона обычно очень мала, и поэтому сопротивление (а, следовательно, и генерируемое напряжение) невелико. При подаче напряжения на магнит также будут возникать индуктивные эффекты напряжения, которые могут накапливать резистивное напряжение, даже если прилагаются усилия по их устранению. Фильтрация истинного сигнала перехода в нормальное состояние от шумящего фонового сигнала занимает время и имеет высокую вероятность ошибки.

Сущность изобретения

В соответствии с аспектом предлагается способ защиты сверхпроводящего магнита от переходов в нормальное состояние, причем сверхпроводящий магнит имеет по меньшей мере одну первичную катушку, содержащую материал-высокотемпературный сверхпроводник, ВТСП. Обеспечена вторичная ВТСП-лента, находящаяся в непосредственной близости от первичной катушки и электрически изолированная от нее, и выполненная с возможностью прекращать сверхпроводимость при более низкой температуре, чем первичная катушка, во время работы магнита. Обнаруживают потерю сверхпроводимости во вторичной ВТСП-ленте. В ответ на упомянутое обнаружение сбрасывают энергию из первичной катушки во внешнюю резистивную нагрузку.

Во время работы магнита ток во вторичной ВТСП-ленте может составлять большую долю от своего критического тока, нежели ток в первичной катушке.

Вторичная ВТСП-лента может быть предусмотрена в виде пары лент, причем ленты переносят ток в противоположных направлениях и проложены параллельно и рядом друг с другом.

Обнаружение потери сверхпроводимости может содержать обнаружение разности напряжений, превышающей заданное значение между двумя точками вторичной ВТСП-ленты.

В соответствии со вторым аспектом предлагается система защиты от переходов в нормальное состояние для использования со сверхпроводящим магнитом, имеющим по меньшей мере одну первичную катушку, содержащую материал-высокотемпературный сверхпроводник, ВТСП. Система содержит вторичную ВТСП-ленту, блок обнаружения и блок защиты от переходов в нормальное состояние. Вторичная ВТСП-лента выполнена расположенной в непосредственной близости от первичной катушки магнита и изолированной от нее и с возможностью прекращать сверхпроводимость при более низкой температуре, чем первичная катушка, во время работы магнита. Блок обнаружения выполнен с возможностью обнаружения потери сверхпроводимости во вторичной ВТСП-ленте. Блок защиты от переходов в нормальное состояние выполнен с возможностью вызывать сброс энергии из первичной катушки во внешнюю резистивную нагрузку в ответ на упомянутое обнаружение.

Вторичная ВТСП-лента может содержать пару ВТСП-лент, проложенных параллельно и рядом друг с другом и выполненных с возможностью переносить ток в противоположных направлениях.

В соответствии с еще одним аспектом предлагается сверхпроводящий магнит, содержащий первичную катушку и систему защиты от переходов в нормальное состояние в соответствии со вторым аспектом, причем первичная катушка содержит материал-высокотемпературный сверхпроводник, ВТСП.

В соответствии с еще одним аспектом предлагается катушка тороидального или полоидального поля для термоядерного реактора, содержащая материал-высокотемпературный сверхпроводник, ВТСП, и систему защиты от переходов в нормальное состояние в соответствии со вторым аспектом.

Краткое описание чертежей

Фигура 1 представляет собой принципиальную схему части системы защиты от переходов в нормальное состояние;

Фигура 2 представляет собой схематическое изображение горячего места в ВТСП-проводнике;

Фигура 3 представляет собой график температуры от времени для горячего места в примерном ВТСП-проводнике.

Подробное описание

Чтобы обеспечить более быстрое и более надежное обнаружение переходов в нормальное состояние, либо шум, который скрывает сигнал обнаружения переходов в нормальное состояние, должен быть уменьшен, либо сам сигнал должен быть увеличен. Ниже предлагается решение, которое обеспечивает значительно улучшенные скорость и надежность обнаружения по сравнению с обычными способами.

Второе решение задействует использование «коррекционной ленты». Вторичная ВТСП-лента обеспечена в непосредственной близости от («первичной») катушки магнита. Вторичная лента выполнена таким образом, что она прекращает сверхпроводимость при более низкой температуре во время работы магнита, например, при температуре от примерно 5 К до примерно 80 К ниже температуры, при которой первичная катушка прекращает сверхпроводимость. Вторичная ВТСП-лента может быть физически ослаблена, например, нейтронным облучением или химическим травлением, или может быть из альтернативного ВТСП-материала с более низкой критической температурой, чем ВТСП первичной катушки.

Поскольку вторичная ВТСП-лента прекращает сверхпроводимость при более низкой температуре, нежели первичная катушка, она обычно становится резистивной раньше первичной катушки или быстро становится резистивной, если горячее место образуется в первичной катушке. Поэтому напряжение на вторичной ленте можно взять в качестве показателя того, что переход в нормальное состояние вероятно в первичной ленте. Поскольку вторичная лента не требуется для работы магнита, обнаружение перехода в нормальное состояние может дождаться, когда перепад напряжений на вторичной ВТСП-ленте будет достаточно большим, чтобы легко выделяться из электрических шумов, что значительно снижает риск ложных сигналов тревоги и, следовательно, обработку (и время), необходимую для обнаружения сигнала. Как только переход в нормальное состояние обнаружен, система обнаружения переходов в нормальное состояние вызывает сброс энергии в магните во внешнюю резистивную нагрузку, ослабляя эффекты перехода в нормальное состояние.

В одном варианте осуществления вторичная ВТСП-лента предусмотрена в виде пары лент, которые проложены параллельно и рядом друг с другом и которые переносят ток в противоположных направлениях. Это гарантирует, что поле, создаваемое вторичными лентами, практически нейтрализуется и что размер петли, заключенной вторичной лентой, минимизируется, что уменьшает индуктивные эффекты.

Вторичная лента может переносить гораздо более слабый ток, чем первичная катушка, поэтому вторичная лента нуждается в очень малом количестве меди для своей защиты в случае перехода в нормальное состояние. В одном варианте осуществления вторичная лента может рассматриваться как одноразовая и быть обеспеченной небольшой защитой или вообще никакой, но это требует того, чтобы энергия, высвобождаемая при переходе в нормальное состояние во вторичной ленте, была недостаточной, чтобы вызвать повреждение других компонентов магнита. Магнит может быть выполнен так, что вторичная лента может быть легко заменена после сброса энергии из магнита.

Множество вторичных лент может быть обеспечено в разных областях магнита, со свойствами в зависимости от этих областей. Например, лента, используемая в центральной колонне катушки тороидального поля при 18 Tл, может не обнаружить переход в нормальное состояние в возвратной ветви при 2 Tл, пока не станет слишком поздно, поэтому более чувствительная лента может использоваться в более слабом магнитном поле.


ЗАЩИТА ОТ ПЕРЕХОДОВ В НОРМАЛЬНОЕ СОСТОЯНИЕ В СВЕРХПРОВОДЯЩИХ МАГНИТАХ
ЗАЩИТА ОТ ПЕРЕХОДОВ В НОРМАЛЬНОЕ СОСТОЯНИЕ В СВЕРХПРОВОДЯЩИХ МАГНИТАХ
ЗАЩИТА ОТ ПЕРЕХОДОВ В НОРМАЛЬНОЕ СОСТОЯНИЕ В СВЕРХПРОВОДЯЩИХ МАГНИТАХ
Источник поступления информации: Роспатент

Показаны записи 1-7 из 7.
17.02.2018
№218.016.2d1a

Обмотка тороидального поля для использования в термоядерном реакторе

Изобретение относится к обмотке тороидального поля для создания тороидального магнитного поля в термоядерном реакторе. Реактор содержит тороидальную плазменную камеру с центральной колонной, а обмотка тороидального поля содержит тороидальную плазменную камеру с центральной колонной, содержит...
Тип: Изобретение
Номер охранного документа: 0002643797
Дата охранного документа: 06.02.2018
01.05.2019
№219.017.47c8

Втсп-магнитные секции

Использование: для переноса электрического тока в обмотке магнита. Сущность изобретения заключается в том, что узел для переноса электрического тока в обмотке магнита содержит: предварительно сформированный корпус, содержащий канал, выполненный с возможностью удержания ВТСП-ленты, причем канал...
Тип: Изобретение
Номер охранного документа: 0002686524
Дата охранного документа: 29.04.2019
06.02.2020
№220.017.ff09

Материалы защиты для термоядерных реакторов

Изобретение относится к нейтронной защите для термоядерного реактора. Защита включает цементированный карбид или борид, содержащий связующее и наполнитель. Причем наполнитель содержит частицы карбидного или боридного соединения вольфрама, тантала и/или гафния, причем обращенная к плазме сторона...
Тип: Изобретение
Номер охранного документа: 0002713484
Дата охранного документа: 05.02.2020
05.03.2020
№220.018.0951

Нейронная защита, объединенная с соленоидом

Изобретение относится к нейтронной защите центральной колонны термоядерного реактора типа токамак. Нейтронная защита содержит электропроводящий поглощающий нейтроны материал. Нейтронная защита выполнена так, что электропроводящий поглощающий нейтроны материал образует соленоид для инициирования...
Тип: Изобретение
Номер охранного документа: 0002715749
Дата охранного документа: 03.03.2020
07.06.2020
№220.018.2530

Опорные конструкции для втсп-магнитов

Изобретение относится к опорной конструкции для катушки поля, содержащей высокотемпературный сверхпроводник, ВТСП. Опорная конструкция содержит внутренний элемент переноса нагрузки, выполненный с возможностью прикрепления на одном конце к катушке поля, а на другом конце к внутренней поверхности...
Тип: Изобретение
Номер охранного документа: 0002722990
Дата охранного документа: 05.06.2020
16.07.2020
№220.018.32ca

Обмотка поля с отслоенной лентой

Раскрыта обмотка тороидального поля для использования в сферическом токамаке. Обмотка тороидального поля содержит центральную колонну и множество возвратных ветвей. Центральная колонна содержит множество отслоенных ВТСП-лент, а возвратные ветви содержат множество снабженных подложкой ВТСП-лент....
Тип: Изобретение
Номер охранного документа: 0002726323
Дата охранного документа: 14.07.2020
10.05.2023
№223.018.5348

Гибкие втсп токопроводы

Настоящее изобретение относится к сверхпроводниковым устройствам. В соответствии с первым аспектом предлагается ВТСП-токопровод. ВТСП-токопровод содержит ВТСП-кабель, содержащий множество ВТСП-лент, оплетку, охватывающую ВТСП-кабель, и материал-стабилизатор, пропитывающий ВТСП-кабель и оплетку....
Тип: Изобретение
Номер охранного документа: 0002795238
Дата охранного документа: 02.05.2023
Показаны записи 1-1 из 1.
07.06.2020
№220.018.2530

Опорные конструкции для втсп-магнитов

Изобретение относится к опорной конструкции для катушки поля, содержащей высокотемпературный сверхпроводник, ВТСП. Опорная конструкция содержит внутренний элемент переноса нагрузки, выполненный с возможностью прикрепления на одном конце к катушке поля, а на другом конце к внутренней поверхности...
Тип: Изобретение
Номер охранного документа: 0002722990
Дата охранного документа: 05.06.2020
+ добавить свой РИД