×
21.12.2019
219.017.efd6

Результат интеллектуальной деятельности: Интерферометр Майкельсона для определения показателя преломления поверхностных плазмон-поляритонов терагерцевого диапазона

Вид РИД

Изобретение

Аннотация: Изобретение относится к оптике конденсированных сред и может быть использовано для определения оптических постоянных поверхности твердых тел, способных направлять поверхностные плазмон-поляритоны (ППП). Интерферометр содержит источник коллимированного р-поляризованного монохроматического излучения, элемент преобразования излучения в пучок ППП, твердотельный образец с плоской гранью, способной направлять ППП, делитель исходного пучка ППП в форме плоскопараллельной пластинки, наклоненной на 45° к плоскости падения излучения, примыкающей своим ребром к грани и ориентированной перпендикулярно к ней, неподвижное и подвижное плоские зеркала, примыкающие кромкой отражающей поверхности к грани, ориентированные перпендикулярно к ней, однопиксельное фотоприемное устройство, размещенное у участка ребра грани, освещаемого обоими вторичными пучками, и устройство обработки информации. Технический результат – повышение точности. 2 ил.

Изобретение относится к оптике конденсированных сред и может быть использовано для определения оптических постоянных поверхности твердых тел, способных направлять поверхностные плазмон-поляритоны (ППП) - разновидность поверхностных электромагнитных волн [1], а также - для исследования переходного слоя на поверхности таких тел, для создания сенсорных устройств и плазмон-поляритонных фурье-спектрометров инфракрасного (ИК) и терагерцевого (ТГц) диапазонов оптического спектра [2].

Известен плазмонный спектрометр (представляющий собой двулучевой интерферометр) ТГц диапазона для исследования проводящей поверхности, в котором интерферограмму получают в параллельных пучках объемных волн, одна из которых порождена ППП, взаимодействующими с перемещаемым вдоль их трека наклонным плоским зеркалом [3]. Спектрометр содержит источник p-поляризованного монохроматического излучения, светоделитель в виде плоскопараллельной пластинки, расщепляющий пучок излучения источника на измерительный и реперный пучки, элемент преобразования излучения измерительного пучка в ППП, твердотельный проводящий образец, имеющий две плоские смежные грани, на одной из которых размещен элемент преобразования излучения источника в ППП, а на другой - элемент преобразования ППП в объемную волну, выполненный в виде перемещаемого вдоль трека наклонного плоского зеркала, заслонку, перекрывающую реперный пучок, регулируемый поглотитель реперного пучка, неподвижное плоское зеркало, светоделитель, совмещающий пучки объемного излучения, фокусирующий объектив и фотоприемник. Основным недостатком известного устройства является низкая точность определения показателя преломления ППП. Это обусловлено, в основном, сравнимостью длины распространения ППП с периодом интерференционной картины, что не позволяет точно определить ни сам период (пропорциональный вещественной части κ' комплексного показателя преломления ППП), ни длину распространения ППП (обратно пропорциональную мнимой части κ'' показателя преломления ППП). Кроме того, при перемещении элемента преобразования ППП в объемную волну практически невозможно сохранить неизменной величину зазора между этим элементом и поверхностью образца; вариации же зазора приводят к непредсказуемым вариациям интенсивности измерительного пучка, что приводит к снижению соотношения сигнал/шум.

Известен статический двулучевой интерферометр для определения показателя преломления ППП ИК-диапазона, в котором излучение в обоих плечах существует в форме сходящихся под небольшим углом пучков ППП, а интерферограмма образуется в плоскости направляющей ППП грани образца [4]. Интерферометр содержит источник коллимированного р-поляризованного монохроматического излучения, элемент преобразования излучения в ППП, твердотельный образец с плоской гранью, способной направлять ППП, уголковое зеркало, расщепляющее исходный пучок ППП на два вторичных пучка, четыре зеркала, отражающие пучки в плечах интерферометра, второе уголковое зеркало, сбивающее оба пучка ППП, линейку фотодетекторов, размещенную в плоскости грани образца и устройство обработки информации; причем все зеркала установлены на поверхности грана образца и ориентированы перпендикулярно ей. Основными недостатками известного устройства являются низкое соотношение сигнал/шум, что обусловлено дифракцией ППП на ребрах уголковых зеркал, а также - сложность схемы и процедуры обработки результатов измерений.

Наиболее близким по технической сущности к заявляемому устройству является интерферометр для определения показателя преломления монохроматической инфракрасной поверхностной электромагнитной волны (ПЭВ), содержащий источник коллимированного p-поляризованного монохроматического излучения, элемент преобразования излучения в ПЭВ, твердотельный образец с плоской гранью, способной направлять ПЭВ, делитель исходного пучка ПЭВ, выполненный в виде частично прозрачной плоскопараллельной пластинки, примыкающей своим ребром к грани образца и перпендикулярный к ней, плоское зеркало, ориентированное перпендикулярно к грани образца и пересекающее трек прошедшего через делитель пучка ПЭВ, заслонку, позволяющую поочередно перекрывать провзаимодействовавшие с делителем пучки ПЭВ, линейку фотоприемников, размещенную в плоскости грани, и устройство обработки информации [5]. Основным недостатком известного интерферометра является низкая точность определения обеих частей комплексного показателя преломления ПЭВ, что обусловлено: 1) малым количеством периодов в интерферограмме, регистрируемой в области пересечения провзаимодействовавших с делителем пучков ПЭВ; 2) неравномерностью распределения интенсивности в поперечном сечении исходного пучка ПЭВ; 3) малым различием между длинами пробега интерферирующих пучков; 4) малой светосилой и чувствительностью пикселей линейки фотоприемников.

В основу изобретения поставлена задача повышения точности определения обеих частей комплексного показателя преломления терагерцевых поверхностных плазмон-поляритонов.

Суть изобретения заключается в том, что известный интерферометр, содержащий источник коллимированного р-поляризованного монохроматического излучения, элемент преобразования излучения в пучок ППП, твердотельный образец с плоской гранью, способной направлять ППП, делитель исходного пучка ППП в форме плоскопараллельной пластинки, примыкающей своим ребром к грани и ориентированной перпендикулярно к ней, неподвижное плоское зеркало, примыкающее кромкой отражающей поверхности к грани, ориентированное перпендикулярно к ней и пересекающее трек одного из вторичных пучков ППП, фотоприемное устройство, размещенное у участка ребра грани, освещаемого обоими вторичными пучками, и устройство обработки информации, дополнительно содержит еще одно размещенное на грани плоское зеркало, способное перемещаться вдоль направления распространения другого вторичного пучка и ориентированное перпендикулярно как к этому пучку, так и к грани образца; кроме того, первое зеркало является съемным и ориентировано также перпендикулярно к отражаемому им пучку, делитель отклонен на 45° от плоскости падения излучения источника, а фотоприемное устройство выбрано однопиксельным.

Повышение точности определения обеих частей комплексного показателя преломления ППП κ=κ'+i⋅κ'' (где i - мнимая единица) заявляемым интерферометром достигается в результате: 1) применения метода рядов при оценке величины периода интерферограммы, путем регистрации большего количества периодов по сравнению с устройством-прототипом вследствие большего изменения разности хода интерферирующих пучков в процессе измерений; 2) использования однопиксельного (вместо многопиксельного) фотоприемного устройства, характеризуемого большей светосилой и чувствительностью, чем отдельные пиксели линейки фотоприемников; 3) интегральным характером регистрации результирующей интенсивности интерферирующих пучков ППП.

На Фиг. 1 приведена схема (вид сверху) заявляемого устройства, где цифрами обозначены: 1 - источник коллимированного р-поляризованного монохроматического ТГц излучения; 2 - элемент преобразования излучения источника 1 в ППП; 3 - плоская грань образца, способная направлять ППП; 4 - делитель пучка ППП в форме частично прозрачной плоскопараллельной пластинки, отклоненной на угол 45° относительно плоскости падения излучения источника 1 и характеризуемой применительно к ППП коэффициентом отражения R и коэффициентом пропуская T; 5 - съемное плоское зеркало, ориентированное параллельно плоскости падения; 6 - плоское зеркало, ориентированное перпендикулярно плоскости падения и способное перемещаться вдоль нее; 7 - однопиксельное фотоприемное устройство; 8 - устройство накопления и обработки информации.

На Фиг. 2 приведен фрагмент интерферограммы, рассчитанной в примере, иллюстрирующем работу заявляемого устройства.

Интерферометр работает следующим образом. Коллимированное излучение источника 1 с длиной волны λo направляют на элемент 2, преобразующий его с некоторой эффективностью в ППП. Пучок ППП, распространяется по грани 3 образца и падает на делитель 4, расщепляющий исходный пучок на два вторичных [6]. Отраженный делителем 4 пучок падает на зеркало 5 и отражается им в противоположном направлении [7]. Прошедший сквозь делитель 4 пучок достигает зеркала 6, отражается от него и возвращается на делитель 4. Первый из вторичных пучков частично проходит сквозь делитель 4, а второй - частично отражается им. Провзаимодействовавшие с делителем 4 вторичные пучки распространяются по одному и тому же треку (перпендикулярному плоскости падения), достигают кромки грани 3 образца и, в результате дифракции на ребре этой грани, преобразуются в объемные волны, интенсивность которых пропорциональна интенсивности породивших их пучков ППП [8]. Эти волны интерферируют между собой и освещают фотоприемное устройство 7, которое продуцирует электрический сигнал, пропорциональный освещенности. Сигнал поступает на устройство 8, запоминающее величину Iint сигнала и соответствующую ему координату xo зеркала 6. Далее, зеркало 6 смещается вдоль оси х на один «шаг» Δх и устройство 8 регистрирует новые значения сигнала Iint и соответствующей ему координаты (xo±Δx) зеркала 6. Процедура подобных измерений продолжается до тех пор, пока зеркало 6 не сместится на максимальное расстояние xmax от своего начального положения. Полученная зависимость Iint(x), представляет собой совокупность точек интерферограммы, описываемой аналитическим выражением:

где Io - интенсивность падающего на делитель 4 пучка ППП; α=2ko⋅κ'' - коэффициент затухания ППП; b - расстояние от делителя 4 до зеркала 5; а - расстояние от делителя 4 до ребра грани 3; х - текущее расстояние от делителя 4 до зеркала 6; Δϕ=2⋅ko⋅κ'⋅|х0-х| - набег фазы, приобретаемый ППП на расстоянии |х0-х| (здесь коэффициент "2" учитывает прямой и обратный ход пучка на расстоянии |xo-х|).

Используя полученную интерферограмму, можно определить как вещественную κ', так и мнимую часть κ'' показателя преломления ППП. Первую из них можно определить, соотнося длину волны излучения в окружающем пространстве λo и длину волны ППП λППП: κ'=λoППП [1]. Величину же λППП можно рассчитать по интерферограмме, разделив удвоенное расстояние |xo-х| (что соответствует изменению расстояния, пробегаемого пучком ППП в «плече», содержащем зеркало 6), между m зарегистрированными максимумами, на число этих максимумов: λППП=2⋅|х0-х|/m. Поэтому формула для расчета значения κ' имеет вид:

Заметим, что, согласно теории метода рядов [9], точность определения κ', пропорциональна числу m рассматриваемых максимумов интерферограммы.

Значение мнимой части κ'' показателя преломления ППП можно определить, решив нелинейное уравнение, описывающее зависимость результирующей интенсивности от координаты х, относительно κ''. Однако мы предлагаем приборное решение данной задачи, значительно упрощающее обработку результатов измерений и состоящее в том, чтобы измерить зависимость интенсивности пучка I, прошедшего сквозь делитель 4, от координаты х зеркала 6 в отсутствии зеркала 5 на грани 3. Тогда для любых значений I1 и I2, измеренных при положениях зеркала 6 с координатами х1 и х2 (где х1>x2), соответственно, справедливо соотношение [1]:

Приравняв правую часть выражения (3) правой части определения коэффициента затухания ППП α=2ko⋅κ'', получим:

Многократный расчет κ'', с целью нахождения его среднего значения, способствует повышению точности определения искомой величины. Отметим, что изложенная методика определения κ'' фактически воспроизводит известную «двухпризменную» методику определения длины распространения ПЭВ [10].

В качестве примера применения заявляемого устройства, рассмотрим возможность определения показателя преломления ППП, генерируемых излучением с λо=130 мкм на размещенной в вакууме плоской поверхности золотого образца, содержащей тонкослойное ZnS-покрытие толщиной 0.5 мкм [5]. Пусть расстояния а, b и xo одинаковы и равны 2.0 см. В качестве делительной пластинки 4 выберем каптоновую пенку толщиной 125 мкм, характеризуемую коэффициентом отражения данных ППП R=0.28 и коэффициентом пропускания T=0.45 [6]. Для регистрации результирующей интенсивности интерферирующих ППП пучков используем оптико-акустический приемник Голея, подключенный к синхронному усилителю; пороговая чувствительность такого комплекса превышает аналогичную характеристику пикселя болометрической матрицы более чем на порядок [7, 11]. Полагая Io=1, Δх=1.0 мкм, xo=0, xmax=1.0 см и используя модель Друде для диэлектрической проницаемости металла [12] при решении дисперсионного уравнения ППП в трехслойной структуре («металл - слой диэлектрика - диэлектрическая окружающая среда») [1], была рассчитана интерферограмма для х>xo, фрагмент которой представлен на Фиг. 2. Максимальное число полных периодов m=153 такой интерферограммы укладывается на расстоянии (х-xo)=9.94 мм. Подставив в формулу (2) значения m, (х-xo) и λo, получим искомую величину κ'=1.00051±3-10-5. Точность определения κ' пропорциональна числу m рассматриваемых максимумов интерферограммы и, поэтому, превышает таковую при использовании устройства-прототипа более чем на порядок.

Для определения κ'' выберем набор положений зеркала 6 на участке от хо=0 до xmax=1.0 см, насчитывающий, например, сто точек. Измеренная в этих точках зависимость Iint(x) является экспоненциальной и описывается выражением: Iint(x)=Io⋅ехр(-2α⋅х) (удвоение показателя экспоненты объясняется необходимостью учета хода пучка ППП к зеркалу 6 и от него). Последовательно используя значения координат зеркала 6 и соответствующие им показания устройства 8, многократно применим формулу (4) и получим искомое значение мнимой части показателя преломления ППП: κ''=0.000024. Точность определения величины κ'' также намного превосходит точность ее определения с помощью устройства-прототипа, поскольку изменение хода пучка (х-xo) в заявляемом устройстве значительно больше, чем в прототипе, а число сочетаний контролируемых точек трека практически неограниченно. Кроме того, точность определения κ'' с помощью устройства-прототипа лимитирована и размером (50 мкм) пикселей линейки фотоприемников, который значительно превышает минимальный "шаг" (2.5 мкм) перемещения серийного автоматического транслятора [13], перемещающего платформу с зеркалом 6.

Таким образом, по сравнению с прототипом, заявляемое устройство позволяет существенно повысить точность определения обеих частей комплексного показателя преломления терагерцевых поверхностных плазмон-поляритон при прочих равных условиях.

Источники информации, принятые во внимание при составлении заявки:

1. Gomez R.J., Zhang Y., and Berrier A. Fundamental aspects of surface plasmon polaritons at terahertz frequencies // in "Handbook of terahertz technology for imaging, sensing and communications" Ed. Saeedkia D. (Woodhead Publishing Series), 2013. - p. 62-90.

2. Жижин Г.Н., Кирьянов А.П., Никитин A.К., Хитров О.В. Дисперсионная фурье-спектроскопия поверхностных плазмонов инфракрасного диапазона // Оптика и спектроскопия, 2012, т. 112, №4, с. 597-602.

3. Жижин Г.Н., Никитин А.К., Балашов А.А., Рыжова Т.А. Плазмонный спектрометр ТГц диапазона для исследования проводящей поверхности // Патент РФ на изобретение №2318192. - Бюл. №6 от 27.02.2008 г.

4. Никитин А.К., Жижин Г.Н., Кирьянов А.П., Князев Б.А., Хитров О.В. Инфракрасный амплитудно-фазовый плазмонный спектрометр // Патент РФ на изобретение №2477841. - Бюл. №8 от 20.03.2013 г.

5. Никитин А.К., Князев Б.А., Герасимов В.В., Хасанов И.Ш. Интерферометр для определения показателя преломления монохроматической инфракрасной поверхностной электромагнитной волны // Патент РФ на изобретение RU 2653590, Бюл. №14 от 11.05.2018 г. (прототип)

6. Gerasimov V.V., Nikitin А.K., Lemzyakov A.G. et al. Splitting of terahertz surface plasmons by polyimide films // J. Physics: Conf. Series, 2018, V. 1092, 012040. Doi:10.1088/1742-6596/1092/1/012040

7. Герасимов B.B., Князев Б.А., Никитин A.К. Отражение монохроматических поверхностных плазмон-поляритонов терагерцевого диапазона плоским зеркалом // Квантовая электроника, 2017, т. 47 (1), с. 65-70.

8. Gerasimov V.V., Knyazev B.A., Kotelnikov I.A., Nikitin A.K. et al. Surface plasmon polaritons launched using a terahertz free electron laser: propagating along a gold-ZnS-air interface and decoupling to free waves at the surface tail end // JOSA (B), 2013, v. 30, Is. 8, p. 2182-2190.

9. Брюханов B.A. Методы повышения точности измерений в промышленности // М.: Издательство стандартов, 1991. - 108 с.

10. Schoenwald J., Burstein Е., and Elson J.M. Propagation of surface polaritons over macroscopic distances at optical frequencies // Solid State Communications, 1973, v. 12, No. 3, p. 185-189.

11. Gerasimov V.V., Knyazev B.A., Lemzyakov A.G., Nikitin A.K., Zhizhin G.N. Growth of terahertz surface plasmon propagation length due to thin-layer dielectric coating // JOSA(B), 2016, v. 33, Is. 11, p. 2196-2203.

12. Ordal M.A., Bell R.J., Alexander R.W, Long L.L. and Querry M.R. Optical properties of fourteen metals in the infrared and far infrared // Applied Optics, 1985, v. 24, No. 24, p. 4493-4499.

13. http://www.standa.lt/products/catalog/motorised_positioners

Интерферометр Майкельсона для определения показателя преломления поверхностных плазмон-поляритонов (ППП) терагерцевого диапазона, содержащий источник коллимированного p-поляризованного монохроматического излучения, элемент преобразования излучения в пучок ППП, твердотельный образец с плоской гранью, способной направлять ППП, делитель исходного пучка ППП в форме плоскопараллельной пластинки, примыкающей своим ребром к грани и ориентированной перпендикулярно к ней, неподвижное плоское зеркало, примыкающее кромкой отражающей поверхности к грани, ориентированное перпендикулярно к ней и пересекающее трек одного из вторичных пучков ППП, фотоприемное устройство, размещенное у участка ребра грани, освещаемого обоими вторичными пучками, и устройство обработки информации, отличающийся тем, что он дополнительно содержит еще одно размещенное на грани плоское зеркало, способное перемещаться вдоль направления распространения другого вторичного пучка и ориентированное перпендикулярно как к этому пучку, так и к грани образца; кроме того, первое зеркало является съемным и ориентировано также перпендикулярно к отражаемому им пучку, делитель отклонен на 45° от плоскости падения излучения источника, а фотоприемное устройство выбрано однопиксельным.
Интерферометр Майкельсона для определения показателя преломления поверхностных плазмон-поляритонов терагерцевого диапазона
Интерферометр Майкельсона для определения показателя преломления поверхностных плазмон-поляритонов терагерцевого диапазона
Интерферометр Майкельсона для определения показателя преломления поверхностных плазмон-поляритонов терагерцевого диапазона
Источник поступления информации: Роспатент

Показаны записи 11-20 из 22.
14.03.2019
№219.016.df80

Устройство для определения коэффициента затухания поверхностной электромагнитной волны инфракрасного диапазона за время одного импульса излучения

Изобретение относится к области исследования поверхности материалов оптическими методами и касается устройства определения коэффициента затухания поверхностной электромагнитной волны (ПЭВ) инфракрасного диапазона за время одного импульса излучения. Устройство включает в себя источник...
Тип: Изобретение
Номер охранного документа: 0002681658
Дата охранного документа: 12.03.2019
05.04.2019
№219.016.fd4c

Устройство для наблюдения обратной коллинеарной дифракции терагерцевого излучения на ультразвуковой волне в кристаллической среде

Изобретение относится к акустооптике и может найти применение для управления такими параметрами электромагнитного излучения терагерцевого диапазона, как направление распространения, интенсивность, поляризация, частота и фаза. Устройство для наблюдения обратной коллинеарной дифракции...
Тип: Изобретение
Номер охранного документа: 0002683886
Дата охранного документа: 03.04.2019
07.06.2019
№219.017.74e9

Способ получения нитрида углерода, обладающего аномально высоким уровнем флуоресценции под действием лазерного излучения видимого диапазона

Изобретение относится к неорганической химии и может быть использовано в фотокатализе, литий-ионных аккумуляторах, медицинских зондах. Меламин разлагают в закрытом кварцевом реакторе в азотсодержащей атмосфере при 275-295 С в течение 4,5-6 ч. Получают графитоподобный g-CN, имеющий молярное...
Тип: Изобретение
Номер охранного документа: 0002690810
Дата охранного документа: 05.06.2019
24.10.2019
№219.017.dab1

Устройство для измерения длины распространения инфракрасной поверхностной электромагнитной волны

Изобретение относится к области исследования поверхности металлов и полупроводников оптическими методами и касается устройства для измерения длины распространения инфракрасной поверхностной электромагнитной волны (ПЭВ). Устройство содержит источник р-поляризованного монохроматического...
Тип: Изобретение
Номер охранного документа: 0002703772
Дата охранного документа: 23.10.2019
24.10.2019
№219.017.dab5

Устройство для преобразования инфракрасного излучения в поверхностную электромагнитную волну на плоской грани проводящего тела

Изобретение относится к области исследования поверхности металлов и полупроводников путем измерения характеристик направляемых ей поверхностных электромагнитных волн (ПЭВ) и может найти применение в сенсорных устройствах, абсорбционных спектрометрах и интерферометрах, использующих в качестве...
Тип: Изобретение
Номер охранного документа: 0002703941
Дата охранного документа: 23.10.2019
12.12.2019
№219.017.ec49

Способ для продольного перемещения перетяжки лазерного гауссова пучка постоянного диаметра без перемещения компонентов оптической системы (варианты)

Изобретение относится к области оптического приборостроения и может быть использовано в приборостроении, медицине и других областях науки и техники, где возникает необходимость непрерывного и плавного изменения положения перетяжки лазерного гауссова пучка при обеспечении постоянства ее...
Тип: Изобретение
Номер охранного документа: 0002708549
Дата охранного документа: 09.12.2019
08.02.2020
№220.018.0039

Способ регистрации мультиспектрального цифрового голографического изображения

Изобретение относится к технологиям цифровой голографии, а именно количественной фазовой микроскопии, и предназначено для измерения спектральной зависимости пространственного распределения фазовой задержки, вносимой оптически прозрачным объектом в световую волну. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002713567
Дата охранного документа: 05.02.2020
20.05.2020
№220.018.1e1d

Способ бесконтактного измерения пространственного распределения температуры и излучательной способности объектов без сканирования

Изобретение относится к области измерительной техники и касается способа бесконтактного измерения пространственного распределения температуры и излучательной способности объектов без сканирования. Способ заключается в формировании светового пучка широкополосного излучения, идущего от объекта,...
Тип: Изобретение
Номер охранного документа: 0002721097
Дата охранного документа: 15.05.2020
20.05.2020
№220.018.1e2a

Способ одновременной спектральной фильтрации пары световых пучков с перестройкой по спектру

Изобретение относится к области стереоскопии, а именно к способам получения и регистрации спектральных стереоизображений объектов. Техническим результатом изобретения является использование одного акустооптического (АО) кристалла малых массы и габаритов, исключение или упрощение формирующей...
Тип: Изобретение
Номер охранного документа: 0002721170
Дата охранного документа: 18.05.2020
13.06.2020
№220.018.26ba

Управляемый ультразвуком поляризатор терагерцового излучения

Изобретение относится к оптике терагерцового (ТГц) диапазона и может быть использовано для поляризации и амплитудной модуляции ТГц излучения без использования мобильных оптических устройств, размещаемых на пути пучка излучения. Суть изобретения заключается в том, что поляризатор, содержащий...
Тип: Изобретение
Номер охранного документа: 0002723150
Дата охранного документа: 09.06.2020
Показаны записи 11-20 из 38.
10.04.2015
№216.013.3d3c

Геодезическая призма для отклонения пучка монохроматических поверхностных плазмон-поляритонов терагерцового диапазона

Изобретение относится к области передачи информации посредством поверхностных электромагнитных волн и касается геодезической призмы для отклонения пучка монохроматических поверхностных плазмон-поляритонов (ППП). Геодезическая призма выполнена в виде конусной канавки, которая расположена на...
Тип: Изобретение
Номер охранного документа: 0002547164
Дата охранного документа: 10.04.2015
10.09.2015
№216.013.7603

Способ регулирования интенсивности инфракрасной поверхностной электромагнитной волны на плоскогранной структуре

Изобретение относится к области информационно-коммуникационных технологий и касается способа регулирования интенсивности инфракрасной поверхностной электромагнитной волны на плоскогранной структуре. Способ включает в себя преобразование на ребре структуры поверхностной электромагнитной волны в...
Тип: Изобретение
Номер охранного документа: 0002561800
Дата охранного документа: 10.09.2015
20.01.2016
№216.013.a3f7

Инфракрасный амплитудно-фазовый плазмонный спектрометр

Изобретение относится к инфракрасной (ИК) спектроскопии поверхности металлов и полупроводников, а именно к определению амплитудно-фазовых спектров как самой поверхности, так и ее переходного слоя, путем измерения характеристик направляемых этой поверхностью поверхностных плазмонов (ПП)....
Тип: Изобретение
Номер охранного документа: 0002573617
Дата охранного документа: 20.01.2016
12.01.2017
№217.015.63fd

Способ увеличения длины распространения инфракрасных монохроматических поверхностных электромагнитных волн по плоской металлической поверхности

Изобретение относится к области информационно-коммуникационных технологий и касается способа увеличения длины распространения инфракрасных монохроматических поверхностных электромагнитных волн (ПЭВ) по плоской металлической поверхности. Способ включает в себя нанесение на поверхность слоя...
Тип: Изобретение
Номер охранного документа: 0002589465
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.7cce

Способ раздвоения плазмон-поляритонного канала связи терагерцового диапазона

Изобретение относится к области средств коммуникации. Способ раздвоения плазмон-поляритонного канала связи терагерцового диапазона включает создание основного и вторичных каналов на индивидуальных плоскогранных подложках с прямоугольными ребрами, размещение в основном канале неоднородности в...
Тип: Изобретение
Номер охранного документа: 0002600575
Дата охранного документа: 27.10.2016
25.08.2017
№217.015.b6c1

Устройство для обнаружения неоднородностей на плоских гранях потока однотипных проводящих изделий в инфракрасном излучении

Изобретение относится к оптическим методам контроля качества поверхности металлов и полупроводников, а именно к инфракрасной (ИК) амплитудной рефлектометрии. Устройство содержит источник p-поляризованного монохроматического излучения, два элемента преобразования излучения в ПЭВ, приемник...
Тип: Изобретение
Номер охранного документа: 0002614660
Дата охранного документа: 28.03.2017
26.08.2017
№217.015.e196

Способ управления спектром пучка широкополосного терагерцевого излучения

Изобретение относится к области оптического приборостроения и касается способа управления спектром пучка широкополосного терагерцевого излучения. Способ включает в себя размещение на пути пучка излучения селективно поглощающего фильтра в виде поверхности проводящей пластины, придание излучению...
Тип: Изобретение
Номер охранного документа: 0002625635
Дата охранного документа: 17.07.2017
26.08.2017
№217.015.e19a

Устройство для промера распределения поля инфракрасной поверхностной электромагнитной волны над её треком

Изобретение относится к области исследования поверхности металлов и полупроводников и касается устройства для промера распределения поля инфракрасной поверхностной электромагнитной волны (ПЭВ) над ее треком. Устройство содержит источник монохроматического излучения, элемент преобразования...
Тип: Изобретение
Номер охранного документа: 0002625641
Дата охранного документа: 17.07.2017
19.01.2018
№218.016.0193

Статическое устройство для определения распределения интенсивности поля инфракрасной поверхностной электромагнитной волны вдоль её трека

Изобретение относится к области оптических измерений и касается статического устройства для определения распределения интенсивности поля инфракрасной поверхностной электромагнитной волны (ПЭВ) вдоль ее трека. Устройство включает в себя источник монохроматического излучения, первый фокусирующий...
Тип: Изобретение
Номер охранного документа: 0002629909
Дата охранного документа: 04.09.2017
19.01.2018
№218.016.01d2

Способ определения показателя преломления монохроматической поверхностной электромагнитной волны инфракрасного диапазона

Изобретение относится к области оптических измерений и касается способа определения показателя преломления монохроматической поверхностной электромагнитной волны инфракрасного диапазона. Способ включает в себя генерацию волны на плоской поверхности образца, размещение на пути волны плоского...
Тип: Изобретение
Номер охранного документа: 0002629928
Дата охранного документа: 04.09.2017
+ добавить свой РИД