×
18.12.2019
219.017.ee0d

Результат интеллектуальной деятельности: Способ упрочняющей обработки локальных участков поверхностей деталей роторов

Вид РИД

Изобретение

Аннотация: Изобретение относится к области машиностроения и может быть использовано для отделочно-упрочняющей обработки локальных участков поверхностей, например участков лопаточных деталей с удаленным металлом по результатам динамической балансировки быстроходных роторов авиационно-космической техники. При осуществлении способа через сопло установки эжекторного типа на обрабатываемую поверхность вращающейся детали в два этапа подают микрошарики различного размера. На первом этапе обработку в течение не менее 30 с проводят в газожидкостной слабопроводящей среде при напряжении электрического поля 4-6 В, при этом на локальный участок поверхности при его прохождении перед срезом сопла под углом не более 90° подают микрошарики диаметром 250 мкм при давлении сжатого воздуха 0,5-0,6 МПа, а при прохождении перед срезом сопла остальной поверхности давление сжатого воздуха снижают до 0,15 МПа. На втором этапе на всю поверхность детали подают смесь микрошариков диаметром 50 и 100 мкм с газожидкостной средой без наложения электрического поля при давлении сжатого воздуха не более 0,2 МПа в течение не менее 60 с. Изобретение направлено на получение равномерной степени наклепа и устранения микротрещин по всей поверхности, подвергнутой неравномерному удалению металла по результатам балансировки. 1 з.п. ф-лы, 4 ил., 1 пр.

Изобретение относится к области машиностроения и может быть использовано для отделочно-упрочняющей обработки локальных участков поверхностей, например участков лопаточных деталей с удаленным металлом по результатам динамической балансировки быстроходных роторов авиационно-космической техники. Места удаления металла подвергают ручной абразивной зачистке с полировкой и в результате получают нестабильную микро и макро-геометрию поверхности и неравномерные физико-механическими свойствами поверхностного слоя материала, отрицательно влияющие на ресурс работы нагруженных лопаточных деталей ротора.

Известен способ (Плешаков В.В. Закономерности формирования потока дроби в упрочнительных устройствах различного типа / В.В. Плешаков, Е.Н. Зык // Вестник Московского государственного университета приборостроения и информатики. Выпуск №45. Серия «Машиностроение». - М.: МГУПИ, 2013 - с. 40-48), по которому упрочняющую обработку таких участков поверхности производят вручную при произвольной схеме базирования и жестком закреплении детали с помощью устройства пистолетного типа. Применение пневмодинамического устройства пистолетного типа позволяет обрабатывать детали сложного профиля при достаточно стабильных режимах. Интенсивность ударов дроби зависит в первую очередь от давления сжатого воздуха в сети. Недостатком известного способа является нестабильность процесса упрочнения детали из-за различного времени соприкосновения дроби с поверхностью на отдельных участках при ручной подаче и большая глубина отпечатков от дроби диаметром 2-4 мм, что не обеспечивает заданные показатели качества поверхностного слоя обрабатываемой детали.

Известен способ пневмодробеструйном упрочнении диска турбомашины одновременно несколькими соплами, при обязательном перекрытии зоны обработки соседнего сопла (В.И. Цейтлин Пневмодробеструйное упрочнение / Цейтлин В.И., Волков В.И. // Упрочняющие технологии и покрытия. - 2006. - №6(18). - С. 17-24). Расстояние между рабочими соплами при упрочнении полотна определяется эффективным ядром распыла, который для рабочих сопел на расстоянии среза сопла L=150 мм равен d=50 мм. Поверхности детали, не подлежащие упрочнению (полости, щели), защищают, резьбы закрывают заглушками. К недостаткам способа относится невозможность надежной изоляции участков неправильной формы, неравномерность наклепа в зонах перекрытия ядра распыла от каждого сопла, а также отсутствие равномерных регулируемых по силе контакта воздействий между дробью и деталью в переходных зонах между участками с максимальной глубиной снятого металла и остальной поверхность. Все это в совокупности не позволяет получить заданный стабильный наклеп поверхностного слоя всей детали, выровнять микрогеометрию поверхности и полностью удалить дефектный слой от предыдущих технологических операций, что уменьшает срок эксплуатации изделий.

Наиболее близким аналогом заявленного способа является способ упрочняющей обработки внутренних поверхностей деталей (Патент 2491155. Способ упрочняющей обработки внутренних поверхностей деталей / Авт. Сухочев Г.А., Небольсин Д.М., Смольянникова Е.Г. Опубл. 27.08. 2013. Бюл. 24), заключающийся в подаче на обрабатываемую поверхность шариков с наложением электрического поля, отличающийся тем, что обработку проводят в газожидкостной слабопроводящей среде при напряжении электрического поля 2-5 В в два этапа, причем на первом этапе на обрабатываемую поверхность под углом не более 60° подают микрошарики диаметром 150-200 мкм при давлении сжатого воздуха 0,2-0,4 МПа и времени обработки каждого участка поверхности 30 с, а на втором этапе - микрошарики диаметром около 50 мкм при давлении сжатого воздуха не более 0,3 МПа и времени обработки каждого участка поверхности 15 с. При этом в качестве газожидкостной слабопроводящей среды используют сжатый воздух и техническую воду. Недостатком способа является невозможность избирательно компенсировать технологически наследованные дефекты от предыдущей обработки на участках неравномерно удаленного металла и нежелательное растравливание поверхности на окончательном этапе обработки.

Предлагаемое изобретение направлено на получение равномерной степени наклепа и устранения микротрещин по всей поверхности, подвергнутой неравномерному удалению металла по результатам балансировки.

Это достигается тем, что обработка поверхностей по предлагаемому способу заключается в подаче через сопло установки эжекторного типа на обрабатываемую поверхность вращающейся детали микрошариков различного размера в два этапа, отличающийся тем, что на первом этапе обработку проводят в течении не менее 30 с в газожидкостной слабопроводящей среде при напряжении электрического поля 4-6 В, при этом на локальный участок поверхности под углом не более 90° подают микрошарики диаметром 250 мкм при давлении сжатого воздуха 0,5-0,6 МПа при прохождении перед срезом сопла обрабатываемого участка, а при прохождении перед срезом сопла остальной поверхности давление сжатого воздуха снижается до 0,15 МПа, на втором этапе на всю поверхность детали подают смесь микрошариков диаметром 50 и 100 мкм с газожидкостной средой без наложения электрического поля при давлении сжатого воздуха не более 0,2 МПа в течении не менее 60 с.

На рисунках 1-4 показано исходное состояние поверхностного слоя участка детали с макрогеометрией и трещинами от предшествующей механической зачистки и приведены основные этапы равномерного упрочнения всей поверхности и окончательного выравнивания микрогеометрии в переходных зонах по предлагаемому способу.

На участке 1 неправильной формы (рисунок 1), имеющего заниженную относительно остальной поверхности зону 2 и переходную 3 зону, микротрещины 4 в поверхностном слое после ручной локальной зачистки по результатам балансировки могут выходить на поверхность или оставаться замкнутыми в материале подповерхностного слоя и выходить на поверхность в процессе эксплуатации изделия под действием знакопеременных нагрузок и высокочастотной вибрации. Трещины, проявившиеся на поверхности, забиваются на входе частицами 5 металла или абразива при зачистке. Эти частицы затем в условиях экстремальных знакопеременных эксплуатационных нагрузок в водородосодержащих средах еще глубже расклинивают трещину, чем резко снижают работоспособность деталей роторной группы.

Формирование требуемых эксплуатационных свойств поверхностного слоя в местах зачистки проходит в несколько этапов. Во-первых, на исходную дефектную поверхность 6 в самом глубоком месте зачистки (рисунок 2) с направлением к ней под углом не более 90° подают стальные микрошарики 7 высокой твердости и более крупной фракции (250 мкм), которые деформируют и осаживают выступы и залечивают микродефекты. Наличие жидкостной токопроводящей среды 8 препятствует перегреву мест соударений гранул с поверхностью и образованию остаточных напряжений растяжения, а также ускоряет процесс удаления частиц 5 за счет явления анодного растворения материала. В качестве газожидкостной слабопроводящей среды используют сжатый воздух и техническую воду. Так как весь ротор конструктивно состоит из тел вращения, то обработка проводится по схеме с вращением детали 9 относительно среза сопла 10 (рисунок 3). При этом срез сопла 10 устанавливают на расстоянии L от обрабатываемого участка 11, при котором диаметр ядра распыла d равен наибольшему расстоянию поперечного сечения d1 заниженной зоны 2 участка 1, а пятно распыла 12 перекрывало наибольшее поперечное сечение переходной зоны 3. При этом образуется поверхностный наклеп материала 13, интенсивность которого плавно снижается от заниженной зоны к переходным границам участка 1 за счет меньшей энергии удара микрошарика о поверхность на периферии пятна распыла. Чтобы интенсивный наклеп приходился на заниженную зону участка и в продольном направлении, при прохождении относительно среза сопла не нарушенной поверхности в исходном состоянии, давление в сети снижается до 30% от номинального, снижая кинетическую энергию микрошарика. В итоге наклеп распределяется равномерно, так как в переходной зоне 3 он объединяется с остаточным наклепом 14, наследованным от предыдущей операции упрочнения до начала балансировки.

На втором этапе, подают более мелкую смешанную фракцию микрошариков 50 и 100 мкм с газожидкостной средой, но без наложения тока. При этом завершается выравнивание наклепа 15 и микрорельефа поверхности (рисунок 4), а также формирование в тонком поверхностном слое материала остаточных напряжений сжатия. Выравнивание микрогеометрии зависит от размеров микрошариков и сплошности покрытия поверхности пластическими отпечатками, которая за счет смешанной фракции составляет не менее 95%.

Время обработки и другие режимные параметры процесса настраивается по прогибу плоских образцов перед обработкой каждой партии деталей.

Пример осуществления способа.

Обработка турбины диаметром 210 мм из никелевого сплава с нарушенным при балансировке участком поверхности с размерами занижения 50×140 мм проводилась на установках эжекторного типа в два этапа. С начала обработали микрошариками диаметром 250±20 мкм с наложением тока низкого напряжения при соблюдении следующих режимов: расстояние от среза сопла до поверхности образца L=170 мм на диаметре вращения Dвр=180 мм; диаметр ядра пятна распыла d=50 мм; время обработки каждого соседнего участка поверхности - 60 с; угол соударения потока микрошариков с поверхностью 90°; скорость вращения шпинделя установки - 20 мин-1; давление, подаваемого сжатого воздуха - 0,4 МПа со снижением на не нарушенных участках поверхности до 0,15 МПа; напряжение 4-6 В; расход газожидкостной слабопроводящей среды - 2 м3/мин.

Последующая обработка проводилась смесью микрошариков диаметрами 50 и 100 мкм. Режимы: расстояние от среза сопла и поверхностью образца L=180 мм на диаметре вращения Dвр=180 мм; диаметр ядра пятна распыла d=60 мм; время обработки каждого соседнего участка поверхности - 60 с; угол соударения потока микрошариков с поверхностью 90°; скорость вращения шпинделя установки - 40 мин-1; давление, подаваемого сжатого воздуха - 0,2 МПа; расход газожидкостной слабопроводящей среды - 1 м3/мин.

Газожидкостная слабопроводящая среда состояла из воздуха и распыленной до капельной фракции технической воды, являющейся слабым проводником. В качестве микрошариков использовались сферические гранулы из инструментальной стали Р6М5.

После обработки поверхности в течение 20 минут ее шероховатость составила 2,0-2,5 мкм, наклеп поверхностного слоя - 2,2÷3,5%, что отвечает заданным техническим условиям.


Способ упрочняющей обработки локальных участков поверхностей деталей роторов
Способ упрочняющей обработки локальных участков поверхностей деталей роторов
Источник поступления информации: Роспатент

Показаны записи 111-120 из 124.
22.04.2023
№223.018.512c

Вертикальный ветродвигатель

Изобретение относится к области ветроэнергетики, в частности к ветродвигателям с вертикальной осью вращения. Вертикальный ветродвигатель содержит основание, траверсы, ветроприемники и центральную стойку. Внешние по отношению к оси симметрии стороны ветроприемников снабжены прямоугольными...
Тип: Изобретение
Номер охранного документа: 0002794291
Дата охранного документа: 14.04.2023
15.05.2023
№223.018.5946

Способ получения на подложке тонких пленок ниобата лития

Изобретение относится к способу получения пленок ниобата лития, обладающих сегнетоэлектрическими свойствами, для использования в устройствах оптоэлектроники, акустоэлектроники, микро-, наноэлектроники и спинтроники. Способ получения тонкой пленки из ниобата лития на кремниевой подложке включает...
Тип: Изобретение
Номер охранного документа: 0002762756
Дата охранного документа: 22.12.2021
15.05.2023
№223.018.5947

Способ получения на подложке тонких пленок ниобата лития

Изобретение относится к способу получения пленок ниобата лития, обладающих сегнетоэлектрическими свойствами, для использования в устройствах оптоэлектроники, акустоэлектроники, микро-, наноэлектроники и спинтроники. Способ получения тонкой пленки из ниобата лития на кремниевой подложке включает...
Тип: Изобретение
Номер охранного документа: 0002762756
Дата охранного документа: 22.12.2021
15.05.2023
№223.018.5af9

Регулятор переменного напряжения

Изобретение относится к электротехнике, в частности к преобразовательной технике, и может быть использовано для регулирования напряжения и реактивной мощности в электрических сетях, а также для ограничения токов короткого замыкания в электрических сетях. Сущность изобретения заключается в том,...
Тип: Изобретение
Номер охранного документа: 0002765226
Дата охранного документа: 26.01.2022
15.05.2023
№223.018.5afa

Регулятор переменного напряжения

Изобретение относится к электротехнике, в частности к преобразовательной технике, и может быть использовано для регулирования напряжения и реактивной мощности в электрических сетях, а также для ограничения токов короткого замыкания в электрических сетях. Сущность изобретения заключается в том,...
Тип: Изобретение
Номер охранного документа: 0002765226
Дата охранного документа: 26.01.2022
19.05.2023
№223.018.64e7

Бустерный турбонасосный агрегат жрд (варианты)

Изобретение относится к области ракетостроения и может быть использовано в жидкостных ракетных двигателях (ЖРД), преимущественно кислородно-метановых и кислородно-водородных. Бустерный турбонасосный агрегат ЖРД, содержащий насос, турбину, подшипник турбины, подшипник насоса, разделительную...
Тип: Изобретение
Номер охранного документа: 0002730566
Дата охранного документа: 24.08.2020
24.05.2023
№223.018.6f9b

Ветроколесо

Изобретение относится к ветроэнергетике, а именно к ветроколесам ветросиловых и ветроэнергетических установок с горизонтальной осью вращения, преимущественно предназначенным для работы с электрогенераторами сегментного типа. Ветроколесо включает вал и ступицу, выполненную в виде пластины, на...
Тип: Изобретение
Номер охранного документа: 0002796036
Дата охранного документа: 16.05.2023
26.05.2023
№223.018.7032

Регулируемый повышающий преобразователь постоянного напряжения

Изобретение относится к области преобразовательной техники и может быть использовано в кузнечнопрессовом оборудовании для осуществления рекуперации энергии, а также для других устройств, где требуется осуществлять повышение напряжения при снижении скорости объекта управления. Изобретение...
Тип: Изобретение
Номер охранного документа: 0002796260
Дата охранного документа: 18.05.2023
29.05.2023
№223.018.728c

Инструмент и способ комбинированной анодно-механической чистовой обработки теплозащитных многокомпонентных покрытий

Группа изобретений относится к области машиностроения и может быть использована для чистовой избирательной обработки теплозащитных многокомпонентных покрытий. Предложены инструмент для комбинированной анодно-механической чистовой обработки теплозащитного многокомпонентного покрытия, содержащего...
Тип: Изобретение
Номер охранного документа: 0002796389
Дата охранного документа: 22.05.2023
05.06.2023
№223.018.77a3

Статор сегментного генератора

Изобретение относится к области ветроэнергетики, в частности к статорам сегментного генератора. Статор сегментного генератора содержит электромеханические модули, крепежные элементы и основания. Электромеханические модули установлены на дугообразном основании, один конец которого установлен в...
Тип: Изобретение
Номер охранного документа: 0002796607
Дата охранного документа: 26.05.2023
Показаны записи 1-4 из 4.
10.04.2014
№216.012.b18b

Способ изготовления тонкостенных оболочек сложной формы

Изобретение относится к обработке металлов давлением, в частности к способам осуществления процесса ротационного выдавливания, и может быть использовано для формообразования из листовых заготовок цельных тонкостенных оболочек осесимметричной формы, имеющих постоянную толщину по образующей,...
Тип: Изобретение
Номер охранного документа: 0002511166
Дата охранного документа: 10.04.2014
10.01.2015
№216.013.175f

Способ упрочнения каналов детали

Изобретение относится к области машиностроения и может быть использовано для отделочно-упрочняющей обработки внутренних поверхностей каналов детали. Обеспечивают вибрацию с частотой 20-30 Гц корпуса контейнера, содержащего токопроводящие стальные шарики для возвратно-поступательного движения...
Тип: Изобретение
Номер охранного документа: 0002537411
Дата охранного документа: 10.01.2015
20.01.2018
№218.016.130b

Способ комбинированной обработки узких каналов детали

Изобретение относится к области комбинированной обработки и может быть использовано для отделочной обработки мелкоразмерных проточных каналов деталей различной формы, например щелевых каналов охлаждающих оболочек, имеющих нестабильную исходную микро- и макро-геометрию поверхности и...
Тип: Изобретение
Номер охранного документа: 0002634398
Дата охранного документа: 26.10.2017
21.02.2019
№219.016.c577

Способ подготовки поверхности сложного профиля под газоплазменное напыление

Изобретение относится к комбинированным электрическим методам обработки и может быть использовано при подготовке поверхности сложного профиля, например лопаток из труднообрабатываемых материалов, перед нанесением жаростойких покрытий. Способ подготовки поверхности сложного профиля под...
Тип: Изобретение
Номер охранного документа: 0002680333
Дата охранного документа: 19.02.2019
+ добавить свой РИД