×
19.12.2019
219.017.ef4f

Результат интеллектуальной деятельности: Способ обработки технически чистого титана большой пластической деформацией

Вид РИД

Изобретение

Аннотация: Изобретение относится к области получения наноструктурного технически чистого титана с повышенными механическими и коррозионными свойствами и способу его обработки и может быть использовано в различных областях техники, в том числе в химической промышленности. Способ обработки технически чистого титана включает большую пластическую деформацию кручением под высоким гидростатическим давлением не менее 6 ГПа при комнатной температуре. Деформацию проводят при двух оборотах с получением наноструктуры чистого титана, состоящей из 80-85% альфа-фазы со средним размером 50-60 нм и 15-20% омега-фазы. Деформацию проводят в камере Бриджмена. Получают технически чистый титан с высокими значениями микротвердости и коррозионной стойкости: положительный стационарный потенциал, высокая склонность к пассивации при анодной поляризации. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области получения наноструктурного технически чистого титана с повышенными механическими и коррозионными свойствами и способу его обработки и может быть использовано в различных областях техники, в том числе широко в химической промышленности.

Технически чистый титан наиболее предпочтителен для использования в некоторых отраслях по причине высокой биосовместимости, коррозионной стойкости и отсутствия в нем токсичных элементов. Для обеспечения долговечности медицинских изделий, кроме высокой биосовместимости, титан должен иметь значительную механическую прочность, особенно под действием динамических нагрузок. Повышение прочности технически чистых металлов, в том числе титана, до уровня прочности сильно легированных сплавов возможно путем различных экстремальных воздействий на объемный материал. К таким воздействиям можно отнести кручение под высоким гидростатическим давлением (КВД) в камере Бриджмена.

Известно, что на механические свойства ключевое влияние оказывает микроструктура, которая в зависимости от способа обработки, может иметь различные: фазовый состав, размер и форму зерен, разориентацию их границ, плотность дислокаций и других дефектов кристаллической решетки и др. [Штремель М.А. Прочность сплавов. 4.2. Деформация. М., МИСиС, 1997, 527 с.].

Известно, что при воздействии больших пластических деформаций на технически чистый титан начинает происходить фазовое превращение: в исходной α-фазе под действием давления образуется ω-фаза - фаза высокого давления [Зельдович В.И., Фролова Н.Ю., Пацелов A.M. и др. // ФММ. 2010. Т. 109. №1.С. 33-42].

Известно, что по причине высокого сродства титана к кислороду на его поверхности быстро образуется прочная пассивирующая оксидная пленка толщиной 2-6 нм [Томашов Н.Д. Титан и коррозионностойкие сплавы на его основе. М: Металлургия. 1985, 80 с.].

В работе [Faghihi S., Li D., Szpunar J.A. Tribocorrosion behavior of nanostructured titanium substrates processed by high-pressure torsion // Nanotechnology. 2010. V. 21. Iss. 48. P. 485703.] образцы титана после кручения под высоким гидростатическим давлением на пять оборотов под давлением 6,0 ГПа показали более низкую коррозионную стойкость в фосфатном буферном растворе по сравнению с исходным крупнозернистым состоянием.

Известен способ обработки технически чистого титана с помощью кручения под высоким гидростатическим давлением (6,0 ГПа) в камере Бриджмена при комнатной температуре, число оборотов подвижного бойка при кручении использовали 1, 5 и 10 оборотов [М. Shirooyeh, J. Xu, T.G. Langdon // Materials Science & Engineering: A. 614 (2014) 223-231]. Размер зерна титана в исходном состоянии составляет 45±2 мкм. Структура после КВД представляет собой смесь альфа и омега фаз. В результате КВД микротвердость HV возрастает уже после оборота и составляет на середине радиуса образца 2,50±0,13 ГПа; при 1 обороте - 3,10±0,16 ГПа, при 5 оборотах - 3,7±0,18 ГПа; при 10 оборотах - 4,1±0,21 ГПа (по сравнению с исходным недеформированным состоянием 2,0±0,1 ГПа). Увеличение числа оборотов при деформации в камере Бриджмена приводит к более интенсивному упрочнению титана за счет измельчения зерен - создания в нем нанокристаллической структуры. Указанное техническое решение принято в качестве прототипа.

Недостатком способа обработки, используемом в прототипе, является выполнение КВД только на 1, 5 и 10 оборотов и отсутствие промежуточных значений оборотов (2, 3 и 4 оборота). Кроме того, оценка только микротвердости титана является в ряде случае недостаточной, например, при применении технически чистого титана в некоторых областях медицины, в частности для обеспечения долговечности медицинских изделий, титан должен иметь и высокую коррозионную стойкость.

Технический результат, на решение которого направлено изобретение, заключается в получении технически чистого титана, сочетающего высокие значения микротвердости и высокую коррозионную стойкость: положительный стационарный потенциал, высокую склонность к пассивации при анодной поляризации.

Технический результат изобретения достигается тем, что в способе обработки технически чистого титана, включающем большую пластическую деформацию кручением под высоким гидростатическим давлением не менее 6 ГПа при комнатной температуре согласно изобретению, деформацию проводят при двух оборотах при этом полученная наноструктура чистого титана состоит из 80-85% альфа фазы со средним размером 50-60 нм и 15-20% омега фазы. Деформацию проводят в камере Бриджмена.

Изобретение иллюстрируется чертежом, где представлено изменение критического тока пассивации и микротвердости в зависимости от числа оборотов образцов технически чистого титана.

Известно [Валиев Р.З., Александров И.В. Наноструктурные материалы, полученные интенсивной пластической деформацией. Москва: Логос.2000. 272 с.], что управление параметрами микроструктуры (размер и морфология зерен, тип границ и др.) посредством использования различных режимов и методов большой пластической деформации позволяет контролировать механизмы упрочнения и получать сбалансированные по прочности и пластичности свойства в большинстве металлов и сплавов.

Экспериментально установлено, что при заявленных режимах большой пластической деформации и характеристиках наноструктуры достигается сочетание высокой микротвердости и коррозионной стойкости. Деформация с меньшим числом оборотов (0.25; 0.5, 1 оборот) и получение наноструктуры с меньшим количеством омега-фазы (менее 15%) и большим количество альфа фазы (более 85%), а также более крупным зерном альфа фазы (более 60 нм) приводит к снижению микротвердости, снижению стационарного потенциала, ухудшению склонности к пассивации при анодной поляризации. Повышение величины деформации (3 и 4 оборота) и получение наноструктуры с большим количеством омега-фазы (более 20%) и меньшим количество альфа фазы (менее 80%) приводит к снижению стационарного потенциала, ухудшению склонности к пассивации при анодной поляризации. Средний размер зерна альфа фазы на уровне 50-60 нм приводит к тому, что при этом микротвердость практически не изменяется. Именно деформация при двух оборотах, а также получение наноструктуры чистого титана, состоящей из 80-85% альфа фазы со средним размером 50-60 нм и 15-20% омега фазы обеспечивает получение заявленного технического результата.

Предложенный способ позволяет получить более высокий уровень твердости и коррозионной стойкости, который обусловлен наноструктурой, сформированной в технически чистом титане, в соответствии с предложенным способом.

Пример конкретного осуществления изобретения

Образцы в виде пластин технически чистого титана ВТ1-0 толщиной 50 мкм подвергали деформации кручением под высоким квазигидростатическим давлением (Р=6,0 ГПа) в камере Бриджмена при комнатной температуре (293 К) со скоростью вращения подвижного бойка 1 об/мин и при числе полных оборотов подвижной наковальни N=1/4; 1/2; 1; 2; 3 и 4. Рентгенофазовый анализ проводили на дифрактометре ДРОН-3 с использованием излучения СuКα. Структурные исследования проводили с помощью просвечивающего электронного микроскопа JEM 200СХ при ускоряющем напряжении 160 кВ. Измерения микротвердости HV выполняли на микротвердомере LECO М 400А при нагрузке 50 г и времени нагружения 5 с. Все исследования структуры и микротвердости проводили в областях, примерно соответствующих половине радиуса дискообразных образцов.

Сравнительную оценку склонности к пассивации образцов осуществляли с использованием автоматизированного программного электрохимического комплекса - потенциостата IPC-Pro 3А, позволяющего проводить заданный режим поляризации. Электрохимические исследования проводили в трехэлектродной ячейке с разделенными пространствами. Потенциал рабочего электрода измеряли относительно насыщенного хлоридсеребряного электрода сравнения (ϕ равно 0,221 В) и пересчитывали на водородную шкалу. Ввиду большого сродства титана к кислороду влияние структуры материала на коррозионную стойкость в коррозионно-активной среде 1М HCl. Для определения стационарного потенциала (Ecor) образцы выдерживали в коррозионной среде без поляризации в течение 1 часа. Поляризационные потенциодинамические кривые снимали на образцах из катодной области: от потенциала -0,3 В до 3 В со скоростью развертки (VE)=1 мВ/с.

На начальных стадия деформации появляется со фаза после 0,25 оборота в количестве 0.080±0.004 об. %. Ее относительный объем плавно увеличивается с увеличением числа оборотов до 0.23±0.01 (при 4 оборотах). Структура представляет собой смесь альфа и омега фаз. По результатам электронно-микроскопического исследования средний размер исходного зерна α-Ti составляет 5,0±0,2 мкм. После деформации при 293 К средний размер зерен α-фазы уменьшается с увеличением числа оборотов с 68±3 до 53±2 нм. Экспериментально с использованием просвечивающей электронной микроскопии установлено образование в структуре α-фазы после кручения в камере Бриджмена областей структуры, соответствующих деформационным фрагментам и динамически рекристаллизованным зернам.

Значение микротвердости увеличивается в результате кручения под высоким гидростатическим давлением более чем в 1,5 раза (достигает значения 4,4±3 ГПа при 2 оборотах) и затем выходит на постоянное значение.

Для всех исследованных образцов стационарный потенциал в 1М НС1 положителен (Ecor больше 0), что указывает на пассивное состояние сплава ВТ1-0 и его высокую коррозионную стойкость в выбранной среде. Стационарные потенциалы коррозии продеформированных образцов более электроположительны, чем в недеформированном состоянии, что свидетельствует о том, что после деформации образцы являются более коррозинностойкими в данной среде. После КВД характер анодных поляризационных кривых изменяется: при Е≈1,25 В на кривых наблюдаются пики, кроме N=2, причем критический ток растворения возрастает с увеличением числа оборотов при всех оборотах деформации за исключением N=2. Наиболее положительные величины Ecor получены для образцов, подвергнутых КВД при 2 оборотах.

На чертеже 1 представлены результаты измерения микротвердости и критического тока пассивации. Образец, деформированный при 2 оборотах, обладает повышенной твердостью (более чем в 1.5 раза) по сравнению образцами после 1 и 5 оборотов в прототипе, обеспечивая при этом более высокую коррозионную стойкость. Обладая наиболее положительным стационарным потенциалом и наименьшим током при анодной поляризации. То есть, он менее электрохимически активен при больших поляризациях (более 2 В).

Оптимальной обработкой для улучшения коррозионной стойкости и механических свойств титана ВТ0-1 является кручение под высоким гидростатическим давлением (6 ГПа) на два оборота при комнатной температуре при этом полученная наноструктура чистого титана состоит из 80-85% альфа фазы со средним размером 50-60 нм и 15-20% омега фазы. Деформацию проводят в камере Бриджмена.

Дальнейшее повышение величины деформации приводит к снижению стационарного потенциала, ухудшению пассивации при анодной поляризации, при этом микротвердость практически не изменяется.

Таким образом, заявленная совокупность существенных признаков обеспечивает достижение технического результата - получение технически чистого титана, сочетающего высокие значения микротвердости и высокую коррозионную стойкость; положительный стационарный потенциал, высокую склонность к пассивации при анодной поляризации.


Способ обработки технически чистого титана большой пластической деформацией
Источник поступления информации: Роспатент

Показаны записи 111-120 из 322.
26.08.2017
№217.015.e0fb

Привалковая арматура прокатного стана

Изобретение относится к прокатному производству и может быть использовано на станах винтовой прокатки. Устройство включает входной и выходной центрователи, состоящие из направляющих губок, расположенных на опорных плитах, и направляющих опорных плит, установленных на общей раме. Уменьшение...
Тип: Изобретение
Номер охранного документа: 0002625517
Дата охранного документа: 14.07.2017
26.08.2017
№217.015.e116

Литейная аустенитная высокопрочная коррозионно-стойкая в неорганических и органических средах криогенная сталь и способ ее получения

Изобретение относится к металлургии, а именно к получению литейной аустенитной высокопрочной коррозионно-стойкой в неорганических и органических средах криогенной стали, используемой для изготовления изделий для транспортировки сжиженных газов. Получают расплав стали, заливают его в литейную...
Тип: Изобретение
Номер охранного документа: 0002625514
Дата охранного документа: 14.07.2017
26.08.2017
№217.015.e130

Способ очистки алюминийсодержащих хлоридных растворов

Изобретение может быть использовано в химической промышленности. Способ очистки алюминийсодержащих хлоридных растворов от железа включает по крайней мере один этап электрохимической очистки алюминийсодержащих хлоридных растворов. Электрохимическую очистку проводят при рН 1,0-3,0, катодной...
Тип: Изобретение
Номер охранного документа: 0002625470
Дата охранного документа: 14.07.2017
26.08.2017
№217.015.e134

Способ обработки интерметаллических сплавов на основе гамма-алюминида титана

Изобретение относится к области металлургии, а именно к изготовлению высококачественных слитков и заготовок изделий из легированных интерметаллических сплавов на основе гамма-алюминида титана. Способ обработки интерметаллических сплавов на основе гамма-алюминида титана, включающий направленную...
Тип: Изобретение
Номер охранного документа: 0002625515
Дата охранного документа: 14.07.2017
26.08.2017
№217.015.e22c

Угледобывающий комбайн

Изобретение относится к угледобывающим комбайнам. Техническим результатом является упрощение конструкции комбайна при установке дробилки, уменьшение его габаритов, снижение минимальной вынимаемой мощности. Угледобывающий комбайн содержит корпус с закрепленными по его концам блоками резания со...
Тип: Изобретение
Номер охранного документа: 0002625833
Дата охранного документа: 19.07.2017
26.08.2017
№217.015.e277

Буровое долото, армированное алмазными режущими элементами

Изобретение относится к породоразрушающему инструменту, в частности к буровым долотам, предназначенным для бурения глубоких нефтегазовых скважин. Технический результат заключается в повышении износостойкости и коррозионной стойкости долота, а также в снижении коэффициента трения поверхностей,...
Тип: Изобретение
Номер охранного документа: 0002625832
Дата охранного документа: 19.07.2017
29.12.2017
№217.015.f28a

Порошок на основе железа для плазменной наплавки деталей сельскохозяйственных машин в среде сжатого воздуха

Изобретение относится к сельскохозяйственному машиностроению и может быть использовано для защиты деталей, работающих в почвенно-травянистой среде. Порошок на основе железа для плазменной наплавки деталей сельскохозяйственных машин в среде сжатого воздуха содержит, мас.%: углерод 3,3-4,5, хром...
Тип: Изобретение
Номер охранного документа: 0002637734
Дата охранного документа: 06.12.2017
29.12.2017
№217.015.f2a4

Способ измельчения смеси карбоната стронция и оксида железа в производстве гексаферритов стронция

Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов стронция. Технический результат - повышение коэрцитивной силы по намагниченности гексаферрита стронция больше 235 кА/м и повышение активности при измельчении смеси исходных...
Тип: Изобретение
Номер охранного документа: 0002637703
Дата охранного документа: 06.12.2017
29.12.2017
№217.015.f2a8

Устройство для получения порошкообразного оксида алюминия высокой чистоты

Изобретение относится к получению порошкообразного оксида алюминия высокой чистоты. Устройство содержит электролизер для электролиза водных растворов с окислением металлического алюминия, соединенный трубопроводом с обратноосмотической установкой для подготовки исходной технической воды и...
Тип: Изобретение
Номер охранного документа: 0002637843
Дата охранного документа: 07.12.2017
29.12.2017
№217.015.f377

Способ получения сверхпластичного плакированного материала на основе алюминия

Изобретение может быть использовано для изготовления сверхпластичных слоистых листов из алюминиевого сплава с повышенной коррозионной стойкостью. Проводят химическую обработку последовательно 40%-ным раствором NaOH в воде, 5%-ным раствором HNO в воде и тетрахлорметаном контактных поверхностей...
Тип: Изобретение
Номер охранного документа: 0002637842
Дата охранного документа: 07.12.2017
Показаны записи 11-12 из 12.
21.05.2020
№220.018.1f53

Высокодемпфирующая сталь с требуемым уровнем демпфирующих свойств и изделие, выполненное из неё

Изобретение относится к металлургии, а именно к сталям, обладающим высокой демпфирующей способностью и использующимся при изготовлении холодно- и горячекатаных листов, сортового проката, при изготовлении элементов различных конструкций, а также деталей крепежа. Сталь содержит компоненты в...
Тип: Изобретение
Номер охранного документа: 0002721262
Дата охранного документа: 18.05.2020
23.04.2023
№223.018.51ab

Способ получения модифицированных наночастиц магнетита, легированных гадолинием

Изобретение относится к области неорганической химии, а именно к способу получения модифицированных наночастиц магнетита, легированных гадолинием. Данные наночастиц могут быть использованы, например, в качестве двойных контрастных агентов для МРТ-диагностики. Способ получения модифицированных...
Тип: Изобретение
Номер охранного документа: 0002738118
Дата охранного документа: 08.12.2020
+ добавить свой РИД