×
14.12.2019
219.017.edb6

Результат интеллектуальной деятельности: Система-носитель для направленной доставки антибиотиков пенициллинового и антрациклинового ряда

Вид РИД

Изобретение

Аннотация: Изобретение относится к фармацевтике и может быть использовано для производства системы-носителя для направленной доставки лекарств при диагностике или терапии. Предложена система-носитель для направленной доставки антибиотиков пенициллинового и антрациклинового ряда на основе нанопорошка, обладающая магнитными свойствами, отличающаяся тем, что состоит из аморфного нанопорошка диоксида кремния, допированного диоксидом марганца, причем допирование диоксидом марганца проводят в процессе получения нанопорошка методом испарения импульсным электронным пучком в газе низкого давления, и обладает пористостью до 0,88 см/г и площадью удельной поверхности до 176 м/г. Технический результат – предложенная система-носитель обладает высокой пористостью и площадью удельной поверхности, определяющей высокую загрузочную способность, магнитными свойствами, позволяющими контролировать процесс доставки лекарственного вещества, и биосовместимостью. 3 ил., 3 табл., 2 пр.

Изобретение относится к фармацевтике и представляет собой систему-носитель на основе нанопорошка (НП) оксида неметалла с загруженным лекарственным или биологически-активным веществом для его направленной доставки и способ ее получения. Способ включает получение системы-носителя на основе нанопорошков диоксида кремния, допированных диоксидом марганца, методом испарения импульсным электронным пучком (ИЭП) в газе низкого давления, с дальнейшим суспендированием НП в водном растворе лекарства, сопутствующим обработкой полученной лекарственной суспензии НП ультразвуком или перемешиванием, с последующим отделением загруженных НП центрифугированием и промывкой в дистиллированной воде. Также предложены примеры с лекарственными препаратами, демонстрирующие возможность внедрения лекарства предложенным способом в полученную систему-носитель.

Лекарства в традиционной форме проявляют высокую токсичность в здоровых тканях из-за их неспецифического распределения или преждевременной деградации, низкой растворимости в жидкостях организма, низкой проницаемости и низкой биодоступности. Эти ограничения приводят к необходимости снижения вводимых доз в результате повышенного риска побочных эффектов, что серьезно влияет на их эффективность во время лечения.

Системы-носители направленной доставки лекарств применяются для повышения эффективности взаимодействия лекарственного вещества с целевой областью в организме человека при меньшей дозировке, снижая риск возникновения серьезных побочных эффектов в том числе за счет ограничения концентраций лекарственного препарата в нецелевой области.

Для разработки системы-носителя используют различные органические и неорганические материалы, такие как магнитные наночастицы, наночастицы оксидов металлов и неметаллов, лизосомы, белковые и липидные, а также прочие химически синтезированные структуры и высокомолекулярные соединения.

Известен носитель для лекарственных средств и биологически активных веществ, представляющий собой материал, чувствительный к воздействию внешнего магнитного или электрического полей и состоящий из магнитного или сегнетоэлектрического материала (в том числе наночастицы), покрытого пленкой биосовместимого термочувствительного вещества [патент РФ 2373957 / Носитель для лекарственных средств и биологически активных веществ для лечения и диагностики и применение его для создания лекарственных средств и способа регулируемой управляемой доставки лекарственного средства или биологически активного вещества с регулируемой десорбцией его / Тишин A.M., Рочев Ю. А., Горелов А.В.], полученный химическим методом. Для полученного носителя не указана загрузочная способность системы (в том числе на основе наночастиц), как одного из определяющих параметров подобных систем-носителей. Более того для создания носителя поверхность материала дополнительно покрывается пленкой, что повышает трудоемкость процесса, в отличие от предлагаемой системы-носителя, не требующей поверхностной модификации.

Известна система пероральной доставки действующего вещества белковой природы в виде наночастиц со средним размером не более 500 нм [патент РФ 2566069 / Система доставки вещества белковой природы в виде наночастиц и способ ее получения / Ногай С.Ю., Хазанова Е.С., Егоров Д.В.]. Данный способ доставки путем перорального приема имеет ряд ограничений, таких как невозможность доставки противоопухолевых препаратов с высокой токсичностью.

В качестве прототипа был выбран носитель на основе наночастицы, имеющей ядро из диоксида циркония, покрытое оболочкой из оксидов железа, форму, близкую к сферической, и размер в пределах 15-100 нм [патент РФ 2525430 / Носитель для лекарственных средств и биологически активных веществ для лечения и диагностики и способ его получения / Галагудза М.М., Осташев В.Б., Королев Д.В., Афонин М.В., Усков И.С.]. Наночастицы из диоксида циркония, на основе которых разработан данный носитель, имеют размер частиц от 15 нм и площадь удельной поверхности около 100 м2/г, что соизмеримо со свойствами предлагаемой системы. Однако, предлагаемый в настоящей заявке носитель имеет большую пористость и площадь удельной поверхности до 176 м2/г, что является одним из определяющих факторов высокой загрузочной способности. Введение данного носителя осуществляется внутривенно, как и предлагаемую систему-носитель.

Известен способ получения системы для доставки противоопухолевого препарата в клетки опухоли [патент РФ 2657835 / Способ получения системы для доставки противоопухолевого препарата в клетки опухоли / Ефремова М.В., Гаранина А.С., Абакумов М.А., Мажуга А.Г.], включающий смешение в присутствии воды модифицированных полимером наночастиц магнетита, эпитаксиально выращенных на наночастицах золота, с органическим соединением, химически связывающимся с наночастицами и обеспечивающим селективное проникновение наночастиц внутрь клеток опухоли, и водным раствором противоопухолевого препарата. Данный способ имеет ряд этапов, совпадающих с предлагаемым способом, как смешивание суспензии наночастиц с водным раствором лекарства и последующим отделением полученных модифицированных наночастиц центрифугированием. Однако, в данном способе используется химический метод получения наночастиц, существенно отличающийся от предложенного трудоемкостью и материалоемкостью за счет прохождения промежуточных этапов таких, как нагрев до 120°С в атмосфере инертного газа при перемешивании смеси кислот с последующей тщательной промывкой. Более того, получаемая система требует поверхностной модификации, что дополнительно усложняет процесс подготовки системы для доставки.

В качестве прототипа был выбран способ получения наноразмерной системы доставки лекарственных средств на основе диоксида кремния [патент РФ 2372890 / Способ получения наноразмерной системы доставки лекарственных средств на основе диоксида кремния / Жиров А.А., Касаткин И.К., Назаров Г.В., Александровская Н.В., Галан С.Е.]. Данный способ включает в себя метод ультразвуковой обработки на этапе создания системы, что применяется и в предлагаемом способе. Однако в тексте патента рассмотрены способы повышения эффективности доставки и ведения системы в организме человека, но не указана загрузочная способность системы (в том числе на основе наночастиц), как одного из определяющих параметров подобных носителей, а также полученная система является специфичной для доставки лекарственных средств к клеткам головного мозга.

Таким образом, перед авторами стояла задача разработать систему-носитель на основе нанопорошков оксидов металлов для направленной доставки лекарственных веществ, обладающей высокой пористостью, определяющей загрузочную способность носителя и способ ее изготовления, который позволит расширить арсенал средств получения подобных систем с одновременным снижением материалоемкости и трудоемкости данного процесса.

Поставленная задача решена в предлагаемом способе получения системы-носителя на основе нанопорошка диоксида кремния, допированного диоксидом марганца, полученного методом ИЭП в газе низкого давления, с последующим суспендированием НП в водном растворе лекарства, сопутствующим обработкой полученной лекарственной суспензии НП ультразвуком или перемешиванием, с последующим отделением загруженных нанопорошков центрифугированием и промывкой в дистиллированной воде.

Нанопорошки кремния обладают высокой удельной площадью поверхности, возможностью варьирования размеров пор, хорошей термической, химической стабильностью и биосовместимостью. Допант диоксид марганца может выступать в качестве контрастирующего агента для МРТ, что позволит визуализировать процесс доставки лекарственного вещества.

Кроме того, система-носитель может быть разработана на основе нанопорошка диоксида кремния с прочими различными допантами, полученного методом испарения ИЭП, для расширения свойств и сфер применения системы.

В настоящее время из научно-технической и патентной литературы не известны системы доставки на основе нанопорошков, полученных физическим методом испарения импульсным электронным пучком, в состав которого входит допирующая добавка диоксида марганца.

Предлагаемая система-носитель может быть получена следующим образом. Берут субмикронные порошки диоксида кремния (AEROSIL 90) и диоксида марганца (ГОСТ 4470-79) в соотношении (0,95-0,999):(0,001-0,05) соответственно, тщательно перетирают указанные ингредиенты. Полученную смесь прессуют в таблетку диаметром 20-30 мм, высотой 5-12 мм при комнатной температуре. Полученную таблетку в качестве мишени помещают в устройство для получения нанопорошков методом испарения мишени импульсным электронным пучком в газе низкого давления в соответствии с патентом [RU 2353573 / Способ получения нанопорошков и устройство для его реализации / Котов Ю.А., Соковнин С.Ю., Ильвес В.Г. Чанг К.Р]. Мишень испаряют на стеклянную подложку в вакууме (остаточное давление 4-4,5 Па). Время испарения - 10-15 минут. Условия проведения процесса: ускоряющее напряжение в установке - 38 кВ, длительность импульса - 90-100 мкс, частота подачи импульсов - 50-100 Гц, ток пучка - 0,3-0,4А.

Текстурные свойства и морфология полученных НП исследовались методом микроскопии на просвечивающем микроскопе JEM 2100, определение фазового состава НП проводили методом рентгенофазового анализа на дифрактометре XRD 7000, удельная площадь поверхности, объем и размер пор измерялись методом BET-BJH на установке Tristar 3000 V6.03 (Micrometrics, США), термограммы (ДСК-ТГ) были получены на синхронном термоанализаторе Demo-STA-409-PC, совмещенном с масс-спектрометром QMS-403C фирмы NETZSCH.

Согласно данным ВЕТ-анализа (таблица 1), площадь удельной поверхности Sbet увеличивается с увеличением концентрации допанта. Для сравнения в таблице приведены текстурные свойства НП, полученного химическим методом с использованием темплата (образцы №1.4 и 1.5).

Как видно из данных табл. 1 метод испарения ИЭП позволяет получить НП с высокой пористостью.

Из данных микроскопического анализа следует, что НП представляют собой аморфные агломераты НП с межчастичной пористостью (фиг. 1а, б). На рисунке не видно присутствия упорядоченных мезопор, форма полученных частиц SiO2-MnO2 далека от сферической.

Следует отметить, что в системах доставки лекарств особенно интересны НП с полыми структурами, поскольку они могут позволить эффективно размещать лекарства не только в мезопористых каналах, но и в полых областях [3].

Данные РФА (фиг. 2а) подтверждают, что НП SiO2-MnO2 с различной концентрацией допанта аморфные, фазы оксидов марганца не наблюдаются.

По термограммам зафиксирован прирост массы до 50% в диапазоне температур от 40 до 1400°С, что может быть связано с окислением восстановленного при испарении кремния (фиг. 2б).

Из кривых намагничивания (фиг. 3) следует, что все НП SiO2-MnO2, обладают ферромагнитными свойствами [4]. При увеличении концентрации допанта диоксида марганца наблюдали усиление ферромагнитного отклика, что могло быть вызвано возрастанием дефектности структуры.

Благодаря наличию магнитных свойств НП SiO2 - MnO2, одним из возможных способов доставки лекарственного вещества является использование экзогенного стимула - внешнего высокоградиентного магнитного поля.

Внедрение лекарства в НП осуществляется путем суспендирования НП в водном растворе лекарственного вещества. После суспендирования образцы обрабатываются в УЗ-ванночке в течение 40 минут или перемешиваются на мешалке в течение 24 часов. Далее суспендированный НП отделяется центрифугированием с частотой не менее 4000 об/мин не менее 10 мин. Затем, отцентрифугированный НП промывается дистиллированной водой, повторно центрифугируется и сушится.

Для иллюстрации свойств НП SiO2 - MnO2, полученного методом испарения импульсным электронным пучком в газе низкого давления используются фиг. 1-3.

На Фиг. 1 представлены ПЭМ-снимки НП SiO2-3%MnO2 при разном увеличении, где а - масштаб 0,2 мкм, б - масштаб 20 нм.

На Фиг. 2 - дифрактограммы НП SiO2-MnO2 (а), типичная кривая нагрева ДСК-ТГ НП (б).

На Фиг. 3-кривые намагничивания в магнитном поле ± 3Т НП SiO2, допированных 0,1% MnO2(а), 3% и 5% MnO2(б).

Применение нанопорошка в качестве системы направленной доставки лекарств иллюстрируется следующими примерами.

Пример 1

Для экспериментов по внедрению/выпуску лекарства было выбрано антибактериальное лекарственное средство «Амоксициллин» (в капсулах по 500 мг, производитель: Hemofarm koncern A.D, Сербия). В состав капсулы «Амоксициллина» входит активное вещество - амоксициллин - полусинтетический антибиотик широкого спектра действия группы пенициллинов, а также вспомогательные вещества - магний стеарат, целлюлоза микрокристаллическая РН 102.

Внедрение лекарства в НП осуществлялось путем суспендирования 20 мг НП SiO2-5%MnO2 в 10 мл водного раствора лекарственного средства «Амоксициллина» с концентрацией Сст (таблица 2), далее образцы Amo-SiO2-5%MnO2.

Часть образцов после суспендирования была обработана в УЗ-ванночке в течение 40 минут и оставлена на 24 часа, вторая часть образцов перемешивалась на мешалке в течение 24 часов. Далее суспендированный НП отделяли центрифугированием (4000 об /мин, 10 мин) и промывали дистиллированной водой.

Для оценки массы загруженного лекарства надосадочную часть исследовали спектрофотометрическим методом на длине волны λ=270 нм, соответствующей максимуму поглощения лекарства. С помощью сравнительного способа количественного анализа относительно контрольного раствора (далее - контроль Amo) используемого лекарства была оценена концентрация лекарственного вещества в надосадочной жидкости.

Выпуск лекарства осуществлялся путем суспендирования высушенных НП в дистиллированной воде спустя 3 суток после суспендирования НП в растворе лекарства, последующем центрифугировании и промывке.

Для оценки высвобождаемого объема лекарства высушенный НП повторно суспендировали в 1 мл дистиллированной воды. После центрифугирования надосадочную часть исследовали на спектрофотометре по методике, аналогичной методике оценки массы загруженного лекарства. По полученным концентрациям выпущенного лекарства Cx и объему исходных суспензий была рассчитана масса внедренного лекарства mв и загрузочная способность НП LC.

Самая низкая Cx=0,0058 мг/мл и LC=0,0029 мг лек./мг НП получена при СФ анализе образца №2.2 (табл. 2), что может быть связано с необходимостью дополнительного воздействия внешних стимулов при высвобождении лекарства

Образец №4 имел более высокую LC=0,09 мг лек./мг НП, что объясняется более подходящим методом внедрения путем перемешивания для данного лекарства.

Пример 2

Для экспериментов по внедрению/выпуску лекарства было выбрано противоопухолевое лекарственное средство «Доксорубицин» (лиофилизат для приготовления раствора для внутрисосудистого и внутрипузырного введения, производитель: Фармфхеми Б.В., Нидерланды). В состав лиофилизата «Доксорубицина» входит активное вещество - доксорубицина гидрохлорид, а также вспомогательные вещества - лактозы моногидрат.

«Доксорубицин» может взаимодействовать с поверхностью чистого диоксида кремния посредством ряда водородных связей и электростатических взаимодействий, что устраняет необходимость функционализации поверхности НП для облегчения загрузки.

Внедрение лекарства в НП осуществлялось путем суспендирования 20 мг НП SiO2-5% MnO2 в 10 мл водного раствора лекарственного средства «Доксорубицина» с концентрацией Сст (таблица 3), далее образцы Dox-SiO2-5%MnO2.

Часть образцов после суспендирования была обработана в УЗ-ванночке в течение 40 минут и оставлена на 24 часа, вторая часть образцов перемешивалась на мешалке в течение 24 часов. Далее суспендированный НП отделяли центрифугированием (4000 об /мин, 10 мин) и промывали дистиллированной водой.

Для оценки массы загруженного лекарства надосадочную часть исследовали спектрофотометрическим методом на длине волны λ=490 нм, соответствующей максимуму поглощения лекарств. С помощью сравнительного способа количественного анализа относительно контрольного раствора (далее - контроль Dox) используемого лекарства была оценена концентрация лекарственного вещества в надосадочной жидкости.

Выпуск лекарства осуществлялся путем суспендирования высушенных НП в дистиллированной воде спустя 3 суток после суспендирования НП в растворе лекарства, последующем центрифугировании и промывке.

Для оценки высвобождаемого объема лекарства высушенный НП повторно суспендировали в 1 мл дистиллированной воды. После центрифугирования надосадочную часть исследовали на спектрофотометре по методике, аналогичной методике оценки массы загруженного лекарства. По полученным концентрациям выпущенного лекарства Cx и объему исходных суспензий была рассчитана масса внедренного лекарства mв и загрузочная способность НП LC.

НП из образца №3.2, 3.4 после внедрения лекарства и промывки имели разную структуру: НП, обработанные УЗ, слиплись и образовали плотные разделенные агломераты, в то время как НП после перемешивания сохранили пористый, ватообразный вид.

Сравнивая LC=0,075 мг лек./мг НП образца №3.2 с LC=0,014 мг лек./мг НП образца МСМ-41 [2], видно, что исследуемый НП обладает более высокой загрузочной способностью. Полученные результаты позволяют сделать вывод о влиянии пористости на загрузочную способность. Несмотря на высокую SBET НП МСМ-41, существенно превышающую Sbet исследуемого образца (табл. 1), низкая пористость определяет низкую загрузочную способность.

Использованная литература:

[1] Guillet-Nicolas, R. Manganese-impregnated mesoporous silica nanoparticles for signal enhancement in MRI cell labelling studies / R. Guillet-Nicolas, M. Laprise-Pelletier, M.M. Nair et al. // Nanoscale. - 2013. - V. 5. - I. 23. - P. 11499-11511.

[2] Hu, Y. Natural material-decorated mesoporous silica nanoparticle container for multifunctional membrane-controlled targeted drug delivery / Y. Hu, L. Ke, H. Chen H., et al. // Int. J. Nanomedicine. -2017. - V. 12. - P. 8411-8426.

[3] Li Y., Li N., Pan W., Yu Z., Yang L. and Tang B. Hollow Mesaporous Silica Nanoparticles with Tunable Structures for Controlled Drug Delivery // ACS Appl. Mater. Interfaces, 2017, 9. C. 2123-2129.

[4] Злыгостева О.A., Соковнин С.Ю., Ильвес В.Г. Оценка свойств мезопористого диоксида кремния, допированного диоксидом марганца, полученного импульсным электронным испарением, для применения в биомедицине // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов: межвуз. сб. науч. тр. / под общей редакцией В.М. Самсонова, Н.Ю. Сдобнякова. Тверь: Твер. гос. ун-т, 2017, том 9. С. 199-204.

Система-носитель для направленной доставки антибиотиков пенициллинового и антрациклинового ряда на основе нанопорошка, обладающая магнитными свойствами, отличающаяся тем, что состоит из аморфного нанопорошка диоксида кремния, допированного диоксидом марганца, причем допирование диоксидом марганца проводят в процессе получения нанопорошка методом испарения импульсным электронным пучком в газе низкого давления, и обладает пористостью до 0,88 см/г и площадью поверхности до 176 м/г.
Система-носитель для направленной доставки антибиотиков пенициллинового и антрациклинового ряда
Система-носитель для направленной доставки антибиотиков пенициллинового и антрациклинового ряда
Система-носитель для направленной доставки антибиотиков пенициллинового и антрациклинового ряда
Источник поступления информации: Роспатент

Показаны записи 21-27 из 27.
09.06.2018
№218.016.5bf6

Батарея трубчатых твердооксидных элементов с тонкослойным электролитом электрохимического устройства и узел соединения трубчатых твердооксидных элементов в батарею (варианты)

Изобретение относится к высокотемпературным электрохимическим устройствам на основе твердооксидных элементов (ТОЭ) - элементов с твердым электролитом, точнее к конструкции батареи трубчатых ТОЭ и узлов соединения (УС) ТОЭ в батарею. Техническим результатом является создание батареи, в которой...
Тип: Изобретение
Номер охранного документа: 0002655671
Дата охранного документа: 29.05.2018
19.07.2018
№218.016.7251

Плоский спиральный индуктор сильного магнитного поля (варианты)

Изобретение относится к электротехнике и может быть использовано в индукторах устройств для магнитно-импульсной обработки материалов (МИОМ), такой как прессование порошков, штамповка листовых заготовок и т.д., использующих ток высокой частоты и большой амплитуды для генерации сильного...
Тип: Изобретение
Номер охранного документа: 0002661496
Дата охранного документа: 17.07.2018
26.07.2018
№218.016.7576

Высокоактивная многослойная тонкопленочная керамическая структура активной части элементов твердооксидных устройств

Высокоактивная многослойная тонкопленочная керамическая структура активной части элементов твердооксидных устройств для высокоэффективной генерации тока, генерации водорода электролизом воды, генерации кислорода и азота твердооксидными кислородными насосами, конверсии топливных газов с...
Тип: Изобретение
Номер охранного документа: 0002662227
Дата охранного документа: 25.07.2018
03.11.2018
№218.016.9a2b

Способ получения оптически прозрачной керамики на основе оксида лютеция

Использование: для создания оптически прозрачной керамики. Сущность изобретения заключается в том, что способ получения оптически прозрачной керамики на основе оксида лютеция заключается в спекании прокаленного пресс-порошка в искровой плазме, при этом максимально допустимая для используемой...
Тип: Изобретение
Номер охранного документа: 0002671550
Дата охранного документа: 01.11.2018
12.04.2019
№219.017.0be5

Способ допирования mgo-nalo керамик ионами железа

Изобретение относится к области квантовой электроники и может использоваться для синтеза активной среды при создании мощных лазеров, генерирующих в среднем ИК-диапазоне длин волн. Техническим результатом изобретения является повышение однородности распределения, концентрации и толщины активного...
Тип: Изобретение
Номер охранного документа: 0002684540
Дата охранного документа: 09.04.2019
13.06.2019
№219.017.8132

Способ изготовления высокоплотных объемных керамических элементов с использованием электрофоретического осаждения наночастиц (варианты)

Изобретение относится к области получения керамических материалов и может быть использовано для изготовления высокоплотной, в том числе оптической, керамики. В способе изготовления высокоплотных объемных керамических элементов с использованием электрофоретического осаждения (ЭФО) наночастиц...
Тип: Изобретение
Номер охранного документа: 0002691181
Дата охранного документа: 11.06.2019
28.06.2019
№219.017.9975

Микро-планарный твердооксидный элемент (мп тоэ), батарея на основе мп тоэ (варианты)

Изобретение относится к области электротехники, а именно к конструкциям микропланарных твердооксидных топливных элементов (МП ТОЭ) и батарей на их основе. МПТОЭ имеет мембрану из тонкослойного твердого электролита с анодом и катодом на противоположных поверхностях (активная часть) и...
Тип: Изобретение
Номер охранного документа: 0002692688
Дата охранного документа: 26.06.2019
Показаны записи 11-11 из 11.
06.02.2020
№220.017.ffc1

Способ производства сывороточного изолята для изготовления адаптированных молочных смесей и заменителей грудного молока

Изобретение относится к молочной промышленности. Способ предусматривает электронно-лучевую обработку импульсным наносекундным пучком электронов плотностью 30-45 кГр на кромке, что соответствует поглощенной дозе 8-9 кГр в усредненном потоке, обезжиренной смеси коровьего молока и коровьего...
Тип: Изобретение
Номер охранного документа: 0002713275
Дата охранного документа: 04.02.2020
+ добавить свой РИД