×
18.12.2019
219.017.ee3d

Результат интеллектуальной деятельности: СОЛНЕЧНАЯ БАШЕННАЯ ЭЛЕКТРОСТАНЦИЯ

Вид РИД

Изобретение

№ охранного документа
0002709007
Дата охранного документа
13.12.2019
Аннотация: Изобретение относится к энергетике, более конкретно - к возобновляемым источникам энергии на основе солнечных башенных электростанций (гелиотермических электростанций), реализующих термодинамический цикл, например, Ренкина или Стирлинга. В солнечной башенной электростанции, содержащей блок термодинамического цикла, например, Ренкина или Стирлинга, с нагревателем цикла и зеркалами-гелиостатами, выполненными с возможностью азимутального и зенитного слежения за Солнцем с помощью приводов, и отражения солнечных лучей на нагреватель, расположенный на вершине башни солнечной башенной электростанции, и сеть потребителей, зеркала-гелиостаты снабжены блоком управления приводами, а также солнечными фотоэлектрическими панелями, фиксированно прикрепленными по периметру к каждому зеркалу-гелиостату, или фотоэлектрическими панелями, выполненными неподвижными и размещенными, например, между соседними зеркалами-гелиостатами, при этом входы привода азимутального и привода зенитного слежения за Солнцем каждого зеркала-гелиостата соединены с выходами блока управления приводами, первый вход которого подключен к общей выходной цепи фотоэлектрических панелей, а второй вход подключен к сети потребителей. Технический результат заключается в повышении КПД солнечных башенных электростанций. 1 ил.

Предлагаемое техническое решение относится к энергетике, более конкретно - к возобновляемым источникам энергии на основе солнечных башенных электростанций (гелиотермических электростанций), реализующих термодинамический цикли, например, Ренкина или Стирлинга.

Известно устройство-аналог: Гелиостат (Амстиславский А.З., Муравьев А.И. Гелиостат. Авторское свидетельство СССР №1353995. Опубликован 23.11.87, Бюл. №43). Изобретение позволяет упростить конструкцию гелиостата путем изменения кинематической и оптической связи его зеркал и светочувствительного датчика (СД), а также устранить эффект перекрестной связи в управлении гелиостатом. В центральном отверстии зеркала перпендикулярно его поверхности и в плоскости симметрии цилиндрического шарнира установлен отражатель. Двухкоординатный СД расположен на валу и ориентирован параллельно ему на уровне оси шарнира. Падающее на зеркало солнечное излучение направляется отражателем в сторону СД в направлении, обратном приемнику излучения. При перемещении Солнца СД формирует сигналы на приводы, ориентирующие зеркало на приемник.

Недостатком аналога является необходимость питания приводов, азимутального и зенитного ориентирования зеркал-гелиостатов на приемник (котел) от шин электрогенератора электростанции, что снижает выдачу электроэнергии в энергосистему, т.е. снижает ее эффективность.

Известны устройства (второй аналог) - солнечные башенные электростанции на основе реализации цикла Ренкина с использованием расположенных на большой площади следящих за Солнцем плоских зеркал, отражающих солнечные лучи на центральный приемник (котел), помещенный на вершине башни (Р.Б. Ахмедов, И.В. Баум, В.А. Пожарнов, В.М. Чеховский. Солнечные электрические станции. Сер. "Гелиоэнергетика" (Итоги наука и техники ВИНИТИ). М. 1986). В книге рассматривается наряду с другими и Крымская гелиотермическая станция СЭС-5 с реализацией цикла Ренкина. Вместе с тем на сайте (https://studopedia.ru/13_6786_elektrostantsii-ispolzuyushchie-netraditsionnie-vidi-energii.html) указывается, что для Крымской СЭС-5 полный расход электроэнергии на собственные нужды, в том числе и на питание приводов азимутального и зенитного ориентирования зеркал-гелиостатов, составляет 15%. Таким образом, если полный реальный КПД-брутто для солнечного ясного полдня при плотности потока солнечного излучения G=1 кВт/м составляет

где Р[кВт] - электрическая мощность на выходе электрогенератора, S[м2] - суммарная площадь зеркал-гелиостатов, то с учетом собственных нужд КПД-нетто снижается и составляет

Недостатком второго аналога, как и у первого, является необходимость питания приводов, азимутального и зенитного ориентирования зеркал-гелиостатов на приемник (котел) от шин электрогенератора электростанции, что снижает выдачу электроэнергии в энергосистему, т.е. снижает ее эффективность.

Известно устройство-прототип (Цгоев Р.С., Шлыков Е.Н., Козлов И.С., Погосян А.В. ГЕНЕРИРУЮЩАЯ УСТАНОВКА С ДВИГАТЕЛЕМ СТИРЛИНГА. Патент РФ №2527773. МПК F02G 1/045. Опубликовано: 10.09, 2014. Бюл. №25), согласно которому изобретение относится к энергетике. Генерирующая установка содержит двигатель Стирлинга с электрогенератором на одном валу, систему охлаждения двигателя Стирлинга и нагреватель двигателя Стирлинга. Установка снабжена солнечной башенной электростанцией с зеркалами. Нагреватель двигателя Стирлинга расположен на вершине башни солнечной башенной электростанции с зеркалами. Зеркала выполнены с возможностью слежения за Солнцем и отражения солнечных лучей на нагреватель двигателя Стирлинга. Установка снабжена выпрямительным и инверторным блоками, регулятором и датчиком температуры рабочего тела в нагревателе двигателя Стирлинга. Выход датчика температуры соединен с входом регулятора. Выход регулятора соединен с управляющими входами выпрямительного и инверторного блоков. Силовой выход электрогенератора соединен с силовым входом выпрямительного блока. Силовой выход инверторного блока соединен с сетью потребителей.

Недостатком устройства-прототипа, как и аналогов, является необходимость питания приводов, азимутального и зенитного ориентирования зеркал-гелиостатов на приемник-нагреватель цикла от шин электрогенератора электростанции, что снижает выдачу электроэнергии в энергосистему, т.е. снижает ее эффективность.

Техническая задача, решаемая предлагаемым устройством, состоит в повышении эффективности солнечных башенных электростанций.

Технический результат, заключающийся в повышении КПД солнечных башенных электростанций, достигается тем, что в известной солнечной башенной электростанции, содержащей блок термодинамического цикла, например, Ренкина или Стирлинга, с нагревателем цикла и зеркалами-гелиостатами, выполненными с возможностью азимутального и зенитного слежения за Солнцем с помощью приводов и отражения солнечных лучей на нагреватель, расположенный на вершине башни солнечной башенной электростанции, сеть потребителей, зеркала-гелиостаты снабжены блоком управления приводами, а также солнечными фотоэлектрическими панелями, фиксированно прикрепленными по периметру к каждому зеркалу-гелиостату, или фотоэлектрическими панелями, выполненными неподвижными и размещенными, например, между соседними зеркалами-гелиостатами, при этом входы привода азимутального и привода зенитного слежения за Солнцем каждого зеркала-гелиостата соединены с выходами блока управления приводами, первый вход которого подключен к общей выходной цепи фотоэлектрических панелей, а второй вход подключен к сети потребителей.

На чертеже представлен общий вид солнечной башенной электростанции.

Солнечная башенная электростанция содержит блок 1 термодинамического цикла, например, Ренкина или Стерлинга, с нагревателем 2 цикла и зеркалами-гелиостатами 3, выполненными с возможностью азимутального и зенитного слежения за Солнцем с помощью приводов 4 и 5, и отражения солнечных лучей на нагреватель 2, расположенный на вершине башни 6 солнечной башенной электростанции, сеть 7 потребителей, зеркала-гелиостаты 3 снабжены блоком 8 управления приводами 4 и 5, а также солнечными фотоэлектрическими панелями 9, фиксированно прикрепленными по периметру к каждому зеркалу-гелиостату 3, при этом входы привода 4 азимутального и привода 5 зенитного слежения за Солнцем каждого зеркала-гелиостата 3 соединены с выходами блока 8 управления приводами, первый вход которого подключен к общей выходной цепи 10 фотоэлектрических панелей 9, а второй вход подключен к сети 7 потребителей.

Кроме того, у солнечной башенной электростанции солнечные фотоэлектрические панели 9 могут быть выполнены неподвижными и размещены или между соседними зеркалами-гелиостатами, или на отдельной площадке вне поля зеркал-гелиостатов.

При этом выводы электрогенератора (электрогенератор на рисунке не показан) блока 1 термодинамического цикла через цепь 11 подключены к сети 7 потребителей. На рисунке показаны падающие на зеркало-гелиостат 3 и на фотоэлектрические панели 9 лучи 12 Солнечного излучения, а также отраженные от зеркала-гелиостата 3 лучи 13, падающие на нагреватель 2. Показаны также лучи 14 излучения от нагревателя 2 термодинамического цикла, дополнительно падающие на фотоэлектрические панели 9.

Солнечная башенная электростанция работает следующим образом. Плотность потока солнечного излучения в течение дня меняется по синусоидальному закону, т.е. в периоды восхода и заката плотность потока солнечного излучения имеет минимальное значение, а в солнечный полдень - максимальное значение, характерное для данного времени года (на плотность потока солнечного излучения влияет и облачность) и для местности. Например, летнее максимальное значение в районах, близких к экватору, как упоминалось, плотность потока солнечного излучения составляет G≈1 кВт/м2. По мере нарастания плотности потока солнечного излучения после восхода Солнца нарастает температура нагревателя 2 блока 1 термодинамического цикла, например, Ренкина или Стирлинга. Нагреватель 2, помещенный на вершине башни 6 солнечной башенной электростанции, нагревается расположенными на большой площади зеркалами-гелиостатами 3, следящими за Солнцем с помощью блока 8 управления приводом 4 азимутального и приводом 5 зенитного слежения за Солнцем и тем самым обеспечивается работа термодинамического цикла. При этом падающие лучи 12 Солнечного излучения, отраженные от зеркала-гелиостата 3, в виде лучей 13 падают на нагреватель 2.

Так как в каждый момент хронометраж астрономического перемещения солнца точно известен, то в простейшем случае блока 8 управления выполнен в виде хронометра. Блока 8 управления по астрономическому времени формирует на своем выходе сигнал задания на управление приводом 4 азимутального и приводом 5 зенитного слежения за Солнцем. Солнечные лучи 12 падают и на фотоэлектрические панели 9, которые осуществляют электропитание приводов 4 и 5.

Питание блока 8 управления приводами 4 и 5 в периоды нормального солнечного освещения осуществляется через первый вход, который подключен к общей выходной цепи 10 фотоэлектрических панелей 9, а в периоды облачности и для возврата гелиостата в исходное (утреннее) положение, питание осуществляется через второй вход, подключенный к сети 7 потребителей.

В свою очередь, если выбрать установленную мощность фотоэлектрических панелей 9 равной мощности собственных нужд солнечной башенной электростанции, то КПД-нетто вырастет до КПД-брутто (в вышеприведенном примере для СЭС-5 с 0.106 вырастит до 0.125).

Одновременно отраженные от зеркала-гелиостата 3 лучи 13, падающие на нагреватель 2, нагревают его поверхность до такой температуры, что он сам начинает излучать лучи 14, в основном в инфракрасном диапазоне. Эти лучи 14 падают на фотоэлектрические панели 9 дополнительно к лучам 12 и увеличивают выработку электроэнергии фотоэлектрическими панелями 9.

При концентрации зеркалами-гелиостатами 3 солнечного излучения на нагревателе 2 он, как и абсолютно черное тело, поглощает все излучение, которое на него попадает, и нагревается до определенной абсолютной температуры, визуально превращается в светящийся шар и, согласно закона Планка, создает излучение со спектральной плотностью потока энергии, излучаемой черным телом при достигнутой абсолютной температуре нагрева. Например, для кремниевых фотоэлектрических панелей 9 на расстоянии 100 метров от нагревателя 2 плотность потока 14 излучения дополнительно увеличится 5-7%, и далее убывает обратно пропорционально квадрату расстояния.

У солнечной башенной электростанции могут быть два более простых дополнительных варианта, когда солнечные фотоэлектрические панели 9 выполнены неподвижными и размещены или между соседними зеркалами-гелиостатами 3, или на отдельной площадке вне поля зеркал-гелиостатов. В этих случаях излучение от нагревателя 2 будут воспринимать только те фотоэлектрические панели 9, которые постоянно обращены к нагревателю 2.

Таким образом, применение предлагаемого устройства позволяет достичь поставленной технической задачи в повышении эффективности солнечных башенных электростанций. Технический результат, заключающийся в повышении КПД солнечных башенных электростанций, достигается тем, что в солнечной башенной электростанции собственные нужды покрываются фотоэлектрическими панелями, закрепленными на зеркалах - гелиостатах с возможностью дополнительно воспринимать излучение нагревателя станции.

Солнечная башенная электростанция, содержащая блок термодинамического цикла, например, Ренкина или Стирлинга, с нагревателем цикла и зеркалами-гелиостатами, выполненными с возможностью азимутального и зенитного слежения за Солнцем с помощью приводов и отражения солнечных лучей на нагреватель, расположенный на вершине башни солнечной башенной электростанции, сеть потребителей, отличающаяся тем, что зеркала-гелиостаты снабжены блоком управления приводами, а также солнечными фотоэлектрическими панелями, фиксированно прикрепленными по периметру к каждому зеркалу-гелиостату, или фотоэлектрическими панелями, выполненными неподвижными и размещенными, например, между соседними зеркалами-гелиостатами, при этом входы привода азимутального и привода зенитного слежения за Солнцем каждого зеркала-гелиостата соединены с выходами блока управления приводами, первый вход которого подключен к общей выходной цепи фотоэлектрических панелей, а второй вход подключен к сети потребителей.
СОЛНЕЧНАЯ БАШЕННАЯ ЭЛЕКТРОСТАНЦИЯ
СОЛНЕЧНАЯ БАШЕННАЯ ЭЛЕКТРОСТАНЦИЯ
Источник поступления информации: Роспатент

Показаны записи 151-160 из 208.
06.09.2019
№219.017.c811

Планетарный магнитный редуктор

Изобретение относится к электротехнике. Технический результат состоит в повышении удельных показателей магнитного редуктора. Планетарный магнитный редуктор содержит статор с осью симметрии О, состоящий из магнитопровода статора 1 в виде полого цилиндра и постоянных магнитов статора 2 с числом...
Тип: Изобретение
Номер охранного документа: 0002699238
Дата охранного документа: 04.09.2019
13.12.2019
№219.017.ec9e

Способ стабилизации скорости подачи присадочной проволоки и устройство для его реализации

Изобретение относится к области сварочного оборудования. Устройство содержит фотоэлектрический датчик фактической скорости подачи присадочной проволоки, связанный с вычислительным устройством, выполненным с возможностью соединения своим выходом с двигателем механизма подачи присадочной...
Тип: Изобретение
Номер охранного документа: 0002708867
Дата охранного документа: 11.12.2019
14.12.2019
№219.017.ed9a

Мультигенерирующий комплекс с комбинированным топливом при дополнительном производстве водорода и кислорода

Изобретение относится к области энергетики и может быть использовано для производства электроэнергии и тепла с использованием комбинированного топлива для производства водорода и кислорода. Мультигенерирующий комплекс с комбинированным топливом при дополнительном производстве водорода и...
Тип: Изобретение
Номер охранного документа: 0002708936
Дата охранного документа: 12.12.2019
18.12.2019
№219.017.ee2b

Маховик переменного момента инерции

Изобретение относится к машиностроению. Маховик переменного момента инерции содержит жестко закрепленную на нижней и верхней полуосях внутреннюю камеру цилиндрической формы. В полости камеры расположен поршень, жестко скрепленный со штоком управления. Шток расположен в отверстии верхней...
Тип: Изобретение
Номер охранного документа: 0002709080
Дата охранного документа: 13.12.2019
27.12.2019
№219.017.f2db

Тепловая паротурбинная электростанция с парогенерирующей водородно-кислородной установкой

Изобретение относится к паросиловым энергетическим установкам, а именно к тепловым электрическим станциям (ТЭС) с паровыми турбинами и системами обеспечения экологичности и восстановления их работоспособности. Технический результат, заключающийся в создании тепловой паротурбинной электростанции...
Тип: Изобретение
Номер охранного документа: 0002710326
Дата охранного документа: 25.12.2019
21.01.2020
№220.017.f7bc

Способ корреляционной защиты трехфазной сети с изолированной нейтралью от однофазных замыканий на землю

Использование: в области электроэнергетики для защиты электрических сетей 6-35 кВ с изолированной нейтралью от однофазных замыканий на землю (ОЗЗ). Технический результат - повышение селективности и чувствительности действия защиты при ОЗЗ. Согласно способу корреляционной защиты трехфазной сети...
Тип: Изобретение
Номер охранного документа: 0002711296
Дата охранного документа: 16.01.2020
21.01.2020
№220.017.f7cf

Фазоповоротное устройство

Использование: в области электротехники и электроэнергетики для гибкого регулирования и стабилизации напряжения в электрической сети, повышения пропускной способности существующих линий и повышения динамической устойчивости энергетической системы. Технический результат - увеличение количества...
Тип: Изобретение
Номер охранного документа: 0002711365
Дата охранного документа: 16.01.2020
01.02.2020
№220.017.fc3d

Способ формирования трибологического покрытия

Изобретение может быть использовано в машиностроении и микромеханике для уменьшения трения и износа в подшипниках скольжения. Сначала подготавливают рабочую поверхность изделий 1 путём полировки, обезжиривания в ультразвуковой ванне, обработки бензино-спиртовой смесью и термообработки в...
Тип: Изобретение
Номер охранного документа: 0002712661
Дата охранного документа: 30.01.2020
05.02.2020
№220.017.fe7c

Устройство определения степени неоднородности электропроводимости немагнитных металлов вихретоковым методом

Использование: для оценки степени неоднородности поверхностных слоев немагнитных металлов, возникающей при закалке, отпуске и воздействии жидких или газообразных агрессивных сред. Сущность изобретения заключается в том, что устройство определения степени неоднородности электропроводимости...
Тип: Изобретение
Номер охранного документа: 0002713031
Дата охранного документа: 03.02.2020
06.02.2020
№220.017.feda

Бесконтактный стабилизированный по напряжению генератор переменного тока с комбинированным возбуждением

Изобретение относится к области электротехники и может быть использовано при построении генераторов переменного и постоянного тока для систем электропитания автономных объектов, прежде всего, для летательных аппаратов, где требуются минимально возможная масса, габариты и бесконтактность, а...
Тип: Изобретение
Номер охранного документа: 0002713470
Дата охранного документа: 05.02.2020
Показаны записи 11-16 из 16.
29.12.2017
№217.015.f61d

Устройство управления теплосиловой установкой

Изобретение относится к энергетике. В теплосиловой установке, содержащей контур рабочего тела паротурбинного цикла Ренкина, включающий, соответственно, паровой котел с каналами подачи воздуха и топлива в камеру сгорания котла, конденсатор , питательный насос и паровую турбину, выходной вал...
Тип: Изобретение
Номер охранного документа: 0002637345
Дата охранного документа: 04.12.2017
09.11.2018
№218.016.9b89

Устройство электроснабжения собственных нужд энергоблока электростанции

Изобретение относится к областям электротехники и электроэнергетики и может быть применено на тепловых электростанциях с паротурбинным циклом Ренкина (например, конденсационные электростанции - КЭС), с газотурбинным циклом Брайтона (например, электростанции с газотурбинными установками - ПТУ,...
Тип: Изобретение
Номер охранного документа: 0002671821
Дата охранного документа: 07.11.2018
16.05.2019
№219.017.5256

Способ работы тепловой электрической станции и устройство для его реализации

Изобретение относится к электроэнергетике и может быть применено на тепловых электростанциях с паротурбинным циклом Ренкина, например на конденсационных электростанциях - КЭС, на парогазовых электростанциях - ПГУ, использующих топливо - традиционный природный газ. Применение предлагаемого...
Тип: Изобретение
Номер охранного документа: 0002687382
Дата охранного документа: 13.05.2019
29.06.2019
№219.017.a143

Способ управления ветроэнергетической установкой и устройство для его реализации

Изобретения относятся к области ветроэнергетики. Способ управления ветроэнергетической установкой характеризуется тем, что формируют сигнал о скорости ветра на высоте оси вращения ветроколеса, сигнал задания общего угла установки лопастей ветроколеса и сигнал об угле установки каждой лопасти...
Тип: Изобретение
Номер охранного документа: 0002444646
Дата охранного документа: 10.03.2012
10.07.2019
№219.017.b1a6

Способ регулирования ветроэнергетической установки и устройство для его реализации

Способ регулирования ветроэнергетической установкой и устройство для его реализации относятся к области ветроэнергетики. В способе, основанном на том, что формируют сигнал о скорости ветра на высоте оси вращения ветроколеса и по нему формируют сигнал задания скорости вращения вала ветроколеса...
Тип: Изобретение
Номер охранного документа: 0002468251
Дата охранного документа: 27.11.2012
24.07.2020
№220.018.370d

Ветроэнергетическая установка с двумя ветроколесами

Изобретение относится к ветроэнергетике и может быть использовано при управлении ветроэнергетической установкой (ВЭУ) с двумя ветроколесами. Ветроэнергетическая установка с двумя ветроколесами содержит лопасти ветроколес, ступицы и общий вал ветроколес, электрогенератор, энергосистему. Общий...
Тип: Изобретение
Номер охранного документа: 0002727276
Дата охранного документа: 21.07.2020
+ добавить свой РИД