×
19.12.2019
219.017.ef3b

СПОСОБ ПРОВЕДЕНИЯ ИСПЫТАНИЙ НА МАЛОМ ЧИСЛЕ ОБРАЗЦОВ ДЛЯ ОПРЕДЕЛЕНИЯ НАДЕЖНОСТИ ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области двигателестроения и может быть использовано при создании жидкостных ракетных двигателей (ЖРД). Способ проведения испытаний для определения надежности жидкостного ракетного двигателя, включающий ресурсно-циклические испытания 4÷5 двигателей до предельного состояния на эксплуатационных режимах и 8÷9 двигателей на форсированных режимах со ступенчатым изменением величины режимной нагрузки от двигателя к двигателю. Причем каждый цикл ресурсно-циклических испытаний проводят в течение летного ресурса. При этом испытания двигателей на форсированных режимах ведут до уровня, при котором механизм повреждения сохраняется идентичным механизму повреждения двигателей, испытываемых на эксплуатационных режимах. Технический результат заключается в возможности получения результатов испытаний, обеспечивающих высокоточное определение надежности ЖРД в эксплуатационных условиях. Изобретение обеспечивает повышение точности определения технического ресурса за счет привлечения результатов всех испытаний и закономерностей изменения ресурса двигателя в более широком диапазоне режимов, выбираемым оптимальным образом. 1 ил.
Реферат Свернуть Развернуть

Изобретение относится к области двигателестроения и может быть использовано при создании жидкостных ракетных двигателей (ЖРД).

Известен способ определения надежности жидкостного ракетного двигателя (Пастухов А.И., Орлова Л.И., Капгер В.В., Общероссийский научно-технический журнал «Полет» 1/2015 (сс. 14-16)), включающий огневые циклические испытания нескольких двигателей до предельного состояния (в количестве 10-15 штук) по штатной программе работы двигателя в полете, т.е. только на эксплуатационных режимах, после чего по полученным значениям наработки двигателей до предельного состояния определяют надежность ЖРД с использованием толерантных пределов.

Указанный способ обеспечивает воспроизведение возможных сочетаний различных нагрузок на каждом цикле испытаний только в эксплуатационном диапазоне режимов работы, вследствие чего требует относительно большой наработки и числа испытываемых образцов двигателей.

Прототипом предлагаемого изобретения является раскрытый в ГОСТ Р 56099-2014, введенном в действие 01.03.2015, способ проведения утяжеленных испытаний, включающий испытания до предельного состояния 4÷6 двигателей в эксплуатационных условиях и 8÷12 двигателей на форсированных режимах со ступенчатым изменением не менее чем на ±2% номинала величины режимной нагрузки от двигателя к двигателю с выдержкой на каждом уровне в течение заданного времени, при этом испытания двигателей на форсированных режимах ведут до уровня, при котором механизм повреждения утрачивает идентичность механизму повреждения двигателей, испытываемых на эксплуатационных режимах. Известный способ проведения утяжеленных испытаний используется для определения вероятности отказа двигателя от заданной наработки, эквивалента наработки и коэффициента утяжеления испытаний.

В качестве недостатка известного способа следует отметить, что результаты испытаний, полученные при проведении испытаний двигателей на форсированных режимах до уровня, при котором механизм повреждения утрачивает идентичность механизму повреждения двигателей, испытываемых на эксплуатационных режимах, являются непредставительными для определения надежности ЖРД в эксплуатационных условиях, в связи с чем, известный из прототипа способ испытаний не нашел практического применения при создании современных жидкостных ракетных двигателей в отечественном двигателестроении.

Задачей, на решение которой направлено изобретение, является создание способа проведения испытаний, предназначенного для определения надежности жидкостного ракетного двигателя, позволяющего снизить финансовые и материальные затраты на создание ЖРД.

Технический результат заключается в возможности получения результатов испытаний, обеспечивающих высокоточное определение надежности ЖРД в эксплуатационных условиях.

Для достижения технического результата предложен способ проведения испытаний для определения надежности жидкостного ракетного двигателя, включающий ресурсно-циклические испытания 4÷5 двигателей до предельного состояния на эксплуатационных режимах и 8÷9 двигателей на форсированных режимах со ступенчатым изменением величины режимной нагрузки от двигателя к двигателю. Причем каждый цикл ресурсно-циклических испытаний проводят в течение летного ресурса. При этом испытания двигателей на форсированных режимах ведут до уровня, при котором механизм повреждения сохраняется идентичным механизму повреждения двигателей, испытываемых на эксплуатационных режимах.

Под предельным состоянием ЖРД понимается такое состояние, когда дальнейшее его испытание невозможно или нецелесообразно из-за отклонений его основных характеристик за допустимые пределы или ввиду возможного разрушения его конструкции. Основные характеристики и признаки, определяющие время наступления предельного состояния двигателя, устанавливаются в конструкторской документации.

Признаками предельного состояния могут служить трещины и разрушения элементов конструкции двигателя, повышенный момент страгивания ротора ТНА, выход основных параметров (например, экономичности) за допустимые пределы и другие дефекты, которые определены в конструкторской документации.

В качестве основных режимных параметров используют давление и соотношение компонентов в камере, обороты ТНА, температуру генераторного газа, уровень пульсации и вибрации и другие параметры, характеризующие тепловые, статические и динамические нагрузки на элементы двигателя.

Предлагаемое изобретение графически показано на фигуре (режим форсирования на примере ступенчатого повышения давления (Рк) в камере двигателя).

Как показано на фигуре проводят ресурсно-циклические испытания одной выборки двигателей до предельного состояния на эксплуатационных режимах и второй выборки двигателей на форсированных режимах со ступенчатым изменением величины режимной нагрузки от двигателя к двигателю. Причем каждый цикл ресурсно-циклических испытаний проводят в течение летного ресурса. При этом испытания двигателей на форсированных режимах ведут до уровня, при котором механизм повреждения сохраняется идентичным механизму повреждения двигателей, испытываемых на эксплуатационных режимах.

Надежность ЖРД - это вероятность выполнения двигателем заданных выходных функций в требуемых условиях эксплуатации. Для обеспечения требуемой точности определения надежности ЖРД необходимо создать такие условия проведения испытаний, которые позволят получить наиболее представительные результаты испытаний, а именно: необходимо каждый цикл ресурсно-циклических испытаний двигателей проводить в течение летного ресурса, а испытания двигателей на форсированных режимах проводить до уровня, при котором механизм повреждения сохраняется идентичным механизму повреждения двигателей, испытываемых на эксплуатационных режимах. Только при соблюдении вышеуказанных условий можно адекватно оценить надежность ЖРД без дополнительных экономических и временных затрат.

После чего по полученным экспериментальным данным о наработке двигателей до предельного состояния и действующих нагрузках определяют закономерность изменения технического ресурса ЖРД от режимов испытаний и надежность двигателя.

За количественную меру действующей нагрузки принимают среднеинтегральную величину параметра (X) по всем испытаниям данного двигателя, определяемую уровнем и длительностью стационарного режима по соотношению:

где Xij, τij - измеренное значение параметра и, соответственно, длительности работы рассматриваемого экземпляра двигателя на j-ом режиме в i-ом испытании;

Т - наработка данного двигателя до предельного состояния (технический ресурс).

В качестве исходной формы связи между техническом ресурсом (Т) и параметрами режимов испытаний (X1, Х2, …, ), используют модели вида:

- среднее значение наработки ЖРД до предельного состояния по результатам испытаний N двигателей;

- коэффициенты уравнения, определяемые методом наименьших квадратов по экспериментальном данным ресурсных испытаний двигателей до предельного состояния;

bK - показатель степени при k-ом влияющем факторе;

- число факторов в уравнении регрессии.

Обоснование и выбор приемлемого уравнения связи Т(Х) по результатам ресурсных испытаний двигателей до предельного состояния осуществляется методом многофакторного корреляционно-регрессионного анализа с учетом физической роли факторов, ряда статистических показателей совершенства моделей (коэффициента множественной корреляции, F - критерия Фишера для проверки значимости индивидуальных коэффициентов и всего уравнения, величины стандартной ошибки остаточной вариации наработки и результатов проверки адекватности модели имеющимся экспериментальным данным).

В качестве наилучшего принимают эмпирическое уравнение, отражающее физическую сущность влияния режимов испытаний на технический ресурс и надежность двигателя и имеющее наибольший коэффициент множественной корреляции при наименьшей остаточной вариации.

Оценка надежности двигателя по результатам ресурсных испытаний до предельного состояния определяется величиной нормированного запаса работоспособности двигателя - отношением запаса по ресурсу (Т(Х)-ТЛ) к его среднему квадратическому отклонению σ.

Чем больше запас по ресурсу и меньше его разброс, тем выше нормированная величина, а следовательно, выше и величина надежности двигателя.

Функция надежности для расчета надежности двигателя с применением зависимостей технического ресурса (T) от режимов испытании (X) имеет вид:

где Тл - требуемое время работы двигателя в полете (летный ресурс), устанавливается для каждого двигателя в зависимости от выполняемых задач.

Оценки характеристик регрессионных зависимостей и надежности двигателя по результатам многократных испытаний до предельного состояния на эксплуатационных и форсированных режимах испытаний определяют по расчетным соотношениям, приведенным в таблицах (П. 9) математической статистики Давид К. Ллойд и Мирон Липов «Надежность, организация исследования, методы, математический аппарат». Издательство «Советское радио», Москва - 1964 г.

Определение надежности ЖРД по результатам испытаний, полученных предложенным способом, построено на результатах исследований механизма повреждения и закономерности изменения технического ресурса двигателя от режимных параметров, характеризующих статические, тепловые и динамические нагрузки на элементы ЖРД при ресурсных испытаниях двигателей до предельного состояния.

Пример. Проведенный корреляционно-регрессионный анализ результатов 101 испытания современного ЖРД до предельного состояния 14 двигателей (5 двигателей на эксплуатационных режимах и 9 двигателей на форсированных режимах) показал, что технический ресурс двигателя (Т) зависит от давления в камере на режимах форсирования (Ркф) и дросселирования (Ркдр) и соотношения компонентов (Km):

где параметры Ркф и Ркдр имеют размерность кгс/см2.

Оценка надежности ЖРД с применением полученной зависимости (6) технического ресурса от режимов испытаний 14 двигателей до предельного состояния составляет 0,9975.

Для сравнения отметим, что для подтверждения такого же уровня надежности ЖРД для пилотируемых полетов ракетно-космической техники - 0,9975 предложенным способом определения надежности по наработке до предельного состояния на эксплуатационных и форсированных режимах потребуется провести всего 60 испытаний на летный ресурс, то есть в 1,5-2 раза меньше по сравнению с известными в настоящее время методиками проведения испытаний.

Таким образом, использование предложенного способа определения надежности ЖРД по малому числу испытываемых образцов до предельного состояния на эксплуатационных и форсированных режимах обеспечивает возможность высокоточного определения надежности за счет привлечения результатов всех испытаний и закономерности изменения ресурса двигателя в более широком диапазоне режимов работы.

Способ проведения испытаний для определения надежности жидкостного ракетного двигателя, включающий ресурсно-циклические испытания 4÷5 двигателей до предельного состояния на эксплуатационных режимах и 8÷9 двигателей на форсированных режимах со ступенчатым изменением величины режимной нагрузки от двигателя к двигателю, отличающийся тем, что каждый цикл ресурсно-циклических испытаний проводят в течение летного ресурса, при этом испытания двигателей на форсированных режимах ведут до уровня, при котором механизм повреждения сохраняется идентичным механизму повреждения двигателей, испытываемых на эксплуатационных режимах.
СПОСОБ ПРОВЕДЕНИЯ ИСПЫТАНИЙ НА МАЛОМ ЧИСЛЕ ОБРАЗЦОВ ДЛЯ ОПРЕДЕЛЕНИЯ НАДЕЖНОСТИ ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ
СПОСОБ ПРОВЕДЕНИЯ ИСПЫТАНИЙ НА МАЛОМ ЧИСЛЕ ОБРАЗЦОВ ДЛЯ ОПРЕДЕЛЕНИЯ НАДЕЖНОСТИ ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 31.
20.08.2016
№216.015.4b85

Система управления вектором тяги жидкостного ракетного двигателя

Изобретение относится к ракетному двигателестроению и может быть использовано в системах управления вектором тяги в ракетных двигателях на жидком топливе с различными схемами организации рабочего процесса. Система управления вектором тяги жидкостного ракетного двигателя, состоящая из...
Тип: Изобретение
Номер охранного документа: 0002594844
Дата охранного документа: 20.08.2016
13.01.2017
№217.015.8448

Устройство балластное (варианты)

Изобретение относится к области конструирования нагрузочных резисторов и систем, их объединяющих, для использования в силовых цепях автономных энергоустановок. Устройство балластное содержит нагрузочные резисторы, изоляторы, крепежную раму, выводные шины. Нагрузочные резисторы образованы...
Тип: Изобретение
Номер охранного документа: 0002602837
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.86a5

Элемент устройства сброса низкопотенциальной энергии космического аппарата

Изобретение относится к космической технике и может быть использовано в конструкциях холодильников-излучателей космических аппаратов (КА) и энергетических установок. Излучатель устройства сброса низкопотенциальной энергии космического аппарата содержит металлическую трубку с внешним защитным...
Тип: Изобретение
Номер охранного документа: 0002603698
Дата охранного документа: 27.11.2016
25.08.2017
№217.015.9d87

Панель холодильника-излучателя

Изобретение относится к космической технике, а именно к устройствам теплообмена. Панель холодильника-излучателя содержит теплоизлучающую пластину из композиционного материала и металлические трубки для теплоносителя, размещенные между теплоизлучающей пластиной и накладками из композиционного...
Тип: Изобретение
Номер охранного документа: 0002610732
Дата охранного документа: 15.02.2017
25.08.2017
№217.015.bb66

Ракетно-прямоточный двигатель с регулируемым расходом твёрдого топлива

Изобретение относится к ракетной технике и может быть использовано в гиперзвуковых (М≥5) крылатых ракетах с ракетно-прямоточными двигателями, предназначенных для полетов на больших высотах. Ракетно-прямоточный двигатель содержит воздухозаборник, газогенератор с зарядом твердого топлива,...
Тип: Изобретение
Номер охранного документа: 0002615889
Дата охранного документа: 11.04.2017
25.08.2017
№217.015.c1bf

Термочувствительный приводной элемент

Изобретение относится к области приборостроения, микромеханики и техники исполнительных элементов на основе функциональных материалов, в частности к технике устройств на основе материалов с эффектом памяти формы, и может найти применение в робототехнике, в управляющих устройствах, оптических...
Тип: Изобретение
Номер охранного документа: 0002617841
Дата охранного документа: 28.04.2017
26.08.2017
№217.015.da4b

Способ изготовления ячеистого сотового заполнителя из композиционных материалов

Изобретение относится к способу изготовления ячеистого сотового заполнителя, из композиционных материалов для двух-, трехслойных панелей и оболочек из препрега. Изобретение может использоваться для изготовления изделий с высокой удельной прочностью в авиационной, ракетно-космической,...
Тип: Изобретение
Номер охранного документа: 0002623781
Дата охранного документа: 29.06.2017
26.08.2017
№217.015.e802

Прямоточный воздушно-реактивный двигатель с газогенератором открытого типа и регулируемым расходом твердого топлива

Изобретение относится к ракетной технике и может быть использовано в гиперзвуковых крылатых ракетах с прямоточными воздушно-реактивными двигателями, предназначенных для полетов на больших высотах. В частности, изобретение относится к прямоточному воздушно-реактивному двигателю с газогенератором...
Тип: Изобретение
Номер охранного документа: 0002627310
Дата охранного документа: 07.08.2017
10.05.2018
№218.016.49fc

Малогабаритная установка для отбора частиц продуктов сгорания твердого топлива

Изобретение может быть использовано в машиностроительной, авиационной, ракетно-космической, нефтяной, химической и других отраслях для сбора конденсированных частиц из продуктов сгорания горючих материалов. Технический результат изобретения заключается в повышении точности воспроизведения в...
Тип: Изобретение
Номер охранного документа: 0002651355
Дата охранного документа: 19.04.2018
01.11.2018
№218.016.98e7

Установка для получения частиц порошка и способ ее работы

Группа изобретений относится к получению порошка, который может быть использован в аддитивных технологиях. Установка для получения частиц порошка содержит плазматрон, выполненный с возможностью подачи в плазму исходного материала в форме удлиненного элемента, распылительный блок с соплами для...
Тип: Изобретение
Номер охранного документа: 0002671034
Дата охранного документа: 29.10.2018
Показаны записи 1-10 из 16.
10.04.2013
№216.012.33d7

Камера жидкостного ракетного двигателя

Изобретение относится к ракетной технике. Камера ЖРД содержит корпус с раструбом, вкладыш с соплом и стенкой камеры сгорания и форсуночную головку, при этом вкладыш, по крайней мере, на участке сопла выполнен из композиционного материала с геликоидной намоткой препрега тканой ленты и...
Тип: Изобретение
Номер охранного документа: 0002478814
Дата охранного документа: 10.04.2013
10.04.2013
№216.012.33dc

Способ изготовления вкладыша с соплом жидкостного ракетного двигателя

Изобретение относится к ракетной технике. Способ изготовления заготовки вкладыша намоткой на оправку волокнистого материала со связующим, полимеризацию, снятие с оправки заготовки вкладыша и выполнение ее механической и высокотемпературных обработок. При изготовлении заготовки вкладыша на...
Тип: Изобретение
Номер охранного документа: 0002478819
Дата охранного документа: 10.04.2013
27.04.2013
№216.012.3ac9

Камера жидкостного ракетного двигателя

Изобретение относится к ракетной технике. Камера сгорания, сопло и раструб выполнены в виде отдельных секций, скрепленных в стыках высокотемпературной клеевой композицией, а камера ЖРД снабжена сплошным герметизирующим слоем клеевой композиции на наружных поверхностях камеры сгорания, сопла и...
Тип: Изобретение
Номер охранного документа: 0002480610
Дата охранного документа: 27.04.2013
27.04.2013
№216.012.3aca

Способ изготовления камеры жидкостного ракетного двигателя

Изобретение относится к ракетной технике, точнее - к способам изготовления камер ЖРД. Камера сгорания, сопло и раструб изготовляют в виде отдельных механически обработанных секций, на стыкуемые поверхности которых наносят высокотемпературную клеевую композицию, и устанавливают на...
Тип: Изобретение
Номер охранного документа: 0002480611
Дата охранного документа: 27.04.2013
27.12.2013
№216.012.9058

Блок тяги жидкостного ракетного двигателя

Изобретение относится к ракетной технике. Блок тяги жидкостного ракетного двигателя содержит раму, камеру сгорания с соплом и устройство защиты блока тяги, имеющее донные экраны. Устройство защиты блока тяги дополнительно оснащено устройством тепловой защиты рамы, выполненным в виде устройства...
Тип: Изобретение
Номер охранного документа: 0002502645
Дата охранного документа: 27.12.2013
01.11.2018
№218.016.98e7

Установка для получения частиц порошка и способ ее работы

Группа изобретений относится к получению порошка, который может быть использован в аддитивных технологиях. Установка для получения частиц порошка содержит плазматрон, выполненный с возможностью подачи в плазму исходного материала в форме удлиненного элемента, распылительный блок с соплами для...
Тип: Изобретение
Номер охранного документа: 0002671034
Дата охранного документа: 29.10.2018
15.12.2018
№218.016.a7c4

Теплозащитное покрытие

Изобретение относится к области порошковой металлургии, в частности к теплозащитным покрытиям для защиты поверхности деталей, подверженных воздействию высокотемпературных газовых потоков и выполненных, в том числе, из двухслойных паяных конструкций и может быть использовано для защиты изделий...
Тип: Изобретение
Номер охранного документа: 0002675005
Дата охранного документа: 14.12.2018
19.04.2019
№219.017.2f1e

Плазмотрон

Заявленное изобретение относится к области плазмотронной техники и может быть использовано во всех областях промышленности, где применяются плазмотроны постоянного тока. Заявленный плазмоторн содержит корпус, вольфрамовый катод и соединенное с корпусом сопло-анод с выходным каналом, причем...
Тип: Изобретение
Номер охранного документа: 0002350052
Дата охранного документа: 20.03.2009
06.06.2019
№219.017.7440

Устройство для извлечения диоксида углерода из газовых смесей

Изобретение относится к электрохимическим устройствам для извлечения вредных компонентов из газовых смесей, а именно для извлечения диоксида углерода для восстановления нормального химического состава воздуха, изменившегося вследствие жизнедеятельности людей, работы технических устройств,...
Тип: Изобретение
Номер охранного документа: 0002690469
Дата охранного документа: 03.06.2019
05.09.2019
№219.017.c756

Плазмохимический способ получения синтез-газа и установка для его осуществления

Изобретение относится к области плазмохимии, а именно к плазмохимическому способу получения синтез-газа и установке для его осуществления. Способ включает электродуговой трехфазный плазмотрон, в который подают основной и дополнительный исходные компоненты и осуществляют их плазмохимическое...
Тип: Изобретение
Номер охранного документа: 0002699124
Дата охранного документа: 03.09.2019
+ добавить свой РИД